RODOt

Perception and Learning

Policy Iteration, Monte Carlo Methods and Temporal

Difference Learning

Tsung-Wei Ke
Fall 2025

Recap

RL as a general learning framework for Multi-armed Bandit Problem
H 9 £=0.1 PR " s s
diferent tasks © Bxpected reward: q'(a) =Elnldc=a] | S
« Action-value estimates: Q,(ay) s |
. Greedy action selection method: select the
action with the highest estimated value: % = 5 5

A" = arg max Q,(a)
a

100%

> If A, = A", you are exploiting your current]
knowledge of the values of the actions oo ™1

» I A # A", you are exploring. You improve seten 1
your estimate of the non-greedy actions

Markov Decision Process

. Discounted returns: G = Ry4q + ¥Gryq
. The state value function v,(s) = E,[GS; = s]

The learning objective of RL
.
po(s1,au,...,sp.ar) = p(s1) | [mo(alse)p(sisilse ar)
‘ Y ! t=1
po(T)

qr(8,0) < s,a

a(ssa')<1ad & ® C/ \

v (s) = Z n(als) Ep (s%rls.a) [r+yv ()] q(s,a) = Ep(s’, rls, a)(r +7 Z 7(a’])q (s, u’))

0* = arg mgxx Erpe(r) [Z r(s;, a;)
t

Last Time, We Said the Greedy Strategy Improves
the Current Policy

« Let's say we obtain the value function v,(s) based on policy T using dynamic programming,
How can we improve the policy?

« Switch to a greedy policy!

{1, if a = argmax(Zy ,.p(s',rls, a))(r + yv.(s"))
' (als) = a '

0, otherwise.

« Why greedy policy i’ is better than the original policy m at state s?
Since a greedy policy is deterministic: ©r’(s) = argmax(Xy . p(s’,7|s, a))(r + yv(s))

a

q-(s|m’ (5)) = mjlxzsllrp(s’,rls, a)[r + yv.(s)]

The value of selecting action n'(s) is higher > % _m(als) Y TP(S',T|S, Q)[r + yv.(s)] =|v,(s)
than following policy m at state s (here we ’
still follow policy m at other states)

In fact, the State Value Function following the Greedy
Policy ' is Better than Original Policy o

'Uﬂ(s) < Qﬂ'(sa W’(S))
= E[Rt+1 + yx(St41) | Se=s, As=7"(s)]
== EW’:RH—l +'}’U7r(8t—{—1) | StZS]

\) {1, if a = argmax(Xy ,.p(s’,rls,a))(r +yv.(s"))
' (als) = a ’

0, otherwise.

INn fact, the State Value Function fo

Policy ' is Better than Origi

0 (3) < 005 7 (9)
=E[Ri11 +Y0x(Sis1) | Se=s, As=7"(5)]
= Er[Ri41 + Y0x(Se+1)| | St=3]
< Erx|Riy1 +9Gn(St41, 7 (St41)) | Se=s]

owing the Greedy

nal Policy o

In fact, the State Value Function following the Greedy
Policy ' is Better than Original Policy o

Ur(8) < gx(s,7'(5))
= E[Rt—H + YUr (St+1) | St =3, A, :’ﬂ'f(s)]
= Ex/[Riy1 +Y0r(St41) | Se=4]
< Er[Riy1 4+ Yqr (St41,7 (St41)) | St=35]
= Er[Riy1 +YE[Riy2 + Y0r (Se42)[Se41, Arp1 =7 (Se41)] | Se =]
=En|Rit1 +7Ri2 + Y0 (S 12) | Sy =s]

In fact, the State Value Function following the Greedy
Policy ' is Better than Original Policy o

vr(8) < gr (s, 7(5))
= E[Ri1 + yr(St41) | Si=5, A =7"(s)]
=Er|Ri+1 +yvr(Sev1) | Se=s]
< En[Riy1 +7Gr (Stv1, 7 (Se41)) | Se=5]
= Er[Rip1 + VE[Rit2 + Y0 (Se42)[Se41, Apr1 =7 (S41)] | Sp=3]
=Ex[Rit1 +YRiy2 + 70 (Sti2) | Sy =s]
<Eq|Ryp1 + Rz + Y*Riy3 + 7 0 (St43) | Sy =s]

In fact, the State Value Function following the Greedy
Policy ' is Better than Original Policy o

0x () < gn(s,7'(5))
= E[Rt+1 4+ y0r(St41) | Se=s, Ar=m"(s)]
= Er[Rip1 + 70 (Se41) | Se=s]
< Ex[Rit1 + Yqr (St41, 7 (St41)) | Se=s]
= Er[Ris1 + YE[Rir2 + Y0r (St42)[Se41, Arp1 =7 (Se41)] | S =]
= E?T"[Rt—{—l +YRiy2 + ’}’va(st+2) | St :5]
< Ew’[RH—l +YRiy2 + V*Riys + 7 v (Sty3) | St :5]

< Eﬁfl:Rt+1 + ’}’Rt+2 + ’YZRt+3 + ’}’SRt+4 + - | St :S]

= v (8).

Policy Evaluation and Policy Improvement

 Policy Evaluation: update the (state) value function following the current policy «

v.(s) = z m(als) z p(s',rls, a)[r + yv,(s")]

a

 Policy Improvement: improve the current policy w by acting greedily
1,if a = argmax(X,,.p(s’,r|s,a))(r + yv(s"))
' (als) = a '

0, otherwise.

« What if the new greedy policy n’ is no better than the original policy m (v,,r = v,;)?

v (s) = 2 ' (als) 2 p(s',rls,a)[r +yv,(s")]

= mc?x(z p(s',7ls,a))(r + yv(s")

. We have an optimal policy!

Remember Bellman Optimality Equation for v*

1. We have v*(s) = maxq,+(s,a)
a

Why?

ve(8) =) (als)ax(s,0)

aceA

= v*(s) = z m*(a|s)q,+(s,a) = max q,+(s, a)
a

aEA

1,if a = argmaxq*(s, a).
m*(als) = a

0, otherwise.

10

Can We Approach Optimality by Alternating Policy
Evaluation and Improvement?

I E I E I E

Mo — Upy ——> T —3 Uy, —> Mg ——> +++ =5 T, —> 0,

 Policy Evaluation: update the (state) value function following the current policy
« Policy Improvement: improve the current policy m by acting greedily

11

Policy Iteration

E I E I E I E
o s vy Ly oy By o B I a Bl

Policy Iteration (using iterative policy evaluation) for estimating = ~ ,

1. Initialization
V(s) € R and 7(s) € A(s) arbitrarily for all s € 8

2. Policy Evaluation
Loop:
A+ 0
Loop for each s € &:
v+ V(s)
V(s) « Xqm(als) Xy, p(s',rls,a)[r + yV(s)]
A +— max(A, v —V(s)])

until A < # (a small positive number determining the accuracy of estimation)

3. Policy Improvement
policy-stable < true
For each s € &:
old-action < m(s)
m(s) « argmax, Doty p(s',7]s,a)|[r + vV (s')]
If old-action # m(s), then policy-stable +— false
If policy-stable, then stop and return V = v, and 7 =~ m,; else go to 2

12

(Generalized Policy Iteration

evaluation

m

v, T n V

Uses T 7~ greedy (V)

—— ge improvement

Generalized Policy Iteration: general idea of

letting policy-evaluation and policy-

improvement processes interact,

independent of the granularity and other T >

details of the two processes * - *
13

Value lteration

Things still work out even if we are lazy and partially complete policy iteration steps

Value Iteration, for estimating 7 ~ 7,

Algorithm parameter: a small threshold # > 0 determining accuracy of estimation
Initialize V(s), for all s € 8T, arbitrarily except that V (terminal) =0

Loop:

A+ 0

Loop for each s € 8:
v« V(s
V(s) Kmax 5., p(s', 715, 0)[r + V()
A +— max(A, |v —V(s)|)

until A < 6

Output a deterministic policy, m =~ m,, such that
7(s) = argmax, y,_, p(s',r|s,a) [fr + 'yV(s’)]

14

Proof of Optimality?

Definition 1. A Bellman optimality operator T : RIS| — RIS| is an operator that satisfies: for any V € RIS,

(TV)(s) = max [r(s, @) + 1Byt s.0) V(5')]

Value iteration can thus be represented as recursively applying the Bellman optimality operator:

Vi1 =TV (3)

The Bellman optimality operator 7 has several excellent properties. It is easy to verify that V* is a fixed
point of 7T, i.e., TV* = V*. Another important property is that 7 is a contraction mapping.

15

Proof of Optimality?

In finite dimensional coordinate space, let x = (x4, -+, x5):
lxll o = max(lxy], -+, [25])

Theorem 2. T is a contraction mapping under sup-norm || - ||, i.€., there exists v € [0,1) such that

|TU = TV]loo < YU = Voo, VU,V € RISI, —

Theorem 4. Value iteration (8) converges to V*, i.e.,

lim Vk = V*,

k—o0 €

Our goal is to show

where Vi, = TF~1Vj.

16

Proof of Optimality?

Theorem 4. Value iteration (3) converges to V*, i.e.,

lim Vk = V*,

k— oo

where Vi, = T* 1V}

Proof. Note that V* is a fixed point of 7. In addition, according to Theorem 2, 7 is a contraction mapping.
Therefore,

Vi =V lloo = 1T Vi1 = TV |loo < YVi-1 = Voo < -+ <97 [Vo = Voo
Let k — oo, and we have ||V — V*||oc — 0. Thus lim V; = V*. []

k—o0

17

We Need to Prove T is a Contraction Mapping

Theorem 2. T is a contraction mapping under sup-norm || - ||so, i.e., there exists v € [0,1) such that

|TU = TV]|oo <YIU = Voo, VU,V € RIS,

Proof. To prove this property, we need the following lemma:

Lemma 3.
max f(a) — maxg(a)| < max|f(a) - g(a)].

18

Lemma 3.

maxf(a) — maxg(a)| < max|f(a) — g(a)|.

a

« Assume without loss of generality max f(a) = max g(a) and denote a* = argmax f(a)
a a

a

maxf(a) — mgxg(a)‘ = max f(a) — maxg(a) = f(a") — maxg(a) < f(a”) — g(a”) < max|f(a) —g(a)].

19

Lemma 3.

maxf(a) — maxg(a)| < max|f(a) — g(a)|.

a

« Assume without loss of generality max f(a) = max g(a) and denote a* = argmax f(a)
a a

a

maxf(a) — mgxg(a)‘ = max f(a) — maxg(a) = f(a") — maxg(a) < f(a”) — g(a”) < max|f(a) —g(a)].

« Let's prove theorem 2

|TV(S) _ TU(S)| = ‘mc?,x [T(Sa a’) + '}/ES’NT(SWS,CL)V(S!):I o m?x [T(Sa a) + 7ES’NT(3’|s,a)U(S!)] |
< max |7EstT(sf|s a) (V(s') — U(S’)H

|7Es,«NT(S ns,.a0) [V(s") —U(s)]| where, a* is the argmax of the RHS above
< ymax [V (s') — U(s')|

=7V = Ul

20

Lemma 3.

maxf (a) — maxg(a)| < max|f(a) - g(a)|.

a

« Let's prove theorem 2

TV(s) — TU(s)||=

[T(Sa a’) + ’YES’NT(SWS,G)V(SI)] o Hl(?x [T(S: G’) + ’}'ES’NT(SWS,Q)U(SI)] |
Hold for any state sl < max |7ES;NT(8,«|S o V(s — U(S')H

|7E53NT(S ns,.a0) [V (") —U(s")]| where, a* is the argmax of the RHS above
< ymax|V(s') - U(s')

- '7||V - U”oo

e Lemma 3 also holds when:

max [TV (s) = TU(s)| < ¥V = Ullos, > || TU =TV]loo AV = Ul so-

21

S0 far, we have several assumptions

We can solve MDP if we know:

1.

2.
3.
4

The transition function (dynamics) of the
environment

The reward function

The Markov property holds

We have enough computational resource

Value Iteration, for estimating 7 =~ .,

Algorithm parameter: a small threshold # > 0 determining accuracy of estimation
Initialize V(s), for all s € 8T, arbitrarily except that V (terminal) = 0

Markov property
independent of s;_

S
\-2/ p(st—l—l‘staat)

P(St+1 |St, at)

Loop:

| A«+0
| Loop for each s € 8:
| v+ V(s)
|
|

V(s) - maxd > | b(s',7|s,a)[r + vV (s")]
A +— max(A, o=V (s)])
until A < 6

m(s) = argmax, >, p(s',7|s,a)|r YV (s")]

Output a deterministic policy, ™ & :'juch that

22

Next, we'll go beyond these assumptions

We can solve MDP if we know:

1. The transition function (dynamics) of the @ o @ e T @ @ o @
environment Markov property

2. The reward function . - g independent of s;_1

3. The Markov property holds Vp(sialsna) 2 plsiaalse ar) \3_/

4

. We have enough computational resource

Monte Carlo Methods! Temporal-Difference
Learning!

23

What it we don't know the transition function
and reward function?

Markov Decision Processes: Bellman Optimality Equation

v.(s) = maxq, (s,a)
a

Markov property = max Zsl,r?%W)w +)/U*(S')]
independent of s;_ a
S92
p(setilse,ar) N/ p(si1lse, a) _/ q:(s, @) = Lo, pEsTrtsra)[resrar +y maxq.(s’,a’)]
Assumptions: Generalized Policy Iteration
Full observation oy = s evaluation
|E e F . E | E Vs vy

7 ~ greedy(V)

0

Value Functions mprovement
vr(s) = Xam(als) Xy, pls5rtsra) rtsra) + yur(s)]
Gn(s, @) = Ny plsrisra) frsra) + yun(s)] m

24

A

Monte Carlo (MC) Methods: Learning from experience

Dynamic Programming Method

St
At
St+1
At+1
St+1

Simulated interaction: we Know s;44
as we know p(S¢41|Se ar)
« No (need for) exploration

« No (need for) interaction -

Monte Carlo (MC) Methods: Learning from experience

Dynamic Programming Method Monte Carlo Method
St
At
St+1
At+1
St+1

1st trial Nt trial
Simulated interaction: we Know s;44
as we know p(S¢41|Se ar) Actual experience: we don't kKnow s¢41.
« No (need for) exploration unless we visit it

« No (need for) interaction - « Need exploration and interaction

Monte Carlo (MC) Methods: Learning from experience

MC is model-free: no knowledge of MDP
transitions / rewards

MC learns from complete episodes: no
bootstrapping (the estimates for each
state is independent)

What is “bootstrapping”?
» Update value estimates on the basis

of other estimates
va(s) =) w(als)) p(s',rls,)l +yue(s")]

a

27

1st trial Gl

Nt trial GN

Monte Carlo (MC) Methods: Learning from experience

« How to estimate values?
» The same idea of sample-average return:

G+ ..+ Gy
N

average observed returns from state s

Vn(s) =

» The estimate converges to the true value
with enough number of samples
Vw(s)—-ov,(s) as N -

1st trial Gl Nt trial GN

28

Monte Carlo (MC) Methods: Learning from experience

« Anincremental implementation:
G1+ ..+ Gpn
N

Vn(s) =
N-1G1+ ..+ GNn—1

1
= +26
N N—1 N N

N—1 1
= v Vn-1(s) + N Gy

= Vy-1(s) + % (Gn—Vyn-1(5))

« A more general form:
NewEstimate < OldEstimate + StepSize [T&rget — OldEstimate].

Set StepSize < 1 to forget old estimations. 15t trial G N trial Gy

Useful for non-stationary problems!
Non-stationary problems: r(s, a) or p(s'ls, a) changes over time

29

Backup diagram for Monte Carlo methods

MC Backup

The entire trajectory of an episode is included

Only applies to episodic MDPs 0
(all episodes must terminate)

Only sampled transitions are included

Does not bootstrap from successor state’s value. KR oHE
(Estimates for each state are independent) SRR A

30

Backup diagram: DP vs. MC

Dynamic Programming Backup MC Backup

S

Image credit D. Silver 31

When to Update Value Estimation of a State

« FEach green block denotes the terminal state in an episode
« State S might appear multiple times in an episode

s s i b s 00 5 5SS w i Bl e 2 5 8 SulEa

t= 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

32

First-visit MC prediction

Estimate v, (s) at the first visit to s in an episode

First-visit MC prediction, for estimating V =~ v,

Input: a policy 7 to be evaluated

Initialize:
V(s) € R, arbitrarily, for all s € §
Returns(s) < an empty list, for all s € 8

Loop forever (for each episode):
Generate an episode following So, Ao, R1,51,A1,Ra,...,S7r—1,Ar_1, R
G++0
Loop for each step of episode, t =71—1,7—-2,...,0:
GG+ R
Unless S: appears in So, S1,...,St—1:
Append G to Returns(St)
V(St) < average(Returns(St))

33

Every-visit MC prediction

Estimate v, (s) at every visit to s in an episode

-visit MC prediction, for estimating V =~ v,

Input: a policy 7 to be evaluated

Initialize:

Loop forever (for each episode):

V(s) € R, arbitrarily, for all s € §
Returns(s) < an empty list, for all s € §

Generate an episode following So, Ao, R1,51, A1, Ra,

G+0
Loop for each step of episode) t =T —1,7T—2,...,0:
G+ vG + Rit1

Append G to Returns(S:)
V(St) «+ average(Returns(St))

cees ST_l,AT_l,RT

34

How to Obtain Optimal Policies with Monte Carlo methods?

The same idea as generalized policy iteration: alternates optimization of policy
evaluation and policy improvement

v(s) « Xam(als) Xy (s’ rls, a)[r + yv(s)]

evaluation
m
7 V

7 ~ greedy (V)

mprovement gt we don't know p(s’, r|s, @)

m(s) « argmax ZS,,,,PGS'_,"“I—STG‘)[T + yvg(sh]
a

35

Convergence of Monte Carlo Control

Use state-action value g, (s, a), and we don't need to know p(s’,r|s,a) !

E I E I E I E
o >Q'?rc. 7 T ? Qny > TQ AR ? Tx ? Qx,

evaluation « MC methods converge, if:

0 - g » We have infinite number of

episodes (so the value estimate
converges to the true value)

max (8, 0) T Q » \We visit every state-action pairs

Gr, (5, AT MAX grr, (5, 0))

a

qmy, (37 Tk+1 (S))

(so the value estimate will be

r, (8, Tk(8))
T ~+ greedy(Q) the same as the true value)

U, ().

AVARAVS

iImprovement

n(s) « argmaxq.(s,a)
a

36

Convergence of Monte Carlo Control

Use state-action value g, (s, a), and we don't need to know p(s’,r|s,a) !

E
ﬂ'O : Q’ﬂ'o

qmy, (37 Tk+1 (S))

AVARAVS

Gr, (5, AT MAX grr, (5, 0))

a

max qr, (S: a’)
a

Gy (5, Tk (5))

U, ().

evaluation
Q ~ Qnr

0 Q

iImprovement

n(s) « argmaxq.(s,a)
a

37

I E I E I E
> T — @, —> Mg —> +++ —> Ty —> Gx,

« MC methods converge, if:

» We have infinite number of
episodes (so the value estimate
converges to the true value)

» \We visit every state-action pairs
(so the value estimate will be
the same as the true value)

« In other words, we need to explore!
> Ifthe policy always takes greedy
action, we can never explore
unseen state-action pairs

The Exploration-Exploitation Dilemma

 Exploitation: maximize the current highest reward: n(s) = argmax q,(s, a)
a

« Exploration: maximize the information about the environment

38

The Exploration-Exploitation Dilemma

 Exploitation: maximize the current highest reward: n(s) = argmax q,(s, a)
a

« Exploration: maximize the information about the environment

« Solutions:
» exploring starts: Every state-action pair has a non-zero probability of
being the starting pair
» €-Soft policies: Most of the time choose the action with maximal
estimated action values, but with probability € select a random action
» off-policy: use different policies for collecting experience and evaluating

39

Monte Carlo ES

Monte Carlo ES (Exploring Starts), for estimating 7w =~ ,

Initialize:
7(s) € A(s) (arbitrarily), for all s € 8
Q(s,a) € R (arbitrarily), for all s € 8, a € A(s)
Returns(s, a) < empty list, for all s € 8, a € A(s)

Loop forever (for each episode):
Choose Sy € 8, Ay € A(Sp) randomly such that all pairs have probability > 0
Generate an episode from Sy, A, following I So, Ao, R1,...,87-1,Ar_1,Rr
G+ 0
Loop for each step of episode, t =T—-1,T—-2,...,0:
G 7G4+ Riyq
Unless the pair Si, A; appears in Sy, Ag, 51,41 ...,8;-1,Ai_1:
Append G to Returns(Sg, As)
Q(S;, Ay) < average(Returns(Sz, A;))
w(S;) < argmax, Q(S:, a)

40

Monte Carlo ES

Converges to optimal policy, however, inefficient to start with every state-action pairs!

Monte Carlo ES (Exploring Starts), for estimating 7w =~ ,

Initialize:
7(s) € A(s) (arbitrarily), for all s € 8
Q(s,a) € R (arbitrarily), for all s € 8, a € A(s)
Returns(s, a) < empty list, for all s € 8, a € A(s)

Loop forever (for each episode):
Choose Sy € 8, Ay € A(Sp) randomly such that all pairs have probability > 0
Generate an episode from Sy, A, following I So, Ao, R1,...,87-1,Ar_1,Rr
G+ 0
Loop for each step of episode, t =T—-1,T—-2,...,0:
G 7G4+ Riyq
Unless the pair Si, A; appears in Sy, Ag, 51,41 ...,8;-1,Ai_1:
Append G to Returns(Sg, As)
Q(S;, Ay) < average(Returns(Sz, A;))
w(S;) < argmax, Q(S:, a)

41

The Blackjack Example

States (200 of them):

m Current sum (12-21)
m Dealer’s showing card (ace-10)
m Do | have a “useable” ace? (yes-no)

Action stick: Stop receiving cards (and terminate)
Action twist: Take another card (no replacement)

Reward for stick:

m +1 if sum of cards > sum of dealer cards
m O if sum of cards = sum of dealer cards
m -1 if sum of cards < sum of dealer cards

Reward for twist:

m -1 if sum of cards > 21 (and terminate)
m 0 otherwise

Transitions: automatically twist if sum of cards < 12

42

Value Estimate by a Monte Carlo Methods

After 10,000 episodes After 500,000 episodes

v/ -1 ¥ 4 ; ™~
f 7
]

=t & 55 \\‘ " ;,A .,"' { /:_j_/;--._ L) J 'II |
Usable SEST IS T TN 51 P s S SaeaY
ace = / : _‘____</'7/;.>\~' Y e j X . AR dae? - y v,

.“ { { J 'I - /"_— J
No ARG SR AA G~
ace ST 4S5

Policy: stick if sum of cards > 20, otherwise twist

43

Optimal Policy found by Monte-Carlo ES

JUy
STICK
Usable 1]
ace]
HIT
I)'3ﬁ|2l":’plﬁ'-‘ll5lﬁ IT IBIQ:IU
STICK
No
usable]
ace HIT |

A23456780910
Dealer showing

44

Monte Carlo Control with e-soft Policies

€

Explore with probability%s) and exploit with probability 1 — e + e

On-policy first-visit MC control (for e-soft policies), estimates 7 ~ 7.

Algorithm parameter: small € > 0

Initialize:
T < an arbitrary e-soft policy
Q(s,a) € R (arbitrarily), for all s € 8, a € A(s)
Returns(s,a) < empty list, for all s € §, a € A(s)

Repeat forever (for each episode):
Generate an episode following I So, Ao, R1,...,817_1,Ar_1, Rt
G+ 0
Loop for each step of episode, t =T —-1,T—2,...,0:
G + ’}’G + Rt+1
Unless the pair Sy, A; appears in Sg, Ag, S1, A1 ..., 81, A¢s_1:
Append G to Returns(St, A¢)
Q(S;, A;) < average(Returns(Si, Ay))
A* + argmax, Q(St, a) (with ties broken arbitrarily)
For all a € A(S}):
1—e+¢/|A(S;)| ifa=A"
S*)“{ e/|A(Sy)| if a # A

(a

45

e-soft Policies Improve the Original Policy

Ey [z (s 7®)] = D 7' (als)gn(s,0)

= |A?3)| Zqﬂ(s,a) + (l—s)maxqﬂ(s,a)
IS)

|A?3)| Zqﬂ(s,a (1— S)Z qﬂ(s,a)

E
= Q)] 20 - |A(s)|;q’”(8’a) + 2 malean(s,0)

vr(8).

Vv

46

The Exploration-Exploitation Dilemma

 Exploitation: maximize the current highest reward: n(s) = argmax q,(s, a)
a

« Exploration: maximize the information about the environment

« ALL learning methods faces the dilemma: learning state-action values
conditions on subsequent optimal behaviors but they need to act sub-

optimally to explore all state-action pairs
Both methods are compromises. They learn action values not for the
e Solutions: optimal policy, but for a near-optimal policy that still explores.

> exploring starts: Every state-action pair has a non-zero probability of
being the starting pair

» €-Soft policies: Most of the time choose the action with maximal
estimated action values, but with probability € select a random action

» off-policy: use different policies for collecting experience and evaluating

47

The Exploration-Exploitation Dilemma

 Exploitation: maximize the current highest reward: n(s) = argmax q,(s, a)
a

« Exploration: maximize the information about the environment
Both methods are compromises. They learn action values not for the
« Solutions: optimal policy, but for a near-optimal policy that still explores.

» exploring starts: Every state-action pair has a non-zero probability of
being the starting pair

» €-Soft policies: Most of the time choose the action with maximal
estimated action values, but with probability e select a random action

» off-policy: use different policies for collecting experience and evaluating

« ALL learning methods faces the dilemma: learning state-action values
conditions on subsequent optimal behaviors but they need to act sub-
optimally to explore all state-action pairs

> Let's have two policies: policy b to explore, and policy to behave
optimally

48

On-Policy and Off-Policy Learning

On-policy learning: learn v, and q,, for policy that executes and explores

Off-policy learning: learn v, and q,, for target policy m from experience collected by behavior
policy b

We only need coverage: every action taken under m is also taken, at least occasionally, under
b
m(als) > 0 implies b(als) >0

The goodness of decoupling target and behavior policy:
» Learn from observing humans or other agents
» Re-use experience generated from old policies
» Learn about optimal policy while following exploratory policy
» Learn about multiple policies while following one policy

49

Estimating Expectations

« General ldea: Draw independent samples {z", . ., Z" }from distribution p(z)
to approximate expectation: f
f(z
p(z) f(z)

lN
N 2 G =

. Note that: E[f] = E[f].

i

so the estimator has correct mean (unbiased).

var[f] = —E[(f E[f])?].

e Variance decreases as 1/N.

 Thevariance:

e« Remark: The accuracy of the estimator does not depend on
dimensionality of z.

50

Slide credit K. Fragkiadaki

Importance Sampling

* Suppose we have an easy-to-sample proposal distribution q(z), such that

a(2) >0 if p(z) >0. g / HAp)E

q(z)
s LNVPEY) pony n s
~ N ~ q(z”)f(), Q()

 The quantities

w™ = p(z")/q(z")
are known as importance weights.

51

\

B R B i m R f e e i i —

- — e -

importance weights

Image credit S. Thrun, W. Burgard and D. Fox

2

4

&

52

8

10

12

Importance Sampling Ratio

« The probability of state-action trajectory A, S;, ..., Ar, S¢ under policy .

Pr{A¢, Se+1, Aty1, ..., 87 | St, Apr—1 ~ 7}
= ‘?T(At|5't)p(5t+1 |St: At)?T(At+1|5t+1) " 'P(ST \ST—la AT—ZL)

T-1
— H'}T(Ak|5k)p(3k+1|3k1ﬂk)1
k=t

« Theimportance sampling ratio between target policy T and behavior policy b:

T—-1

+ = m(Ak|Sk)p(Skt1| Sk, Ar) _ H T(Ak|Sk)
T b(Ak|S)P(Ski1 | Sk, Ak) 3oy (AklSk)

Pt:T—1 —

« Estimate v, (s) from sampling with behavior policy b

E[,Ot:T—ZLGt | StIS] — ’Uﬂ(S)

53

Importance Sampling

e Ordinary importance sampling forms estimate

N D _teT(s) PET®)-1 Gy
T

* New notation: time steps increase across episode boundaries:

V(s)

- s R Rl TR e 5.0 8B v s v « BBy % »

- t= 1 2 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

t ¢ t 4

T(s) = {4, 20} T(4)=9 T(20) =25

set of start times next termination times

Slide credit K. Fragkiadaki 54

Importance Sampling

* Two ways of averaging weighted returns:

e Ordinary importance sampling forms estimate:

. Zteg(s) Per(t)-1Gt

Vi) 7(s)]

 Weighted importance sampling forms estimate:

. Zteg'(s) Pe.T(t)-10t

V(s)
ZtE‘T(s) pt:T(t)—l

55

Ordinary vs. Weighted Importance Sampling

Ordinary Sampling:
y piing Weighted Sampling:

First time of termination D

following time t T(®)
\ / V(S) - Etej‘(sj pt:T(t}-le

) Zte‘.r(s) pt:T(t)—th Zteﬂ‘(s] Pt:T(t)—1
V(s) = .
[T(s)]
\ First-visit MC:
skt « Ordinary Sampling is unbiased, but the variance is
steps in which state s is visited unbounded
« Weighted Sampling is biased, but with much lower
= wiw s e s s snPBew v 8§ » e : o« ¥ v B v variance
-t=123456?89101112131415161718192@21222324252627
* + * * Every-visit MC:
T(s) = {4, 20} T(4)=9 T(20)=25 « Ordinary Sampling is biased
set of start times next termination times « Weighted Sampling is biased
Proof:

https://link.springer.com/article/10.1007/BF001 14726

56

https://link.springer.com/article/10.1007/BF00114726

Importance Sampling

e Two ways of averaging weighted returns:

e Ordinary importance sampling forms estimate:
Correct mean of value following policy

zteg'(s) Pt.T(t)-10t
T

V(s) =

) i , . These ratio in the numerator is cancelled
* Weighted importance sampling forms estimate: ,y the denominator. The estimation is not

correct anymore....

Zteg'(s) Pr:r(t)-1G¢

V(s) =

Ztei}'(s) Pt:T(t)-1

Slide credit K. Fragkiadaki 57

Remember the Incremental Implementation in the Bandit Problem

Let Q,, denote the estimate of its action value after being selected n — 1 times

. Ri+Ra+---+ Rp
B n—1

Qn

Let's start rewriting Q,,:
1
Qn+1 = - ZRi

58

Incremental Implementation of Ordinary Importance Sampling

« We have;
p1G1 + - pp_1Gp_q
n—1

Va(s) =

« We canre-write V(s) as:

Vre1(5) = o)+ [pn G — Vo (5]

59

Incremental Implementation of Weighted Importance Sampling

We can re-write weighted importance sampling as:

n—1
_WiLG
v, = 2ok=1 WkG n>2 Wi=py.re,)-1

« The update rule is then:
VnHianLIg”[Gn—Vn}, n > 1,

Cn—l—l = C'n, + Wn—{—la

60

Off-Policy Monte Carlo Prediction

Off-policy MC prediction (policy evaluation) for estimating Q =~ ¢,

Input: an arbitrary target policy m

Initialize, for all s € 8, a € A(s):
Q(s,a) € R (arbitrarily)
C(s,a) « 0

Loop forever (for each episode):
b < any policy with coverage of 7
Generate an episode follovving So, Ao, R1,...,97_1,Ar_1, Rt
G+ 0
W1
Loop for each step of episode, t =T —1,T—2,...,0, while W # O:
G +— ’)’G + Rt-l-l
C(St, At) — C(St, At) + W
Q(St, Ar) Q(St, At) + % (G — Q(St, At)]
W~ Wi

61

Off-policy Monte Carlo Control

Off-policy MC control, for estimating 7 =~ 7,

Initialize, for all s € §, a € A(s):

Q(s,a) € R (arbitrarily)

C(s,a) <0

7(s) + argmax, Q(s,a) (with ties broken consistently)
Loop forever (for each episode):

b < any soft policy
Generate an episode using@ So, Ao, R1,...,57_1,Ar_1, Rt

G+ 0
W1
Loop for each step of episode, t =T—-1,7-2,...,0:
evaluation G G + Ry
Vs v C(St,At) — C(St,At) + W
/ \q Q(St, Az) < Q(St, Ay) + % G — Q(S;, Ay)]
[V 7(S;) < argmax, Q(S;,a) (with ties broken consistently)
If Ay # w(S¢) then exit inner Loop (proceed to next episode)
7 ~» greedy (V) 1
improvement Only learns from the tails of episodes (when

all actions are greedy). Learningis very slow!
62

Check Section 5.8 and 5.9 of “Reinforcement
Learning: An Introduction” for Discounting-
aware Importance Sampling

Quick Summary: DP vs. MC

« Dynamic Programming (DP) methods are efficient, which bootstrap value functions
from existing estimates. N

~
~
~.
\

4
V(Sy) « ZAtT[(Atlst) ZSH_l,Rt_,_l P(St41, Res1lSe, A [Req1 + ¥V (Sei1)]

« Monte Carlo (MC) methods: must wait until the end of the episode to learn value
functions (only when the return is known)

V(Sy) « V(Sp) + a[G, — V(S,)]

64

Temporal-Difference Learning

« Temporal-Difference (TD) methods: combine Monte Carlo methods with Dynamic
Programming methods that wait only until the next time step and bootstrap value
functions from existing estimates P '

V(S) < V(SO + alRess + 1V (Sess) — V(SO]

» TD target: Ryp1 + YV (St41)
> TDerror: 6; = Reyq1 + YV (Ses1) — V(Sy)

65

Backup Diagram for Temporal-Difference Methods

Backup diagram: DP vs. MC vs. TD

Dynamic Programming Backup

S

V(S) « X, T(ALlSt) X,y Resr PSer1s Rew1lSe AD [Resy + ¥V (Spyn)]

Expected updates: based on the
summation of all successors

MC Backup

TD Backup

V(S) « V(S + a[G, — V(SP] V(S) < V(S) + a[Resq + ¥V (Ses1) — V(SD]

Sample updates: based on a
single sample successor

Image credit D. Silver

67

DPvs. MCvs. TD

| Bootstrap

Dynamic Programming v X
Monte Carlo X v
Temporal Difference v v

68

Image credit D. Silver

full
backups

sample
backups

A

Y

DPvs. MCvs. TD

Dynamic Exhaus}i]ve
programming searc

Monte Carlo

Temporal-

difference

learning
- s o
shallow bootstrapping, A deep =
backups backups .

;

69

The Driving Home Example

FElapsed Time Predicted Predicted

State (minutes) Time to Go Total Time
leaving office, friday at 6 0 30 30
reach car, raining 5 35 40
exiting highway 20 15 35
2ndary road, behind truck 30 10 40
entering home street 40 3 43

arrive home 43 0 43

70

The Driving Home Example

Changes recommended by Changes recommended
Monte Carlo methods (a=1) by TD methods (o=1)

45
_.actual outcome_____ actual
outcome
Predicted Predicted
total total
travel 35 travel
time time
30
| | I I | | l. I I I I I
leaving reach exiting 2ndary home arrive leaving reach exiting 2ndary home arrive
office car highway road street home office car highway road street home
Situation Situation

71

Nice Properties of TD

TD can learn before knowing the final outcome
» TD can learn online after every step
» MC must wait until end of episode before return is known

TD can learn without the final outcome
» TD can learn from incomplete sequences
» MC can only learn from complete sequences
» TD works in continuing (non-terminating) environments
» MC only works for episodic (terminating) environments

Both TD and MC converge (under certain conditions). Which converge better /
faster?

72

Tabular TD(0) Prediction

Tabular TD(0) for estimating v,

Input: the policy 7w to be evaluated
Algorithm parameter: step size a € (0, 1]
Initialize V' (s), for all s € 8T, arbitrarily except that V (terminal) =0

Loop for each episode:
Initialize S
Loop for each step of episode:
A < action given by 7 for S
Take action A, observe R, S’
V(S) « V(S)+ a|R+~V(S) — V(S)]
S+ S

until S is terminal

73

Random Walk Example

Assume we have a Markov Reward Process—a MDP without actions.

Always start from the center, moving to the left / right with equal probability

The ground-truth values of state Ato Eare £,2,2,2,2

Does TD(0) converge faster and better than MC?

B (=" (@) =0~ (D)=~

start

74

Random Walk Example

0.8 Estimated
value 100
0.6 - 10
0 - .
11— \
04 /
True
values
0.2 1
0 | | | | |
A B C D E
State

75

0.25 - Empirical RMS error,
averaged over states
0.2 -\
0.15 -
0.1- N
~ = \\0E=03
0.05 -
TD . a=.05
0 [[[|
0 25 50 75 100

Walks / Episodes

A-B Example

Two states A, B; no discounting; 8 episodes of experience

What is V(A), V(B)? Batch updating: Repeatedly train on episodes until
convergence.,

1
V(B)=§(0+1+1+1+1+1+1+0)=0.75

76

A-B Example

Two states A, B; no discounting; 8 episodes of experience

What is V(A), V(B)? For MC methods..
V(A)=R;+-+Rr=04+0=0

77

A-B Example

Two states A, B; no discounting; 8 episodes of experience

What is V(A), V(B)? For MC methods..
V(A)=R;+-+Rr=04+0=0
For TD methods:
V(A) =R, +V(B) =0+ 0.75 = 0.75

78

Why Does TD Converge Better than MC?

@ Monte Carlo in batch setting converges to min MSE (mean squared error)

@ Minimize loss with respect to observed returns
e In AB example, V(A) =0

@ TD(0) converges to DP policy V™ for the MDP with the maximum
likelihood model estimates

@ Aka same as dynamic programming with certainty equivalence!

@ Maximum likelihood Markov decision process model

P(s'|s, a)

R DIICERP PPN

i

F(s,a) = N(;l, 2) Z 1(sk = s,ak = a)r«

k=1

e Compute V™ using this model
e In AB example, V(A) = 0.75

79

Bias and Variance Analysis

m Return G; = Ri 1 + YReso + ... + YT 1Ry is unbiased
estimate of v (5;)

m True TD target Ry11 + Yvii(Sey1) is unbiased estimate of
Vrr(St)

m TD target Rry1 + vV/(Siy1) is biased estimate of v, (S;)

m D target is much lower variance than the return:

m Return depends on many random actions, transitions, rewards
m ID target depends on one random action, transition, reward

80

Biased Estimation of TD methods

Vas1(s) = Va(s) + a[R + V(s") — Vu(5)]
= (1 = a)V,(s) + a(R+ V(s"))
= (1 =)[Va-1(5) + o[R+ V(5") = V,m1()]] + a(R + V(s"))

=(1- a')+ Zn: a(l — @) 1R+ V()
i=1

Biased by V; (s)

81

Bias and Variance Analysis

m MC has high variance, zero bias

m Good convergence properties

m (even with function approximation)
m Not very sensitive to initial value

m Very simple to understand and use

m D has low variance, some bias
m Usually more efficient than MC
m TD(0) converges to v,(s)
m (but not always with function approximation)
m More sensitive to initial value

82

Sarsa: On-policy TD Control

Q(St, Ar) + Q(St, Ar) + a[Rt-H + YQ(St+1, At+1) — Q(St,At)]

« We canlearn an action-value function in a similar manner as a state-value function.
Instead of considering transitions from state to state, we now consider transitions
from state-action pair to state-action pair

. Rt+1m Rt+2/\ Rt+3 .« o
O e By s) yne

83

Sarsa: On-policy TD Control

Q (S, At) < Q(St, Ar) + Of[Rt—i—l + YQ(St+1, Aty1) — Q(St,At)]

Sarsa (on-policy TD control) for estimating Q = q.

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q(s,a), for all s € 87, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
Loop for each step of episode:
Take action A, observe R, S’

(e.g., e-greedy)
Q(S, 4) + Q(S, A) + a[R +1Q(S', A') — Q(S, A)]
S+ 85 A« A

until S is terminal

84

Expected Sarsa

Q(St, Ar) < Q(St, Ap) + o Rt—l—l + YEAQ(St+1, At+1) | St+1] — (StaAt)]
— Q(St, Ar) + Rt—l—l +®(G|St+1)Q(St+1,a) — Q(StaAt)]a

Eliminate variance due to the
random selection of 4;

Expected Sarsa:

1. Algorithm parameters: step size a € (0,1], small € > 0
2. Initialize Q(s,a), for all s € ST,a € A(s), arbitrarily except that Q(terminal,-) =0

3. Loop for each episode:

4 Initialize S

5 Loop for each step of episode:

6. Choose A from S using policy derived from @ (e.g., e-greedy)

7 Take action A, observe R, S’

8 Q(S,A) <« Q(S,A)+a[R+~>_,m(a| St41) @ (Stt1,a) — Q(S, A)]
9 S« 5

I

0. until S is terminal g5

Q-learning: Off-policy TD Control

Q(St, At) < Q(St, Ar) + a[Rt+1 + 7y max Q(St+1,a) — Q(St, At)]

Q-learning (off-policy TD control) for estimating 7 = ,

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q(s,a), for all s € 8T7,a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S,A4) «+ Q(S,A) + a[R + ymax, Q(S’,a) — Q(S, A)]
S« 5

until S is terminal

86

Q-learning: Off-policy TD Control

Q(St, At) < Q(St, Ar) + a[Rt+1 + 7y max Q(St+1,a) — Q(St, At)]

Q-learning (off-policy TD control) for estimating 7 = ,

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q(s,a), for all s € 8T7,a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from Q|(e.g., e-greedy)
Take action A, observe R, S’
GRS a[R +ymax, Q(S', 0) - Q(S, 4)]
.<_

until S is terminal

behavior policy

target policy

« The learned action-value function approximates q*
« If all state-action pairs continue to be updated, Q has been shown to converge

with probability 1 to q*

87

Clitf Walking Example

« The behavior policy uses e-greedy action selection, with € = 0.1
« Action: up, down, left and right
« Reward is -100 at the Cliff region, otherwise, reward is -1

R=-1

Sarsa path

Q-learning path H

S The Cliff G
R=-100

88

Clitt Walking Example

Sarsa

205 -
Sum of _5p
rewards Q-learning

dl:II’Ing Remember the behavior policy uses e-greedy action
episode 75 - selection, which occasionally falls off the cliff!
-100 + | [| | |
0 100 200 300 400 500

Episodes

89

Maximization Bias and Double Q-Learning

The estimated values Q(s, a) are often uncertain and distributed some above and
some below zero. The maximum of estimated values induces a positive bias.

Let say the true values of state s and many actions a are all zero, but estimated
values Q(s, a) has positive bias

positive bias is introduced by the “maximum” operator

Q(S:, Ar) < Q(St, Ar) + Oé[Rt+1 ‘|"Ymgx Q(St+1,a) — Q(StaAt)]

This is because we use the same samples to determine the maximizing action and
to estimate is values!

90

Maximization Bias Example

Action: left and right

Reward is O when transitioning from A to B; reward is drawn from N (—0.1,1) when
transitioning from B to left.

Taking “left” action from A should always be worse than “right” action

100%

N(=0.1,1) The true value V(right) = 0
,A 0 O 0
75% ¢t E left right D
% left The true value V(left) = —0.1
actions 50% Q-learning
from A , ,
Double Q-learning was biased toward “left”
25%} Q-learning action from A, due to the positive bias!
B8 s St SN S i e i A e e optimal
(13 . . .
1 100 200 300

Episodes

91

Double Q-Learning

The estimated values Q(s, a) are often uncertain and distributed some above and
some below zero. The maximum of estimated values induces a positive bias.

This is because we use the same samples to determine the maximizing action and
to estimate is values!

Solution: use two sets of samples to learn two independent estimates Q; and Q,
» Q. determines the maximizing action:

A" = argmax Q,(s,a)
a

> Q, provides the estimate of its value:

Q2(s,A") = Qz(s,argmax Q, (s, a))

92

Double Q-Learning

Q1(St, At) Q1(St, A¢)+a [Rt+1+’)’Q2 (St41,argmax Q1(Si4+1,a)) —Q1(St, At)] -

Double Q-learning, for estimating (1 =~ Q2 = ¢,

Algorithm parameters: step size o € (0, 1], small € > 0
Initialize Q1 (s,a) and Q2(s,a), for all s € 8T, a € A(s), such that Q(terminal,-) =0

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using the policy e-greedy in @1 + Q2
Take action A, observe R, S’
With 0.5 probabilility:
Q1(5,4) + @1(S, 4) + a R ++/Qa(8" argmax, Q1 (5 a) — Q:(5, 4))

else:
Qs(S, 4) « Q2(S, A) + a R+ Q1 (S, argmax, Q(S', a)) — Qa(S, 4))
S« 5

until .S is terminal

93

Quick Recap: Temporal-Difference Learning

« Temporal-Difference (TD) methods: combine Monte Carlo methods with Dynamic
Programming methods that wait only until the next time step and bootstrap value
functions from existing estimates

V(Se) < V(Se) + a[Res1 + YV (Ser1)| = V(SP]

94

N-step TD Prediction

* n-step TD:

V(S:) « V(Sy) + a[Riy1 + YRy + -+ Vn_lRt+n + Y™V (St4n) — V(St)]

95

N-step TD Prediction

* n-step TD:
V(S) « V(S + a[Res1 + VYResz + -+ ¥ 'Repn + YV (Spn) — V(SP)]
 Whenn — oo, n-step TD becomes an MC method:

V(Sy) <« V(S) + a[Rey1 +YReyz + -+ Y 1Ry = V(S)]

1D (1-step) 2-step 3-step n-step Monte Carlo

!

96

N-step TD Prediction

Input: a policy =

Algorithm parameters: step size a € (0, 1], a positive integer n

Initialize V' (s) arbitrarily, for all s € 8

All store and access operations (for S; and R;) can take their index mod n + 1

Loop for each episode:
Initialize and store Sy # terminal

T 0o No bootstrapping until time
Loop for t =0,1,2,... : stept+n
| Ift <T, then:

| Take an action according to m(-|S;)

| Observe and store the next reward as R;y; and the next state as Sy

| If S;y, is terminal, then 7'« t + 1

| 7+ t—n+1 (7 isthe time whose state’s estimate is being updated)

| If 7>0:

| Gy R,

| If74+n<T,then: G+ G+~4"V(Sr1n) (Griran)
| V(ST) — V(S’r) +a [G - V(S’r)}

Untilm=T-1

97

N-step TD Prediction

Sp= 8128282828285 >8>S =585 — 5.5

S0 8528528282828 =5 =8%=5= 8= =S5
No value update

So=8$1 =8 =28=28=8=5—= 585805 =S-S5
S6=851 285285282825 =5=>8%=>8= 8= 38, 5.5
S5 2H 2828528285252 8% =S5 8025 = Sp.-. 5

N-step TD

S6=851=25H 2852858285 =>85=>5=>828%=>80=>5 =55
o= 5128282828285 =8>S =8>S =S-S5

MC

So=S81 =289 =828 8—=8—>5->8= 3= S80S 5.5

98

On-policy n-step Action-Value Methods

« Action-value form of n-step return

Gitin = Rip1+YRiia+ +7Y" 'Ripn +7"Qtan—1(Stin, Atyn), n>1,0<t < T—n,

* n-step Sarsa
Qiyn(St, Ar) = Qeyn—1(St, Ar) + @ |Gripn — Qian—1(St, At)]

« n-step expected Sarsa

GE”-:} = Rt—l—l"" ; __|_,-};n—1Rt_|_n_|_r}rﬂ Z W(H|St+n)Qt+n—l (St—l—n: U—')

99

Off-policy n-step Action-Value Methods

Importance-sampling ratio

min(h,T—1)

m(Ak|Sk)
H b(Ak|Sk)

Pt:h =
k=t

Weighted estimated value functions with importance-sampling ratio
Off-policy n-step TD

Vitn(St) = Vign—1(St) + aptittn—1 |Gtten — Vign—1(St)], 0<t< T,

Off-policy n-step Sarsa

Qt—{—n(st: At) = Qt—l—ﬂ,—l(stu At) + apiii:t4n [Gt:t+n — Qt—l—ﬂ,—l(stu At)]

100

Summary

DP vs. MCvs. TD

Dynamic Programming Backup MC Backup D Backup

s S
SHI
; \ SN N £ A ' s S
SN PN H N | SN 1 I\ / AN v ;N VA oo 1 [

T eoorsrzp | Smple

Generalized Policy Iteration

Vs, Tk

edy (@)
= gre

« DPV(Sy) « ZAtT[(Atlst) ZSH_l,RH_l P(St+1, Res1lSe, A [Rey1 + ¥V (Sesd)]

evaluation
DP v X
Vs on T § ¥ « MCV(S) « V(S) + a[G, — V(Sp]
- TD: V(S V(S;) + a|Reyq + YV (S - V(S
- v . v v (Sp) < V(Sp) + a[Res1 + YV (Ses1) (Sp]

! . . Importance Sampling
improvement « On-policy learning: learn value

‘ and execute with the same policy CT152) m(Ak|Se)P(Ska1| Sk Ak) 1r m(Ag|Sk)

Pt:T—1 = H b(Alek)

« Off-policy learning: learn and

T—1
—, b(Ag|Sk)p(Sk+1]|Sk, Ak)
execute with different policies k=t O(A&|Sk)P(Sk+1[5k, Ak)

E[Pt:T—th \ Stzs] = ’U«;r(S)

bvv*
101

	Slide 1: Robot Perception and Learning
	Slide 2: Recap
	Slide 3
	Slide 4: In fact, the State Value Function following the Greedy Policy pi prime is Better than Original Policy pi
	Slide 5: In fact, the State Value Function following the Greedy Policy pi prime is Better than Original Policy pi
	Slide 6: In fact, the State Value Function following the Greedy Policy pi prime is Better than Original Policy pi
	Slide 7: In fact, the State Value Function following the Greedy Policy pi prime is Better than Original Policy pi
	Slide 8: In fact, the State Value Function following the Greedy Policy pi prime is Better than Original Policy pi
	Slide 9: Policy Evaluation and Policy Improvement
	Slide 10: Remember Bellman Optimality Equation for v to the asterisk operator
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: So far, we have several assumptions
	Slide 23: Next, we’ll go beyond these assumptions
	Slide 24: What if we don’t know the transition function and reward function?
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101: Summary

