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TD BackupMC Backup

Summary
Generalized Policy Iteration DP vs. MC vs. TD

Bootstrap Sample

DP ✓ ⤫

MC ⤫ ✓

TD ✓ ✓

• DP: 𝑉 𝑆𝑡 ← σ𝐴𝑡
𝜋(𝐴𝑡|𝑆𝑡) σ𝑆𝑡+1,𝑅𝑡+1

𝑝 𝑆𝑡+1, 𝑅𝑡+1 𝑆𝑡, 𝐴𝑡 [𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1 ]

• MC: 𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝐺𝑡 − 𝑉 𝑆𝑡 ]
• TD: 𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉 𝑆𝑡 ]

Importance Sampling
• On-policy learning: learn value 

and execute with the same policy
• Off-policy learning: learn and 

execute with different policies
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(Recap) Sarsa: On-policy TD Control

• We can learn an action-value function in a similar manner as a state-value function.  
Instead of considering transitions from state to state, we now consider transitions 
from state-action pair to state-action pair
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(Recap) Sarsa: On-policy TD Control
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behavior policy

target policy

• The learned action-value function approximates 𝑞∗

• If all state-action pairs continue to be updated, Q has been shown to converge 
with probability 1 to 𝑞∗

Q-learning: Off-policy TD Control
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Cliff Walking Example

• The behavior policy uses 𝜀-greedy action selection, with 𝜀 = 0.1
• Action: up, down, left and right
• Reward is -100 at the Cliff region, otherwise, reward is -1

Q-learning path

Sarsa path
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Remember the behavior policy uses 𝜀-greedy action 
selection, which occasionally falls off the cliff!

Cliff Walking Example
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Maximization Bias and Double Q-Learning 

• The estimated values 𝑄(𝑠, 𝑎) are often uncertain and distributed some above and 
some below zero. The maximum of estimated values induces a positive bias.

• Let say the true values of state 𝑠 and many actions 𝑎 are all zero, but estimated 
values 𝑄(𝑠, 𝑎) has positive bias

• This is because we use the same samples to determine the maximizing action and 
to estimate is values!

positive bias is introduced by the “maximum” operator 
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Maximization Bias Example

The true value 𝑉 𝑙𝑒𝑓𝑡 = −0.1

The true value 𝑉 𝑟𝑖𝑔ℎ𝑡 = 0

• Action: left and right
• Reward is 0 when transitioning from A to B; reward is drawn from 𝒩 −0.1,1 when 

transitioning from B to left.
• Taking “left” action from A should always be worse than “right” action

Q-learning was biased toward “left” 
action from A, due to the positive bias!
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Double Q-Learning 

• The estimated values 𝑄(𝑠, 𝑎) are often uncertain and distributed some above and 
some below zero. The maximum of estimated values induces a positive bias.

• This is because we use the same samples to determine the maximizing action and 
to estimate is values!

• Solution: use two sets of samples to learn two independent estimates 𝑄1 and 𝑄2
➢ 𝑄1 determines the maximizing action:

𝐴∗ = 𝑎𝑟𝑔max
𝑎

𝑄1(𝑠, 𝑎)

➢ 𝑄2 provides the estimate of its value:

𝑄2 𝑠, 𝐴∗ = 𝑄2(𝑠, 𝑎𝑟𝑔max
𝑎

𝑄1(𝑠, 𝑎))
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Double Q-Learning 
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Quick Recap: Temporal-Difference Learning
• Temporal-Difference (TD) methods: combine Monte Carlo methods with Dynamic 

Programming methods that wait only until the next time step and bootstrap value 
functions from existing estimates

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉 𝑆𝑡 ]

We call this formulation 1-step TD
We can also have n-step TD
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N-step TD Prediction
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• n-step TD: 

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑅𝑡+2 +⋯+ 𝛾𝑛−1𝑅𝑡+𝑛 + 𝛾𝑛𝑉(𝑆𝑡+𝑛) − 𝑉 𝑆𝑡 ]



• n-step TD: 

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑅𝑡+2 +⋯+ 𝛾𝑛−1𝑅𝑡+𝑛 + 𝛾𝑛𝑉(𝑆𝑡+𝑛) − 𝑉 𝑆𝑡 ]

• When 𝑛 → ∞, n-step TD becomes an MC method: 

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑅𝑡+2 +⋯+ 𝛾𝑇−1𝑅𝑇 − 𝑉 𝑆𝑡 ]

N-step TD Prediction
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No bootstrapping until time 
step 𝑡 + 𝑛

N-step TD Prediction
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Image credit K. Fragkiadaki

N-step TD Prediction
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On-policy n-step Action-Value Methods
• Action-value form of n-step return

• n-step Sarsa

• n-step expected Sarsa
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Off-policy n-step Action-Value Methods
• Importance-sampling ratio

• Weighted estimated value functions with importance-sampling ratio
• Off-policy n-step TD

• Off-policy n-step Sarsa
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Tabular Value Function Learning
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• TD state-value learning:

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉 𝑆𝑡 ]

• Q-learning:

Q 𝑆𝑡 , 𝐴𝑡 ← Q 𝑆𝑡 , 𝐴𝑡 + 𝛼[𝑅𝑡+1 + 𝛾max
𝑎

Q 𝑆𝑡+1, 𝑎 − Q 𝑆𝑡 , 𝐴𝑡 ]

• We used a tabular setup: the value is retrieved from a table with a key of 
state/state-action pair

• What are the limitations?



Tabular Value Function Learning
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• TD state-value learning:
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➢ Discrete state/action space
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in the memory

Tabular Value Function Learning
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pairs stored in the memory
➢ Closed world (can’t generalize to unseen state/action)

Tabular Value Function Learning
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• TD state-value learning:
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Value Function Approximation

Image credit D. Silver
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Gradient Descent

𝝓
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𝝓
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𝝓
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Gradient Descent
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Value Function Approximation by Stochastic Gradient Descent

• Goal: find parameter vector 𝝓 minimizing mean-squared error between 
approximate value function ෠𝑉(𝑆,𝝓) and true value function 𝑉𝜋(𝑆)

𝐽 𝝓 = 𝔼𝜋 (𝑉𝜋 𝑆 − ෠𝑉 𝑆,𝝓 )2

• Let 𝜇(𝑆) denote how much time we spend in each state 𝑆 under policy 𝜋, then

𝐽 𝝓 =෍

𝑠∈𝒮

|𝒮|

𝜇(𝑆) 𝑉𝜋 𝑆 − ෠𝑉 𝑆,𝝓
2

s.t ෍

𝑠∈𝒮

𝜇(𝑆) = 1

• In contrast to

𝐽 𝝓 =
1

|𝒮|
෍

𝑠∈𝒮

|𝒮|

𝑉𝜋 𝑆 − ෠𝑉 𝑆,𝝓
2

Slide credit K. Fragkiadaki 27



• Goal: find parameter vector 𝝓 minimising mean-squared error between 
approximate value function ෠𝑉(𝑆,𝝓) and true value function 𝑉𝜋(𝑆)

𝐽 𝝓 = 𝔼𝜋 (𝑉𝜋 𝑆 − ෠𝑉 𝑆,𝝓 )2

• Let 𝜇(𝑆) denote how much time we spend in each state 𝑆 under policy 𝜋, then

𝐽 𝝓 =෍

𝑠∈𝒮

|𝒮|

𝜇(𝑆) 𝑉𝜋 𝑆 − ෠𝑉 𝑆,𝝓
2

s.t ෍

𝑠∈𝒮

𝜇(𝑆) = 1

• In contrast to

𝐽 𝝓 =
1

|𝒮|
෍

𝑠∈𝒮

|𝒮|

𝑉𝜋 𝑆 − ෠𝑉 𝑆,𝝓
2

We care more about the frequently visited states, 
even though the total number of states is huge

Value Function Approximation by Stochastic Gradient Descent

Slide credit K. Fragkiadaki 28



On-policy State Distribution

• Let ℎ(𝑆) be the initial state distribution, i.e, the probability that an episode starts at 
state 𝑆

• Un-normalized on-policy state probability satisfies the following recursions:

𝜂 𝑆 = ℎ 𝑆 +෍

𝑆′

𝜂 𝑆′ ෍

𝑎

𝜋 𝑎 𝑆′ 𝑝(𝑆|𝑆′, 𝑎)

𝜇 𝑆 =
𝜂 𝑆

σ
𝑆′ 𝜂 𝑆′

Slide credit K. Fragkiadaki 29



Value Function Approximation by Stochastic Gradient Descent

𝝓

𝝓

𝝓𝝓

𝝓 𝝓𝝓

𝝓 𝝓
𝝓

𝝓 𝝓
𝝓

𝝓
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What are the Targets of Value Function Approximation?

• We usually have no access to the true value function 𝑉𝜋(𝑆) (otherwise, the 
problem is solved).  Let y(𝑠) be the target of the value function approximator

𝐽 𝝓 = 𝔼𝜋 (𝑦 𝑆 − ෠𝑉 𝑆,𝝓 )2

• What could be y(𝑠) ?
➢ Monte-Carlo Method?
➢ Temporal Difference Method?

31Slide credit D. Silver



Recap: Monte-Carlo and Temporal Difference Method

• Monte Carlo (MC) methods: must wait until the end of the episode to learn value 
functions (only when the return is known)

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝐺𝑡 − 𝑉 𝑆𝑡 ]

• Temporal-Difference (TD) methods: combine Monte Carlo methods with Dynamic 
Programming methods that wait only until the next time step and bootstrap value 
functions from existing estimates

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉 𝑆𝑡 ]

• Remember, we said in incremental method:

NewEstimate
← OldEstimate + StepSize × Target − OldEstimate

32Slide credit D. Silver



NewEstimate
← OldEstimate + StepSize × Target − OldEstimate

This could be the target!

Recap: Monte-Carlo and Temporal Difference Method

33Slide credit D. Silver

• Monte Carlo (MC) methods: must wait until the end of the episode to learn value 
functions (only when the return is known)
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Monte-Carlo with Value Function Approximation

Return 𝐺𝑡 is unbiased, noisy sample of true value 𝑉𝜋(𝑆𝑡)

𝝓 𝝓

𝝓𝝓𝝓 𝝓
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Temporal Difference with Value Function Approximation

• Objective:

𝐽 𝝓 = 𝔼𝜋 (𝑅𝑡+1 + 𝛾 ෠𝑉 𝑆𝑡+1, 𝝓 − ෠𝑉 𝑆𝑡 , 𝝓 )2

• What are the gradients?

∇𝐽 𝝓 = 𝔼𝜋 (𝑅𝑡+1 + 𝛾 ෠𝑉 𝑆𝑡+1, 𝝓 − ෠𝑉 𝑆𝑡 , 𝝓 )2

= 𝔼𝜋 𝑅𝑡+1 + 𝛾 ෠𝑉 𝑆𝑡+1, 𝝓 − ෠𝑉 𝑆𝑡 , 𝝓 𝛾∇෠𝑉 𝑆𝑡+1, 𝝓 − ∇෠𝑉 𝑆𝑡 , 𝝓

Ignore the dependence of the target on 𝝓!
This is called semi-gradient method
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Temporal Difference with Value Function Approximation

𝝓

𝝓𝝓𝝓𝝓 𝝓

𝝓
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How About Action-Value Function Approximation? Same Story!

• Goal: find parameter vector 𝝓 minimizing mean-squared error between 
approximate action-value function ෠𝑄(𝑆, 𝐴,𝝓) and true value function 𝑄𝜋(𝑆, 𝐴)

𝐽 𝝓 = 𝔼𝜋 (𝑄𝜋 𝑆, 𝐴 − ෠𝑄 𝑆, 𝐴,𝝓 )2

• Use Stochastic Gradient Descent to optimize 𝝓:

−
1

2
∇𝝓𝐽 𝝓 = 𝑄𝜋 𝑆, 𝐴 − ෠𝑄 𝑆, 𝐴,𝝓 ∇𝝓 ෠𝑄(𝑆, 𝐴,𝝓)

∆𝝓 = 𝛼 𝑄𝜋 𝑆, 𝐴 − ෠𝑄 𝑆, 𝐴,𝝓 ∇𝝓 ෠𝑄(𝑆, 𝐴,𝝓)
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How About Action-Value Function Approximation? Same Story!

• Goal: find parameter vector 𝝓 minimizing mean-squared error between 
approximate action-value function ෠𝑄(𝑆, 𝐴,𝝓) and true value function 𝑄𝜋(𝑆, 𝐴)

𝐽 𝝓 = 𝔼𝜋 𝑄𝜋 𝑆, 𝐴 − ෠𝑄 𝑆, 𝐴,𝝓
2

• For MC:

𝐽 𝝓 = 𝔼𝜋 𝐺𝑡 − ෠𝑄 𝑆𝑡 , 𝐴𝑡 , 𝝓
2

• For TD(0):

𝐽 𝝓 = 𝔼𝜋 𝑅𝑡+1 + 𝛾 ෠𝑄 𝑆𝑡+1, 𝐴𝑡+1, 𝝓 − ෠𝑄 𝑆𝑡 , 𝐴𝑡 , 𝝓
2

• For Q-learning:

𝐽 𝝓 = 𝔼𝜋 𝑅𝑡+1 + 𝛾max
𝑎

෠𝑄 𝑆𝑡+1, 𝑎, 𝝓 − ෠𝑄 𝑆𝑡 , 𝐴𝑡 , 𝝓

2
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Control with Action-Value Function Approximation

𝝓

𝝓
𝝓
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So Far, We Discussed an Online Setup of Q-Learning

Slide adapted from S. Levine 40



Problems in Online Q-Learning

1. Sequential samples are highly correlated 
(little information gain)

…

Slide adapted from S. Levine 41



1. Sequential samples are highly correlated 
(little information gain)

2. Target value changes whenever 𝜙 is updated

Problems in Online Q-Learning

Slide adapted from S. Levine 42



1. Sequential samples are highly correlated 
(little information gain)

2. Target value changes whenever 𝜙 is updated
3. Gradients don’t pass through 𝑄𝜙 𝑠𝑖

′, 𝑎𝑖
′

(but it becomes numerically unstable when 
propagating gradients through 𝑄𝜙 𝑠𝑖

′, 𝑎𝑖
′ )

𝜙 ← 𝜙 + 𝛼
𝑑𝑄𝜙(𝑠𝑖, 𝑎𝑖)

𝑑𝜙
𝑄𝜙 𝑠𝑖, 𝑎𝑖 − 𝑟 𝑠𝑖, 𝑎𝑖 − γmax

𝑎′
𝑄𝜙 𝑠𝑖

′, 𝑎𝑖
′

Problems in Online Q-Learning

Slide adapted from S. Levine 43



Solution 1: Use Replay Buffer to Decorrelate Samples

• Collect transitions data, using a random policy for exploration (find 
unseen states and transitions), and a deterministic policy for 
exploitation (obtain most promising states)

Slide adapted from S. Levine 44



Use any policy to collect experience

• Collect transitions data, using a random policy for exploration (find 
unseen states and transitions), and a deterministic policy for 
exploitation (obtain most promising states)

• Sample a batch of ℬ = { 𝑠, 𝑎, 𝑠′, 𝑟 } from every collected 𝑠, 𝑎, 𝑠′, 𝑟 , 
temporally neighboring (𝑠, 𝑎, 𝑟) may not be sampled.

Solution 1: Use Replay Buffer to Decorrelate Samples

Slide adapted from S. Levine 45



Solution 1: Use Replay Buffer to Decorrelate Samples

Slide adapted from S. Levine 46



Some episodes in the replay buffer 
are collected by older policies

Solution 1: Use Replay Buffer to Decorrelate Samples

Slide adapted from S. Levine 47



Fully Fitted Q-Iteration vs. Online Q-Learning

Slide adapted from S. Levine 48



We still have these problems:
2. Target value changes whenever 𝜙 is updated
3. Gradients don’t pass through 𝑄𝜙 𝑠𝑖

′, 𝑎𝑖
′

Fully Fitted Q-Iteration vs. Online Q-Learning

Slide adapted from S. Levine 49



Solution 2 and 3: Use Target Networks

Slide credit S. Levine 50
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DQN Surpasses Human Experts on (some) Atari Games
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DQN Estimates State-Action Values

Image credit P. Agrawal 53



DQN Captures High-Value State-Action Pairs

A B C
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DQN Has a Problem in Overestimating Values
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Why does DQN Overestimate Values?

𝑄∗ 𝑠, 𝑎 is the true value function
𝑄𝑡 𝑠, 𝑎 is the estimated value function
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𝑄∗ 𝑠, 𝑎 is the true value function
𝑄𝑡 𝑠, 𝑎 is the estimated value function

Slide credit P. Agrawal

Why does DQN Overestimate Values?
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𝑄∗ 𝑠, 𝑎 is the true value function
𝑄𝑡 𝑠, 𝑎 is the estimated value function

See the proof in “Deep Reinforcement Learning with Double Q-learning”

Slide credit P. Agrawal

Why does DQN Overestimate Values?
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Recap: Tabular Double Q-Learning 
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Double Deep Q-Learning
• Standard Q-learning:

𝑦 = 𝑟 + 𝛾max
𝑎′

𝑄𝜙′(𝑠′, 𝑎′) = 𝑟 + 𝛾𝑄𝜙′(𝑠′, max
𝑎′

𝑄𝜙′(𝑠′, 𝑎′) )

• Double Q-learning:

𝑦 = 𝑟 + 𝛾𝑄𝜙′(𝑠′, max
𝑎′

𝑄𝝓(𝑠
′, 𝑎′) )

• Using different value function to reduce overestimation: 𝑄𝝓 for selecting actions 

and 𝑄𝜙′ for evaluating actions.

➢ 𝑎′ that induces overestimated 𝑄𝜙′(𝑠′, 𝑎′) is less frequently selected
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• Double Q-learning:

𝑦 = 𝑟 + 𝛾𝑄𝜙′(𝑠′, max
𝑎′

𝑄𝝓(𝑠
′, 𝑎′) )

• Using different value function to reduce overestimation: 𝑄𝝓 for selecting actions 

and 𝑄𝜙′ for evaluating actions.

Double Deep Q-Learning

61



Clipped Double Deep Q-Learning
• Unfortunately, ue to the slow-changing policy in an actor-critic setting, the current 

and target value estimates remain too similar to avoid maximization bias

• Clipped Double Q-learning:

𝑦 = 𝑟 + 𝛾 min
ෙ𝜙∈{𝜙′,𝝓}

𝑄ෙ𝜙(𝑠
′, max

𝑎′
𝑄𝝓(𝑠

′, 𝑎′) )

• Using different value function to reduce overestimation: 𝑄𝝓 for selecting actions 

and the minimum of the two values provided by𝑄𝝓 and 𝑄𝜙′ for evaluating actions.

Addressing Function Approximation Error in 
Actor-Critic Methods, Fujimoto et al. 2018 62



Can We Do Better than MC / TD methods?

• Idea: Obtain more precise target by searching.

• Use Monte-Carlo Tree Search (MCTS) for Q value estimation and action selection at 
training time instead of the Q learning update rule.

• At test time just use the reactive policy network, without any look-ahead planning. 
In other words, imitate the MCTS planner.

Slide credit K. Fragkiadaki 63



Slide credit K. Fragkiadaki 64



Start

Set current to 𝑆0

Is current a leaf 
node?

Set current to child 
node of current that 
maximises UCB1(𝑆𝑖)

rollout

Is the 𝑛𝑖 value 
for current 0?

For each action 
available from  

current add a new 
state to the tree

Set current to the 
first new child node

rollout

Image credit S. Levine

Check this video: 
https://youtu.be/UXW2yZndl7U?si=S0WHGlC1B2UVAYEA

Yes

No

Yes

No
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Slide credit K. Fragkiadaki 66



Slide credit K. Fragkiadaki 67



Similar Idea is Used in Alpha Go / Super-human Agents

Mastering the game of Go with deep neural networks and tree search. Silver et al.

• Check different implementation of MCTS
• They also use searching during testing

➢ An awesome video by Noah Brown about test-time 
planning: 
https://youtu.be/eaAonE58sLU?si=wZmo8gQFJXCLU39Y

➢ We’ll talk more about learning with planning in this class

68

https://youtu.be/eaAonE58sLU?si=wZmo8gQFJXCLU39Y


Wait! DQN Still Has a Problem…

• Standard Q-learning:

𝑦 = 𝑟 + 𝛾max
𝑎′

𝑄𝜙′(𝑠′, 𝑎′) = 𝑟 + 𝛾𝑄𝜙′(𝑠′, max
𝑎′

𝑄𝜙′(𝑠′, 𝑎′) )

• Double Q-learning:

𝑦 = 𝑟 + 𝛾𝑄𝜙′(𝑠′, max
𝑎′

𝑄𝝓(𝑠
′, 𝑎′) )

• Using different value function 𝑄𝝓 for selecting action reduces overestimation.

➢ 𝑎′ that induces overestimated 𝑄𝜙′(𝑠′, 𝑎′) is less frequently selected

What if the action is continuous?
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Wait! DQN Still Has a Problem…

• Standard Q-learning:

𝑦 = 𝑟 + 𝛾max
𝑎′

𝑄𝜙′(𝑠′, 𝑎′) = 𝑟 + 𝛾𝑄𝜙′(𝑠′, max
𝑎′

𝑄𝜙′(𝑠′, 𝑎′) )

• Double Q-learning:

𝑦 = 𝑟 + 𝛾𝑄𝜙′(𝑠′, max
𝑎′

𝑄𝝓(𝑠
′, 𝑎′) )

• Using different value function 𝑄𝝓 for selecting action reduces overestimation.

➢ 𝑎′ that induces overestimated 𝑄𝜙′(𝑠′, 𝑎′) is less frequently selected

What if the action is continuous?

70

There’re many solutions, but the most obvious one may be 
learning an action policy for maximizing the value…



Recap: Reinforcement Learning Aims to Maximize 
the Total Reward of an Episode of Interaction

Slide adapted from S. Levine

• A trajectory of interaction in the environment

Action 𝑎𝑡

State 𝑠𝑡
Reward 𝑟𝑡

State 𝑠𝑡+1
Reward 𝑟𝑡+1

• Maximize the expected value of the cumulative sum of reward

The policy

71



Slide credit D. Silver

Valued-Based and Policy-Based RL
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Policy Gradient

• Let 𝑟 𝜏 = σ𝑡 𝑟(𝑠𝑡 , 𝑎𝑡)]

• Let 𝐽 𝜃 = σ𝜏~𝑝𝜃(𝜏)
[ σ𝑡 𝑟(𝑠𝑡 , 𝑎𝑡)] = 𝑝𝜃׬ 𝜏 𝑟 𝜏 𝑑𝜏

• Compute gradients of 𝜃 w.r.t to 𝐽 𝜃

∇𝐽 𝜃 = න∇𝑝𝜃 𝜏 𝑟 𝜏 𝑑𝜏 = න𝑝𝜃 𝜏 ∇ log 𝑝𝜃 𝜏 𝑟 𝜏 𝑑𝜏 = 𝐸𝜏~𝑝𝜃(𝜏) ∇ log 𝑝𝜃 𝜏 𝑟 𝜏

∇ log 𝑝𝜃 =
1

𝑝𝜃
∇𝑝𝜃

73



• Let 𝑟 𝜏 = σ𝑡 𝑟(𝑠𝑡 , 𝑎𝑡)]

• Let 𝐽 𝜃 = σ𝜏~𝑝𝜃(𝜏)
[ σ𝑡 𝑟(𝑠𝑡 , 𝑎𝑡)] = 𝑝𝜃׬ 𝜏 𝑟 𝜏 𝑑𝜏

• Compute gradients of 𝜃 w.r.t to 𝐽 𝜃

∇𝐽 𝜃 = න∇𝑝𝜃 𝜏 𝑟 𝜏 𝑑𝜏 = න𝑝𝜃 𝜏 ∇ log 𝑝𝜃 𝜏 𝑟 𝜏 𝑑𝜏 = 𝐸𝜏~𝑝𝜃(𝜏) ∇ log 𝑝𝜃 𝜏 𝑟 𝜏

∇ log 𝑝𝜃 𝜏 = ∇ log[𝑝 𝑠0 ×ෑ
𝑡=0

𝑇

𝜋𝜃(𝑎𝑡 |𝑠𝑡) × 𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)]

= ∇[log 𝑝 𝑠0 +෍
𝑡=0

𝑇

log 𝜋𝜃(𝑎𝑡 𝑠𝑡 +෍
𝑡=0

𝑇

log 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 ]

Policy Gradient
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• Let 𝑟 𝜏 = σ𝑡 𝑟(𝑠𝑡 , 𝑎𝑡)]

• Let 𝐽 𝜃 = σ𝜏~𝑝𝜃(𝜏)
[ σ𝑡 𝑟(𝑠𝑡 , 𝑎𝑡)] = 𝑝𝜃׬ 𝜏 𝑟 𝜏 𝑑𝜏

• Compute gradients of 𝜃 w.r.t to 𝐽 𝜃

∇𝐽 𝜃 = න∇𝑝𝜃 𝜏 𝑟 𝜏 𝑑𝜏 = න𝑝𝜃 𝜏 ∇ log 𝑝𝜃 𝜏 𝑟 𝜏 𝑑𝜏 = 𝐸𝜏~𝑝𝜃(𝜏) ∇ log 𝑝𝜃 𝜏 𝑟 𝜏

∇ log 𝑝𝜃 𝜏 = ∇ log[𝑝 𝑠0 ×ෑ
𝑡=0

𝑇

𝜋𝜃(𝑎𝑡 |𝑠𝑡) × 𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)]

= ∇[log 𝑝 𝑠0 +෍
𝑡=0

𝑇

log 𝜋𝜃(𝑎𝑡 𝑠𝑡 +෍
𝑡=0

𝑇

log 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 ]

∇𝐽 𝜃 = 𝐸𝜏~𝑝𝜃(𝜏) ෍
𝑡=0

𝑇

∇log 𝜋𝜃(𝑎𝑡 𝑠𝑡 ෍
𝑡=0

𝑇

𝑟(𝑠𝑡, 𝑎𝑡)

Policy Gradient
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• Let 𝑟 𝜏 = σ𝑡 𝑟(𝑠𝑡 , 𝑎𝑡)]

• Let 𝐽 𝜃 = σ𝜏~𝑝𝜃(𝜏)
[ σ𝑡 𝑟(𝑠𝑡 , 𝑎𝑡)] = 𝑝𝜃׬ 𝜏 𝑟 𝜏 𝑑𝜏

• Compute gradients of 𝜃 w.r.t to 𝐽 𝜃

∇𝐽 𝜃 = න∇𝑝𝜃 𝜏 𝑟 𝜏 𝑑𝜏 = න𝑝𝜃 𝜏 ∇ log 𝑝𝜃 𝜏 𝑟 𝜏 𝑑𝜏 = 𝐸𝜏~𝑝𝜃(𝜏) ∇ log 𝑝𝜃 𝜏 𝑟 𝜏

∇ log 𝑝𝜃 𝜏 = ∇ log[𝑝 𝑠0 ×ෑ
𝑡=0

𝑇

𝜋𝜃(𝑎𝑡 |𝑠𝑡) × 𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)]

= ∇[log 𝑝 𝑠0 +෍
𝑡=0

𝑇

log 𝜋𝜃(𝑎𝑡 𝑠𝑡 +෍
𝑡=0

𝑇

log 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 ]

∇𝐽 𝜃 = 𝐸𝜏~𝑝𝜃(𝜏) ෍
𝑡=0

𝑇

∇log 𝜋𝜃(𝑎𝑡 𝑠𝑡 ෍
𝑡=0

𝑇

𝑟(𝑠𝑡, 𝑎𝑡)

The transition function is not needed. 
We just need experience!

Policy Gradient
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Maximizing Action Trajectories using Returns 

• Policy Gradients weights gradients with a sum of rewards of the trajectory:

∇𝐽 𝜃 = 𝐸𝜏~𝑝𝜃(𝜏) ෍
𝑡=0

𝑇

∇log 𝜋𝜃(𝑎𝑡 𝑠𝑡 ෍
𝑡=0

𝑇

𝑟(𝑠𝑡 , 𝑎𝑡)

• Policy Gradients learn from “trial and error”

Slide adapted from S. Levine

The policy is optimized to follow the 
trajectory of high-reward episodes
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• Policy Gradients weights gradients with a sum of rewards of the trajectory:

∇𝐽 𝜃 = 𝐸𝜏~𝑝𝜃(𝜏) ෍
𝑡=0

𝑇

∇log 𝜋𝜃(𝑎𝑡 𝑠𝑡 ෍
𝑡=0

𝑇

𝑟(𝑠𝑡 , 𝑎𝑡)

• Idea: approximate expected value by sampling

∇𝐽 𝜃 ≈
1

𝑁
෍

𝑖=1

𝑁

෍
𝑡=0

𝑇

∇log 𝜋𝜃(𝑎𝑡 𝑠𝑡 ෍
𝑡=0

𝑇

𝑟 𝑠𝑡 , 𝑎𝑡

REINFORCE algorithm (Monte-Carlo Policy Gradient)

Maximizing Action Trajectories using Returns 

Slide adapted from S. Levine 78



An Example of Pong

Slide adapted from K. Fragkiadaki
Material Source: https://karpathy.github.io/2016/05/31/rl/

Policy network
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Supervised Learning vs. Reinforcement Learning

Material Source: https://karpathy.github.io/2016/05/31/rl/ 80



Reinforcement Learning: Optimize the Policy Based 
on Trial and Error

Material Source: https://karpathy.github.io/2016/05/31/rl/

• Rollout the policy and collect episodes…

81



We don’t need any action labels!

Slide adapted from K. Fragkiadaki
Material Source: https://karpathy.github.io/2016/05/31/rl/ 82



Wait! Policy Gradient Also Has Problems…

83



Gradients of each action in the trajectory 
are weighted by the sum of rewards

Wait! Policy Gradient Also Has Problems…
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• The gradient estimator is unbiased, but requires a 
very large number of samples to accurately 
approximate the true gradient 

• When the number of sample is small, the variance is 
high…

Wait! Policy Gradient Also Has Problems…
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Gradients of the same 
action has high variance!

Gradients Have High Variance
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Gradients of current actions forced to 
account for previous success/failure

Gradients Have High Variance
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Gradients of current actions forced to 
account for previous success/failure

Solution:
• Causality: let current actions only account for future 

success/failure

∇𝐽 𝜃 = 𝐸𝜏~𝑝𝜃(𝜏) σ𝑡=0
𝑇 ∇log 𝜋𝜃(𝑎𝑡 𝑠𝑡 σ𝑡′=𝑡

𝑇 𝛾𝑡
′
𝑟(𝑠𝑡′ , 𝑎𝑡′)

Gradients Have High Variance
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𝑝(𝜏)

𝑟(𝜏)

Common sub-optimal trajectory receives 
same weightings as rare optimal trajectory

∇𝐽 𝜃 = න𝑝𝜃 𝜏 ∇ log 𝑝𝜃 𝜏 𝑟 𝜏 𝑑𝜏

𝑝𝜃 𝜏𝑟 𝑟 𝜏𝑟 = 𝑝𝜃 𝜏𝑔 𝑟 𝜏𝑔

Gradients Have High Variance
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• Subtract a baseline 𝑏

∇𝐽 𝜃 ≈
1

𝑁
෍

𝑖=1

𝑁

∇ log 𝑝𝜃 𝜏 𝑟 𝜏 − 𝑏

• The gradients don’t change

𝐸 ∇ log 𝑝𝜃 𝜏 𝑏 = න𝑝𝜃 𝜏 ∇ log 𝑝𝜃 𝜏 𝑏𝑑𝜏 = න∇𝑝𝜃 𝜏 𝑏𝑑𝜏 = 𝑏∇න𝑝𝜃 𝜏 𝑏𝑑𝜏 = 0

• Subtracting a baseline is unbiased in expectation!

A More General Solution to Reduce Variance
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Slide credit S. Levine

What about variance?
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Slide credit S. Levine

What about variance?
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Slide adapted from K. Fragkiadaki

Other Options of Baselines?

• Constant baseline 𝑏 = 1

𝑁
σ𝑖=1
𝑁 𝑟 𝜏

∇𝐽 𝜃 ≈
1

𝑁
෍

𝑖=1

𝑁

∇ log 𝑝𝜃 𝜏 𝑟 𝜏 − 𝑏

• Time-dependent baseline 𝑏𝑡 =
1

𝑁
σ𝑖=1
𝑁 𝑟𝑡 𝜏

∇𝐽 𝜃 ≈
1

𝑁
෍

𝑖=1

𝑁

෍
𝑡=1

𝑇

∇ log 𝑝𝜃 𝑎𝑡|𝑠𝑡 𝑟𝑡 𝜏𝑡 − 𝑏𝑡

• State-dependent baseline 𝑏𝑠 = 𝑉𝜋(𝑠)

∇𝐽 𝜃 ≈
1

𝑁
෍

𝑖=1

𝑁

෍
𝑡=1

𝑇

∇ log 𝑝𝜃 𝑎𝑡|𝑠𝑡 𝑟𝑡 𝜏𝑡 − 𝑏𝑠𝑡
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Off-Policy Policy Gradient with Importance Sampling

Slide credit S. Levine 94



Actor Critic

• Policy Gradient:

∇𝐽 𝜃 = 𝐸𝜏~𝑝𝜃(𝜏) ෍
𝑡=0

𝑇

∇log 𝜋𝜃(𝑎𝑡 𝑠𝑡 ෍
𝑡=0

𝑇

𝑟(𝑠𝑡 , 𝑎𝑡) − 𝑏

• Re-write with action value 𝑄𝜋(𝑠, 𝑎):

∇𝐽 𝜃 = 𝐸𝜏~𝑝𝜃(𝜏) ෍
𝑡=0

𝑇

∇log 𝜋𝜃(𝑎𝑡 𝑠𝑡 𝑄𝜋(𝑠𝑡 , 𝑎𝑡) − 𝑏
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• Re-write with action value 𝑄𝜋(𝑠, 𝑎):

∇𝐽 𝜃 = 𝐸𝜏~𝑝𝜃(𝜏) ෍
𝑡=0

𝑇

∇log 𝜋𝜃(𝑎𝑡 𝑠𝑡 𝑄𝜋 (𝑠𝑡 , 𝑎𝑡) − 𝑏

⇒ ∇𝐽 𝜃 = 𝐸𝜏~𝑝𝜃(𝜏) ෍
𝑡=0

𝑇

∇log 𝜋𝜃(𝑎𝑡 𝑠𝑡 𝑄𝜋(𝑠𝑡 , 𝑎𝑡) − 𝑉𝜋(𝑠)

• Advantage 𝐴𝜋 (𝑠𝑡 , 𝑎𝑡) measures how much better action 𝑎𝑡 is than other actions

• If we learn a value estimator 𝑉𝜙
𝜋 𝑠 parameterized by 𝜙, we obtain:

➢ Estimated action value𝑄𝜋 𝑠𝑡 , 𝑎𝑡 = 𝑅 𝑠𝑡 , 𝑎𝑡 + 𝛾𝑉𝜙
𝜋 𝑠𝑡+1

➢ Estimated advantage𝐴𝜋 𝑠𝑡 , 𝑎𝑡 = 𝑅 𝑠𝑡 , 𝑎𝑡 + 𝛾𝑉𝜙
𝜋 𝑠𝑡+1 − 𝑉𝜙

𝜋 𝑠𝑡

Let 𝑏 = 𝑉𝜋(𝑠)

Advantage 𝐴𝜋(𝑠𝑡 , 𝑎𝑡)

Actor Critic
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On-policy Advantage Actor Critic

Slide credit K. Fragkiadaki

𝐽

𝐽
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𝐽

𝐽

On-policy Advantage Actor Critic

Slide credit K. Fragkiadaki 98



Off-policy Actor Critic with Importance Sampling

• Policy gradient objective:

𝐽 𝜃 = ෍

𝜏~𝑝𝜃(𝜏)

෍

𝑡

𝑟(𝑠𝑡 , 𝑎𝑡)

• Actor-critic objective:

𝐽 𝜃 = ෍

𝜏~𝑝𝜃(𝜏)

𝐴𝜋 𝑠𝑡 , 𝑎𝑡

• Off-policy Actor-critic objective with importance sampling:

𝐽 𝜃 = ෍

𝜏~𝑝𝜃𝑜𝑙𝑑
(𝜏)

𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡)
𝐴𝜋 𝑠𝑡 , 𝑎𝑡

Often ends up in huge change in the policy
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