
Robot Perception and Learning

Tsung-Wei Ke

Value Function Approximation, Policy Gradient, Actor Critic

Fall 2025

1

TD BackupMC Backup

Summary
Generalized Policy Iteration DP vs. MC vs. TD

Bootstrap Sample

DP ✓ ⤫

MC ⤫ ✓

TD ✓ ✓

• DP: 𝑉 𝑆𝑡 ← σ𝐴𝑡
𝜋(𝐴𝑡|𝑆𝑡) σ𝑆𝑡+1,𝑅𝑡+1

𝑝 𝑆𝑡+1, 𝑅𝑡+1 𝑆𝑡, 𝐴𝑡 [𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1]

• MC: 𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝐺𝑡 − 𝑉 𝑆𝑡]
• TD: 𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉 𝑆𝑡]

Importance Sampling
• On-policy learning: learn value

and execute with the same policy
• Off-policy learning: learn and

execute with different policies

2

(Recap) Sarsa: On-policy TD Control

• We can learn an action-value function in a similar manner as a state-value function.
Instead of considering transitions from state to state, we now consider transitions
from state-action pair to state-action pair

3

(Recap) Sarsa: On-policy TD Control

4

behavior policy

target policy

• The learned action-value function approximates 𝑞∗

• If all state-action pairs continue to be updated, Q has been shown to converge
with probability 1 to 𝑞∗

Q-learning: Off-policy TD Control

5

Cliff Walking Example

• The behavior policy uses 𝜀-greedy action selection, with 𝜀 = 0.1
• Action: up, down, left and right
• Reward is -100 at the Cliff region, otherwise, reward is -1

Q-learning path

Sarsa path

6

Remember the behavior policy uses 𝜀-greedy action
selection, which occasionally falls off the cliff!

Cliff Walking Example

7

Maximization Bias and Double Q-Learning

• The estimated values 𝑄(𝑠, 𝑎) are often uncertain and distributed some above and
some below zero. The maximum of estimated values induces a positive bias.

• Let say the true values of state 𝑠 and many actions 𝑎 are all zero, but estimated
values 𝑄(𝑠, 𝑎) has positive bias

• This is because we use the same samples to determine the maximizing action and
to estimate is values!

positive bias is introduced by the “maximum” operator

8

Maximization Bias Example

The true value 𝑉 𝑙𝑒𝑓𝑡 = −0.1

The true value 𝑉 𝑟𝑖𝑔ℎ𝑡 = 0

• Action: left and right
• Reward is 0 when transitioning from A to B; reward is drawn from 𝒩 −0.1,1 when

transitioning from B to left.
• Taking “left” action from A should always be worse than “right” action

Q-learning was biased toward “left”
action from A, due to the positive bias!

9

Double Q-Learning

• The estimated values 𝑄(𝑠, 𝑎) are often uncertain and distributed some above and
some below zero. The maximum of estimated values induces a positive bias.

• This is because we use the same samples to determine the maximizing action and
to estimate is values!

• Solution: use two sets of samples to learn two independent estimates 𝑄1 and 𝑄2
➢ 𝑄1 determines the maximizing action:

𝐴∗ = 𝑎𝑟𝑔max
𝑎

𝑄1(𝑠, 𝑎)

➢ 𝑄2 provides the estimate of its value:

𝑄2 𝑠, 𝐴∗ = 𝑄2(𝑠, 𝑎𝑟𝑔max
𝑎

𝑄1(𝑠, 𝑎))

10

Double Q-Learning

11

Quick Recap: Temporal-Difference Learning
• Temporal-Difference (TD) methods: combine Monte Carlo methods with Dynamic

Programming methods that wait only until the next time step and bootstrap value
functions from existing estimates

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉 𝑆𝑡]

We call this formulation 1-step TD
We can also have n-step TD

12

N-step TD Prediction

13

• n-step TD:

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑅𝑡+2 +⋯+ 𝛾𝑛−1𝑅𝑡+𝑛 + 𝛾𝑛𝑉(𝑆𝑡+𝑛) − 𝑉 𝑆𝑡]

• n-step TD:

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑅𝑡+2 +⋯+ 𝛾𝑛−1𝑅𝑡+𝑛 + 𝛾𝑛𝑉(𝑆𝑡+𝑛) − 𝑉 𝑆𝑡]

• When 𝑛 → ∞, n-step TD becomes an MC method:

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑅𝑡+2 +⋯+ 𝛾𝑇−1𝑅𝑇 − 𝑉 𝑆𝑡]

N-step TD Prediction

14

No bootstrapping until time
step 𝑡 + 𝑛

N-step TD Prediction

15

Image credit K. Fragkiadaki

N-step TD Prediction

16

On-policy n-step Action-Value Methods
• Action-value form of n-step return

• n-step Sarsa

• n-step expected Sarsa

17

Off-policy n-step Action-Value Methods
• Importance-sampling ratio

• Weighted estimated value functions with importance-sampling ratio
• Off-policy n-step TD

• Off-policy n-step Sarsa

18

Tabular Value Function Learning

19

• TD state-value learning:

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉 𝑆𝑡]

• Q-learning:

Q 𝑆𝑡 , 𝐴𝑡 ← Q 𝑆𝑡 , 𝐴𝑡 + 𝛼[𝑅𝑡+1 + 𝛾max
𝑎

Q 𝑆𝑡+1, 𝑎 − Q 𝑆𝑡 , 𝐴𝑡]

• We used a tabular setup: the value is retrieved from a table with a key of
state/state-action pair

• What are the limitations?

Tabular Value Function Learning

20

• TD state-value learning:

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉 𝑆𝑡]

• Q-learning:

Q 𝑆𝑡 , 𝐴𝑡 ← Q 𝑆𝑡 , 𝐴𝑡 + 𝛼[𝑅𝑡+1 + 𝛾max
𝑎

Q 𝑆𝑡+1, 𝑎 − Q 𝑆𝑡 , 𝐴𝑡]

• We used a tabular setup: the value is retrieved from a table with a key of
state/state-action pair

• What are the limitations?
➢ Discrete state/action space

• TD state-value learning:

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉 𝑆𝑡]

• Q-learning:

Q 𝑆𝑡 , 𝐴𝑡 ← Q 𝑆𝑡 , 𝐴𝑡 + 𝛼[𝑅𝑡+1 + 𝛾max
𝑎

Q 𝑆𝑡+1, 𝑎 − Q 𝑆𝑡 , 𝐴𝑡]

• We used a tabular setup: the value is retrieved from a table with a key of
state/state-action pair

• What are the limitations?
➢ Discrete state/action space
➢ Curse of dimensionality: too many states / state-action pairs stored

in the memory

Tabular Value Function Learning

21

• TD state-value learning:

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉 𝑆𝑡]

• Q-learning:

Q 𝑆𝑡 , 𝐴𝑡 ← Q 𝑆𝑡 , 𝐴𝑡 + 𝛼[𝑅𝑡+1 + 𝛾max
𝑎

Q 𝑆𝑡+1, 𝑎 − Q 𝑆𝑡 , 𝐴𝑡]

• We used a tabular setup: the value is retrieved from a table with a key of
state/state-action pair

• What are the limitations?
➢ Discrete state/action space
➢ Curse of dimensionality: too many states / state-action

pairs stored in the memory
➢ Closed world (can’t generalize to unseen state/action)

Tabular Value Function Learning

22

• TD state-value learning:

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉 𝑆𝑡]

• Q-learning:

Q 𝑆𝑡 , 𝐴𝑡 ← Q 𝑆𝑡 , 𝐴𝑡 + 𝛼[𝑅𝑡+1 + 𝛾max
𝑎

Q 𝑆𝑡+1, 𝑎 − Q 𝑆𝑡 , 𝐴𝑡]

• We used a tabular setup: the value is retrieved from a table with a key of
state/state-action pair

• What are the limitations?
➢ Discrete state/action space
➢ Curse of dimensionality: too many states / state-action

pairs stored in the memory
➢ Closed world (can’t generalize to unseen state/action)

Tabular Value Function Learning

23

Fit an approximatorWhat are the labels

Value Function Approximation

Image credit D. Silver

𝝓

𝝓 𝝓 𝝓

𝝓 𝝓 𝝓

24

Gradient Descent

𝝓

𝝓

𝝓

𝝓 𝝓

𝝓

𝝓

𝝓

𝝓

25Image credit D. Silver

𝝓

𝝓

𝝓

𝝓 𝝓

𝝓

𝝓

𝝓

𝝓

𝝓

𝝓𝝓𝝓

𝝓

Gradient Descent

26Image credit D. Silver

Value Function Approximation by Stochastic Gradient Descent

• Goal: find parameter vector 𝝓 minimizing mean-squared error between
approximate value function ෠𝑉(𝑆,𝝓) and true value function 𝑉𝜋(𝑆)

𝐽 𝝓 = 𝔼𝜋 (𝑉𝜋 𝑆 − ෠𝑉 𝑆,𝝓)2

• Let 𝜇(𝑆) denote how much time we spend in each state 𝑆 under policy 𝜋, then

𝐽 𝝓 =෍

𝑠∈𝒮

|𝒮|

𝜇(𝑆) 𝑉𝜋 𝑆 − ෠𝑉 𝑆,𝝓
2

s.t ෍

𝑠∈𝒮

𝜇(𝑆) = 1

• In contrast to

𝐽 𝝓 =
1

|𝒮|
෍

𝑠∈𝒮

|𝒮|

𝑉𝜋 𝑆 − ෠𝑉 𝑆,𝝓
2

Slide credit K. Fragkiadaki 27

• Goal: find parameter vector 𝝓 minimising mean-squared error between
approximate value function ෠𝑉(𝑆,𝝓) and true value function 𝑉𝜋(𝑆)

𝐽 𝝓 = 𝔼𝜋 (𝑉𝜋 𝑆 − ෠𝑉 𝑆,𝝓)2

• Let 𝜇(𝑆) denote how much time we spend in each state 𝑆 under policy 𝜋, then

𝐽 𝝓 =෍

𝑠∈𝒮

|𝒮|

𝜇(𝑆) 𝑉𝜋 𝑆 − ෠𝑉 𝑆,𝝓
2

s.t ෍

𝑠∈𝒮

𝜇(𝑆) = 1

• In contrast to

𝐽 𝝓 =
1

|𝒮|
෍

𝑠∈𝒮

|𝒮|

𝑉𝜋 𝑆 − ෠𝑉 𝑆,𝝓
2

We care more about the frequently visited states,
even though the total number of states is huge

Value Function Approximation by Stochastic Gradient Descent

Slide credit K. Fragkiadaki 28

On-policy State Distribution

• Let ℎ(𝑆) be the initial state distribution, i.e, the probability that an episode starts at
state 𝑆

• Un-normalized on-policy state probability satisfies the following recursions:

𝜂 𝑆 = ℎ 𝑆 +෍

𝑆′

𝜂 𝑆′ ෍

𝑎

𝜋 𝑎 𝑆′ 𝑝(𝑆|𝑆′, 𝑎)

𝜇 𝑆 =
𝜂 𝑆

σ
𝑆′ 𝜂 𝑆′

Slide credit K. Fragkiadaki 29

Value Function Approximation by Stochastic Gradient Descent

𝝓

𝝓

𝝓𝝓

𝝓 𝝓𝝓

𝝓 𝝓
𝝓

𝝓 𝝓
𝝓

𝝓

30Slide credit D. Silver

What are the Targets of Value Function Approximation?

• We usually have no access to the true value function 𝑉𝜋(𝑆) (otherwise, the
problem is solved). Let y(𝑠) be the target of the value function approximator

𝐽 𝝓 = 𝔼𝜋 (𝑦 𝑆 − ෠𝑉 𝑆,𝝓)2

• What could be y(𝑠) ?
➢ Monte-Carlo Method?
➢ Temporal Difference Method?

31Slide credit D. Silver

Recap: Monte-Carlo and Temporal Difference Method

• Monte Carlo (MC) methods: must wait until the end of the episode to learn value
functions (only when the return is known)

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝐺𝑡 − 𝑉 𝑆𝑡]

• Temporal-Difference (TD) methods: combine Monte Carlo methods with Dynamic
Programming methods that wait only until the next time step and bootstrap value
functions from existing estimates

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉 𝑆𝑡]

• Remember, we said in incremental method:

NewEstimate
← OldEstimate + StepSize × Target − OldEstimate

32Slide credit D. Silver

NewEstimate
← OldEstimate + StepSize × Target − OldEstimate

This could be the target!

Recap: Monte-Carlo and Temporal Difference Method

33Slide credit D. Silver

• Monte Carlo (MC) methods: must wait until the end of the episode to learn value
functions (only when the return is known)

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝐺𝑡 − 𝑉 𝑆𝑡]

• Temporal-Difference (TD) methods: combine Monte Carlo methods with Dynamic
Programming methods that wait only until the next time step and bootstrap value
functions from existing estimates

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉 𝑆𝑡]

• Remember, we said in incremental method:

Monte-Carlo with Value Function Approximation

Return 𝐺𝑡 is unbiased, noisy sample of true value 𝑉𝜋(𝑆𝑡)

𝝓 𝝓

𝝓𝝓𝝓 𝝓

34

Temporal Difference with Value Function Approximation

• Objective:

𝐽 𝝓 = 𝔼𝜋 (𝑅𝑡+1 + 𝛾 ෠𝑉 𝑆𝑡+1, 𝝓 − ෠𝑉 𝑆𝑡 , 𝝓)2

• What are the gradients?

∇𝐽 𝝓 = 𝔼𝜋 (𝑅𝑡+1 + 𝛾 ෠𝑉 𝑆𝑡+1, 𝝓 − ෠𝑉 𝑆𝑡 , 𝝓)2

= 𝔼𝜋 𝑅𝑡+1 + 𝛾 ෠𝑉 𝑆𝑡+1, 𝝓 − ෠𝑉 𝑆𝑡 , 𝝓 𝛾∇෠𝑉 𝑆𝑡+1, 𝝓 − ∇෠𝑉 𝑆𝑡 , 𝝓

Ignore the dependence of the target on 𝝓!
This is called semi-gradient method

35

Temporal Difference with Value Function Approximation

𝝓

𝝓𝝓𝝓𝝓 𝝓

𝝓

36

How About Action-Value Function Approximation? Same Story!

• Goal: find parameter vector 𝝓 minimizing mean-squared error between
approximate action-value function ෠𝑄(𝑆, 𝐴,𝝓) and true value function 𝑄𝜋(𝑆, 𝐴)

𝐽 𝝓 = 𝔼𝜋 (𝑄𝜋 𝑆, 𝐴 − ෠𝑄 𝑆, 𝐴,𝝓)2

• Use Stochastic Gradient Descent to optimize 𝝓:

−
1

2
∇𝝓𝐽 𝝓 = 𝑄𝜋 𝑆, 𝐴 − ෠𝑄 𝑆, 𝐴,𝝓 ∇𝝓 ෠𝑄(𝑆, 𝐴,𝝓)

∆𝝓 = 𝛼 𝑄𝜋 𝑆, 𝐴 − ෠𝑄 𝑆, 𝐴,𝝓 ∇𝝓 ෠𝑄(𝑆, 𝐴,𝝓)

37

How About Action-Value Function Approximation? Same Story!

• Goal: find parameter vector 𝝓 minimizing mean-squared error between
approximate action-value function ෠𝑄(𝑆, 𝐴,𝝓) and true value function 𝑄𝜋(𝑆, 𝐴)

𝐽 𝝓 = 𝔼𝜋 𝑄𝜋 𝑆, 𝐴 − ෠𝑄 𝑆, 𝐴,𝝓
2

• For MC:

𝐽 𝝓 = 𝔼𝜋 𝐺𝑡 − ෠𝑄 𝑆𝑡 , 𝐴𝑡 , 𝝓
2

• For TD(0):

𝐽 𝝓 = 𝔼𝜋 𝑅𝑡+1 + 𝛾 ෠𝑄 𝑆𝑡+1, 𝐴𝑡+1, 𝝓 − ෠𝑄 𝑆𝑡 , 𝐴𝑡 , 𝝓
2

• For Q-learning:

𝐽 𝝓 = 𝔼𝜋 𝑅𝑡+1 + 𝛾max
𝑎

෠𝑄 𝑆𝑡+1, 𝑎, 𝝓 − ෠𝑄 𝑆𝑡 , 𝐴𝑡 , 𝝓

2

38

Control with Action-Value Function Approximation

𝝓

𝝓
𝝓

39Slide credit D. Silver

So Far, We Discussed an Online Setup of Q-Learning

Slide adapted from S. Levine 40

Problems in Online Q-Learning

1. Sequential samples are highly correlated
(little information gain)

…

Slide adapted from S. Levine 41

1. Sequential samples are highly correlated
(little information gain)

2. Target value changes whenever 𝜙 is updated

Problems in Online Q-Learning

Slide adapted from S. Levine 42

1. Sequential samples are highly correlated
(little information gain)

2. Target value changes whenever 𝜙 is updated
3. Gradients don’t pass through 𝑄𝜙 𝑠𝑖

′, 𝑎𝑖
′

(but it becomes numerically unstable when
propagating gradients through 𝑄𝜙 𝑠𝑖

′, 𝑎𝑖
′)

𝜙 ← 𝜙 + 𝛼
𝑑𝑄𝜙(𝑠𝑖, 𝑎𝑖)

𝑑𝜙
𝑄𝜙 𝑠𝑖, 𝑎𝑖 − 𝑟 𝑠𝑖, 𝑎𝑖 − γmax

𝑎′
𝑄𝜙 𝑠𝑖

′, 𝑎𝑖
′

Problems in Online Q-Learning

Slide adapted from S. Levine 43

Solution 1: Use Replay Buffer to Decorrelate Samples

• Collect transitions data, using a random policy for exploration (find
unseen states and transitions), and a deterministic policy for
exploitation (obtain most promising states)

Slide adapted from S. Levine 44

Use any policy to collect experience

• Collect transitions data, using a random policy for exploration (find
unseen states and transitions), and a deterministic policy for
exploitation (obtain most promising states)

• Sample a batch of ℬ = { 𝑠, 𝑎, 𝑠′, 𝑟 } from every collected 𝑠, 𝑎, 𝑠′, 𝑟 ,
temporally neighboring (𝑠, 𝑎, 𝑟) may not be sampled.

Solution 1: Use Replay Buffer to Decorrelate Samples

Slide adapted from S. Levine 45

Solution 1: Use Replay Buffer to Decorrelate Samples

Slide adapted from S. Levine 46

Some episodes in the replay buffer
are collected by older policies

Solution 1: Use Replay Buffer to Decorrelate Samples

Slide adapted from S. Levine 47

Fully Fitted Q-Iteration vs. Online Q-Learning

Slide adapted from S. Levine 48

We still have these problems:
2. Target value changes whenever 𝜙 is updated
3. Gradients don’t pass through 𝑄𝜙 𝑠𝑖

′, 𝑎𝑖
′

Fully Fitted Q-Iteration vs. Online Q-Learning

Slide adapted from S. Levine 49

Solution 2 and 3: Use Target Networks

Slide credit S. Levine 50

Slide credit S. Levine 51

DQN Surpasses Human Experts on (some) Atari Games

52

DQN Estimates State-Action Values

Image credit P. Agrawal 53

DQN Captures High-Value State-Action Pairs

A B C

54

DQN Has a Problem in Overestimating Values

55

Why does DQN Overestimate Values?

𝑄∗ 𝑠, 𝑎 is the true value function
𝑄𝑡 𝑠, 𝑎 is the estimated value function

56

𝑄∗ 𝑠, 𝑎 is the true value function
𝑄𝑡 𝑠, 𝑎 is the estimated value function

Slide credit P. Agrawal

Why does DQN Overestimate Values?

57

𝑄∗ 𝑠, 𝑎 is the true value function
𝑄𝑡 𝑠, 𝑎 is the estimated value function

See the proof in “Deep Reinforcement Learning with Double Q-learning”

Slide credit P. Agrawal

Why does DQN Overestimate Values?

58

Recap: Tabular Double Q-Learning

59

Double Deep Q-Learning
• Standard Q-learning:

𝑦 = 𝑟 + 𝛾max
𝑎′

𝑄𝜙′(𝑠′, 𝑎′) = 𝑟 + 𝛾𝑄𝜙′(𝑠′, max
𝑎′

𝑄𝜙′(𝑠′, 𝑎′))

• Double Q-learning:

𝑦 = 𝑟 + 𝛾𝑄𝜙′(𝑠′, max
𝑎′

𝑄𝝓(𝑠
′, 𝑎′))

• Using different value function to reduce overestimation: 𝑄𝝓 for selecting actions

and 𝑄𝜙′ for evaluating actions.

➢ 𝑎′ that induces overestimated 𝑄𝜙′(𝑠′, 𝑎′) is less frequently selected

60

• Double Q-learning:

𝑦 = 𝑟 + 𝛾𝑄𝜙′(𝑠′, max
𝑎′

𝑄𝝓(𝑠
′, 𝑎′))

• Using different value function to reduce overestimation: 𝑄𝝓 for selecting actions

and 𝑄𝜙′ for evaluating actions.

Double Deep Q-Learning

61

Clipped Double Deep Q-Learning
• Unfortunately, ue to the slow-changing policy in an actor-critic setting, the current

and target value estimates remain too similar to avoid maximization bias

• Clipped Double Q-learning:

𝑦 = 𝑟 + 𝛾 min
ෙ𝜙∈{𝜙′,𝝓}

𝑄ෙ𝜙(𝑠
′, max

𝑎′
𝑄𝝓(𝑠

′, 𝑎′))

• Using different value function to reduce overestimation: 𝑄𝝓 for selecting actions

and the minimum of the two values provided by𝑄𝝓 and 𝑄𝜙′ for evaluating actions.

Addressing Function Approximation Error in
Actor-Critic Methods, Fujimoto et al. 2018 62

Can We Do Better than MC / TD methods?

• Idea: Obtain more precise target by searching.

• Use Monte-Carlo Tree Search (MCTS) for Q value estimation and action selection at
training time instead of the Q learning update rule.

• At test time just use the reactive policy network, without any look-ahead planning.
In other words, imitate the MCTS planner.

Slide credit K. Fragkiadaki 63

Slide credit K. Fragkiadaki 64

Start

Set current to 𝑆0

Is current a leaf
node?

Set current to child
node of current that
maximises UCB1(𝑆𝑖)

rollout

Is the 𝑛𝑖 value
for current 0?

For each action
available from

current add a new
state to the tree

Set current to the
first new child node

rollout

Image credit S. Levine

Check this video:
https://youtu.be/UXW2yZndl7U?si=S0WHGlC1B2UVAYEA

Yes

No

Yes

No

65

Slide credit K. Fragkiadaki 66

Slide credit K. Fragkiadaki 67

Similar Idea is Used in Alpha Go / Super-human Agents

Mastering the game of Go with deep neural networks and tree search. Silver et al.

• Check different implementation of MCTS
• They also use searching during testing

➢ An awesome video by Noah Brown about test-time
planning:
https://youtu.be/eaAonE58sLU?si=wZmo8gQFJXCLU39Y

➢ We’ll talk more about learning with planning in this class

68

https://youtu.be/eaAonE58sLU?si=wZmo8gQFJXCLU39Y

Wait! DQN Still Has a Problem…

• Standard Q-learning:

𝑦 = 𝑟 + 𝛾max
𝑎′

𝑄𝜙′(𝑠′, 𝑎′) = 𝑟 + 𝛾𝑄𝜙′(𝑠′, max
𝑎′

𝑄𝜙′(𝑠′, 𝑎′))

• Double Q-learning:

𝑦 = 𝑟 + 𝛾𝑄𝜙′(𝑠′, max
𝑎′

𝑄𝝓(𝑠
′, 𝑎′))

• Using different value function 𝑄𝝓 for selecting action reduces overestimation.

➢ 𝑎′ that induces overestimated 𝑄𝜙′(𝑠′, 𝑎′) is less frequently selected

What if the action is continuous?

69

Wait! DQN Still Has a Problem…

• Standard Q-learning:

𝑦 = 𝑟 + 𝛾max
𝑎′

𝑄𝜙′(𝑠′, 𝑎′) = 𝑟 + 𝛾𝑄𝜙′(𝑠′, max
𝑎′

𝑄𝜙′(𝑠′, 𝑎′))

• Double Q-learning:

𝑦 = 𝑟 + 𝛾𝑄𝜙′(𝑠′, max
𝑎′

𝑄𝝓(𝑠
′, 𝑎′))

• Using different value function 𝑄𝝓 for selecting action reduces overestimation.

➢ 𝑎′ that induces overestimated 𝑄𝜙′(𝑠′, 𝑎′) is less frequently selected

What if the action is continuous?

70

There’re many solutions, but the most obvious one may be
learning an action policy for maximizing the value…

Recap: Reinforcement Learning Aims to Maximize
the Total Reward of an Episode of Interaction

Slide adapted from S. Levine

• A trajectory of interaction in the environment

Action 𝑎𝑡

State 𝑠𝑡
Reward 𝑟𝑡

State 𝑠𝑡+1
Reward 𝑟𝑡+1

• Maximize the expected value of the cumulative sum of reward

The policy

71

Slide credit D. Silver

Valued-Based and Policy-Based RL

72

Policy Gradient

• Let 𝑟 𝜏 = σ𝑡 𝑟(𝑠𝑡 , 𝑎𝑡)]

• Let 𝐽 𝜃 = σ𝜏~𝑝𝜃(𝜏)
[σ𝑡 𝑟(𝑠𝑡 , 𝑎𝑡)] = 𝑝𝜃׬ 𝜏 𝑟 𝜏 𝑑𝜏

• Compute gradients of 𝜃 w.r.t to 𝐽 𝜃

∇𝐽 𝜃 = න∇𝑝𝜃 𝜏 𝑟 𝜏 𝑑𝜏 = න𝑝𝜃 𝜏 ∇ log 𝑝𝜃 𝜏 𝑟 𝜏 𝑑𝜏 = 𝐸𝜏~𝑝𝜃(𝜏) ∇ log 𝑝𝜃 𝜏 𝑟 𝜏

∇ log 𝑝𝜃 =
1

𝑝𝜃
∇𝑝𝜃

73

• Let 𝑟 𝜏 = σ𝑡 𝑟(𝑠𝑡 , 𝑎𝑡)]

• Let 𝐽 𝜃 = σ𝜏~𝑝𝜃(𝜏)
[σ𝑡 𝑟(𝑠𝑡 , 𝑎𝑡)] = 𝑝𝜃׬ 𝜏 𝑟 𝜏 𝑑𝜏

• Compute gradients of 𝜃 w.r.t to 𝐽 𝜃

∇𝐽 𝜃 = න∇𝑝𝜃 𝜏 𝑟 𝜏 𝑑𝜏 = න𝑝𝜃 𝜏 ∇ log 𝑝𝜃 𝜏 𝑟 𝜏 𝑑𝜏 = 𝐸𝜏~𝑝𝜃(𝜏) ∇ log 𝑝𝜃 𝜏 𝑟 𝜏

∇ log 𝑝𝜃 𝜏 = ∇ log[𝑝 𝑠0 ×ෑ
𝑡=0

𝑇

𝜋𝜃(𝑎𝑡 |𝑠𝑡) × 𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)]

= ∇[log 𝑝 𝑠0 +෍
𝑡=0

𝑇

log 𝜋𝜃(𝑎𝑡 𝑠𝑡 +෍
𝑡=0

𝑇

log 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡]

Policy Gradient

74

• Let 𝑟 𝜏 = σ𝑡 𝑟(𝑠𝑡 , 𝑎𝑡)]

• Let 𝐽 𝜃 = σ𝜏~𝑝𝜃(𝜏)
[σ𝑡 𝑟(𝑠𝑡 , 𝑎𝑡)] = 𝑝𝜃׬ 𝜏 𝑟 𝜏 𝑑𝜏

• Compute gradients of 𝜃 w.r.t to 𝐽 𝜃

∇𝐽 𝜃 = න∇𝑝𝜃 𝜏 𝑟 𝜏 𝑑𝜏 = න𝑝𝜃 𝜏 ∇ log 𝑝𝜃 𝜏 𝑟 𝜏 𝑑𝜏 = 𝐸𝜏~𝑝𝜃(𝜏) ∇ log 𝑝𝜃 𝜏 𝑟 𝜏

∇ log 𝑝𝜃 𝜏 = ∇ log[𝑝 𝑠0 ×ෑ
𝑡=0

𝑇

𝜋𝜃(𝑎𝑡 |𝑠𝑡) × 𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)]

= ∇[log 𝑝 𝑠0 +෍
𝑡=0

𝑇

log 𝜋𝜃(𝑎𝑡 𝑠𝑡 +෍
𝑡=0

𝑇

log 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡]

∇𝐽 𝜃 = 𝐸𝜏~𝑝𝜃(𝜏) ෍
𝑡=0

𝑇

∇log 𝜋𝜃(𝑎𝑡 𝑠𝑡 ෍
𝑡=0

𝑇

𝑟(𝑠𝑡, 𝑎𝑡)

Policy Gradient

75

• Let 𝑟 𝜏 = σ𝑡 𝑟(𝑠𝑡 , 𝑎𝑡)]

• Let 𝐽 𝜃 = σ𝜏~𝑝𝜃(𝜏)
[σ𝑡 𝑟(𝑠𝑡 , 𝑎𝑡)] = 𝑝𝜃׬ 𝜏 𝑟 𝜏 𝑑𝜏

• Compute gradients of 𝜃 w.r.t to 𝐽 𝜃

∇𝐽 𝜃 = න∇𝑝𝜃 𝜏 𝑟 𝜏 𝑑𝜏 = න𝑝𝜃 𝜏 ∇ log 𝑝𝜃 𝜏 𝑟 𝜏 𝑑𝜏 = 𝐸𝜏~𝑝𝜃(𝜏) ∇ log 𝑝𝜃 𝜏 𝑟 𝜏

∇ log 𝑝𝜃 𝜏 = ∇ log[𝑝 𝑠0 ×ෑ
𝑡=0

𝑇

𝜋𝜃(𝑎𝑡 |𝑠𝑡) × 𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)]

= ∇[log 𝑝 𝑠0 +෍
𝑡=0

𝑇

log 𝜋𝜃(𝑎𝑡 𝑠𝑡 +෍
𝑡=0

𝑇

log 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡]

∇𝐽 𝜃 = 𝐸𝜏~𝑝𝜃(𝜏) ෍
𝑡=0

𝑇

∇log 𝜋𝜃(𝑎𝑡 𝑠𝑡 ෍
𝑡=0

𝑇

𝑟(𝑠𝑡, 𝑎𝑡)

The transition function is not needed.
We just need experience!

Policy Gradient

76

Maximizing Action Trajectories using Returns

• Policy Gradients weights gradients with a sum of rewards of the trajectory:

∇𝐽 𝜃 = 𝐸𝜏~𝑝𝜃(𝜏) ෍
𝑡=0

𝑇

∇log 𝜋𝜃(𝑎𝑡 𝑠𝑡 ෍
𝑡=0

𝑇

𝑟(𝑠𝑡 , 𝑎𝑡)

• Policy Gradients learn from “trial and error”

Slide adapted from S. Levine

The policy is optimized to follow the
trajectory of high-reward episodes

77

• Policy Gradients weights gradients with a sum of rewards of the trajectory:

∇𝐽 𝜃 = 𝐸𝜏~𝑝𝜃(𝜏) ෍
𝑡=0

𝑇

∇log 𝜋𝜃(𝑎𝑡 𝑠𝑡 ෍
𝑡=0

𝑇

𝑟(𝑠𝑡 , 𝑎𝑡)

• Idea: approximate expected value by sampling

∇𝐽 𝜃 ≈
1

𝑁
෍

𝑖=1

𝑁

෍
𝑡=0

𝑇

∇log 𝜋𝜃(𝑎𝑡 𝑠𝑡 ෍
𝑡=0

𝑇

𝑟 𝑠𝑡 , 𝑎𝑡

REINFORCE algorithm (Monte-Carlo Policy Gradient)

Maximizing Action Trajectories using Returns

Slide adapted from S. Levine 78

An Example of Pong

Slide adapted from K. Fragkiadaki
Material Source: https://karpathy.github.io/2016/05/31/rl/

Policy network

79

Supervised Learning vs. Reinforcement Learning

Material Source: https://karpathy.github.io/2016/05/31/rl/ 80

Reinforcement Learning: Optimize the Policy Based
on Trial and Error

Material Source: https://karpathy.github.io/2016/05/31/rl/

• Rollout the policy and collect episodes…

81

We don’t need any action labels!

Slide adapted from K. Fragkiadaki
Material Source: https://karpathy.github.io/2016/05/31/rl/ 82

Wait! Policy Gradient Also Has Problems…

83

Gradients of each action in the trajectory
are weighted by the sum of rewards

Wait! Policy Gradient Also Has Problems…

84

• The gradient estimator is unbiased, but requires a
very large number of samples to accurately
approximate the true gradient

• When the number of sample is small, the variance is
high…

Wait! Policy Gradient Also Has Problems…

85

Gradients of the same
action has high variance!

Gradients Have High Variance

86

Gradients of current actions forced to
account for previous success/failure

Gradients Have High Variance

87

Gradients of current actions forced to
account for previous success/failure

Solution:
• Causality: let current actions only account for future

success/failure

∇𝐽 𝜃 = 𝐸𝜏~𝑝𝜃(𝜏) σ𝑡=0
𝑇 ∇log 𝜋𝜃(𝑎𝑡 𝑠𝑡 σ𝑡′=𝑡

𝑇 𝛾𝑡
′
𝑟(𝑠𝑡′ , 𝑎𝑡′)

Gradients Have High Variance

88

𝑝(𝜏)

𝑟(𝜏)

Common sub-optimal trajectory receives
same weightings as rare optimal trajectory

∇𝐽 𝜃 = න𝑝𝜃 𝜏 ∇ log 𝑝𝜃 𝜏 𝑟 𝜏 𝑑𝜏

𝑝𝜃 𝜏𝑟 𝑟 𝜏𝑟 = 𝑝𝜃 𝜏𝑔 𝑟 𝜏𝑔

Gradients Have High Variance

89

• Subtract a baseline 𝑏

∇𝐽 𝜃 ≈
1

𝑁
෍

𝑖=1

𝑁

∇ log 𝑝𝜃 𝜏 𝑟 𝜏 − 𝑏

• The gradients don’t change

𝐸 ∇ log 𝑝𝜃 𝜏 𝑏 = න𝑝𝜃 𝜏 ∇ log 𝑝𝜃 𝜏 𝑏𝑑𝜏 = න∇𝑝𝜃 𝜏 𝑏𝑑𝜏 = 𝑏∇න𝑝𝜃 𝜏 𝑏𝑑𝜏 = 0

• Subtracting a baseline is unbiased in expectation!

A More General Solution to Reduce Variance

90

Slide credit S. Levine

What about variance?

91

Slide credit S. Levine

What about variance?

92

Slide adapted from K. Fragkiadaki

Other Options of Baselines?

• Constant baseline 𝑏 = 1

𝑁
σ𝑖=1
𝑁 𝑟 𝜏

∇𝐽 𝜃 ≈
1

𝑁
෍

𝑖=1

𝑁

∇ log 𝑝𝜃 𝜏 𝑟 𝜏 − 𝑏

• Time-dependent baseline 𝑏𝑡 =
1

𝑁
σ𝑖=1
𝑁 𝑟𝑡 𝜏

∇𝐽 𝜃 ≈
1

𝑁
෍

𝑖=1

𝑁

෍
𝑡=1

𝑇

∇ log 𝑝𝜃 𝑎𝑡|𝑠𝑡 𝑟𝑡 𝜏𝑡 − 𝑏𝑡

• State-dependent baseline 𝑏𝑠 = 𝑉𝜋(𝑠)

∇𝐽 𝜃 ≈
1

𝑁
෍

𝑖=1

𝑁

෍
𝑡=1

𝑇

∇ log 𝑝𝜃 𝑎𝑡|𝑠𝑡 𝑟𝑡 𝜏𝑡 − 𝑏𝑠𝑡

93

Off-Policy Policy Gradient with Importance Sampling

Slide credit S. Levine 94

Actor Critic

• Policy Gradient:

∇𝐽 𝜃 = 𝐸𝜏~𝑝𝜃(𝜏) ෍
𝑡=0

𝑇

∇log 𝜋𝜃(𝑎𝑡 𝑠𝑡 ෍
𝑡=0

𝑇

𝑟(𝑠𝑡 , 𝑎𝑡) − 𝑏

• Re-write with action value 𝑄𝜋(𝑠, 𝑎):

∇𝐽 𝜃 = 𝐸𝜏~𝑝𝜃(𝜏) ෍
𝑡=0

𝑇

∇log 𝜋𝜃(𝑎𝑡 𝑠𝑡 𝑄𝜋(𝑠𝑡 , 𝑎𝑡) − 𝑏

95

• Re-write with action value 𝑄𝜋(𝑠, 𝑎):

∇𝐽 𝜃 = 𝐸𝜏~𝑝𝜃(𝜏) ෍
𝑡=0

𝑇

∇log 𝜋𝜃(𝑎𝑡 𝑠𝑡 𝑄𝜋 (𝑠𝑡 , 𝑎𝑡) − 𝑏

⇒ ∇𝐽 𝜃 = 𝐸𝜏~𝑝𝜃(𝜏) ෍
𝑡=0

𝑇

∇log 𝜋𝜃(𝑎𝑡 𝑠𝑡 𝑄𝜋(𝑠𝑡 , 𝑎𝑡) − 𝑉𝜋(𝑠)

• Advantage 𝐴𝜋 (𝑠𝑡 , 𝑎𝑡) measures how much better action 𝑎𝑡 is than other actions

• If we learn a value estimator 𝑉𝜙
𝜋 𝑠 parameterized by 𝜙, we obtain:

➢ Estimated action value𝑄𝜋 𝑠𝑡 , 𝑎𝑡 = 𝑅 𝑠𝑡 , 𝑎𝑡 + 𝛾𝑉𝜙
𝜋 𝑠𝑡+1

➢ Estimated advantage𝐴𝜋 𝑠𝑡 , 𝑎𝑡 = 𝑅 𝑠𝑡 , 𝑎𝑡 + 𝛾𝑉𝜙
𝜋 𝑠𝑡+1 − 𝑉𝜙

𝜋 𝑠𝑡

Let 𝑏 = 𝑉𝜋(𝑠)

Advantage 𝐴𝜋(𝑠𝑡 , 𝑎𝑡)

Actor Critic

96

On-policy Advantage Actor Critic

Slide credit K. Fragkiadaki

𝐽

𝐽

97

𝐽

𝐽

On-policy Advantage Actor Critic

Slide credit K. Fragkiadaki 98

Off-policy Actor Critic with Importance Sampling

• Policy gradient objective:

𝐽 𝜃 = ෍

𝜏~𝑝𝜃(𝜏)

෍

𝑡

𝑟(𝑠𝑡 , 𝑎𝑡)

• Actor-critic objective:

𝐽 𝜃 = ෍

𝜏~𝑝𝜃(𝜏)

𝐴𝜋 𝑠𝑡 , 𝑎𝑡

• Off-policy Actor-critic objective with importance sampling:

𝐽 𝜃 = ෍

𝜏~𝑝𝜃𝑜𝑙𝑑
(𝜏)

𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡)
𝐴𝜋 𝑠𝑡 , 𝑎𝑡

Often ends up in huge change in the policy

99

	Slide 1: Robot Perception and Learning
	Slide 2: Summary
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71: Recap: Reinforcement Learning Aims to Maximize the Total Reward of an Episode of Interaction
	Slide 72
	Slide 73: Policy Gradient
	Slide 74
	Slide 75
	Slide 76
	Slide 77: Maximizing Action Trajectories using Returns
	Slide 78
	Slide 79: An Example of Pong
	Slide 80: Supervised Learning vs. Reinforcement Learning
	Slide 81: Reinforcement Learning: Optimize the Policy Based on Trial and Error
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99: Off-policy Actor Critic with Importance Sampling

