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Recap
RL as a general learning framework for 

different tasks
Multi-armed Bandit Problem

The learning objective of RL

• Expected reward:    𝑞∗ 𝑎𝑘 = 𝔼 𝑟𝑡|𝐴𝑡 = 𝑎𝑘
• Action-value estimates:    𝑄𝑡 𝑎𝑘
• Greedy action selection method: select the 

action with the highest estimated value:
𝐴𝑡

∗ = arg max
𝑎

𝑄𝑡(𝑎)

➢ If 𝐴𝑡 = 𝐴𝑡
∗, you are exploiting your current 

knowledge of the values of the actions
➢ If 𝐴𝑡 ≠ 𝐴𝑡

∗, you are exploring.  You improve 
your estimate of the non-greedy actions

Markov Decision Process

• Discounted returns: 𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝐺𝑡+1
• The state value function 𝑣𝜋 𝑠 = 𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠
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• Let’s say we obtain the value function 𝑣𝜋 𝑠 based on policy 𝜋 using dynamic programming, 
How can we improve the policy?

• Switch to a greedy policy!

𝜋′ 𝑎 𝑠 = ቐ
1, 𝑖𝑓 𝑎 = argmax

𝑎
( Σ𝑠′,𝑟𝑝(𝑠

′, 𝑟|𝑠, 𝑎))(𝑟 + 𝛾𝑣𝜋 𝑠′ )

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

• Why greedy policy 𝜋′ is better than the original policy 𝜋 at state 𝑠?
Since a greedy policy is deterministic: 𝜋′(𝑠) = argmax

𝑎
( Σ𝑠′,𝑟𝑝(𝑠

′, 𝑟|𝑠, 𝑎))(𝑟 + 𝛾𝑣𝜋 𝑠′ )

𝑞𝜋 𝑠|𝜋′(𝑠) = max
𝑎

σ𝑠′,𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝜋 𝑠′ ]

≥ σ𝑎 𝜋 𝑎 𝑠 σ𝑠′,𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎 𝑟 + 𝛾𝑣𝜋 𝑠′ = 𝑣𝜋 𝑠The value of selecting action 𝜋′(𝑠) is higher 
than following policy 𝜋 at state 𝑠 (here we 
still follow policy 𝜋 at other states)

Last Time, We Said the Greedy Strategy Improves 
the Current Policy
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In fact, the State Value Function following the Greedy 
Policy 𝜋′ is Better than Original Policy 𝜋

𝜋′ 𝑎 𝑠 = ቐ
1, 𝑖𝑓 𝑎 = argmax

𝑎
( Σ𝑠′,𝑟𝑝(𝑠

′, 𝑟|𝑠, 𝑎))(𝑟 + 𝛾𝑣𝜋 𝑠′ )

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
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Policy 𝜋′ is Better than Original Policy 𝜋
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In fact, the State Value Function following the Greedy 
Policy 𝜋′ is Better than Original Policy 𝜋
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Policy Evaluation and Policy Improvement

• Policy Evaluation: update the (state) value function following the current policy 𝜋

𝑣𝜋 𝑠 =෍

𝑎

𝜋(𝑎|𝑠)෍

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝜋 𝑠′ ]

• Policy Improvement: improve the current policy 𝜋 by acting greedily

𝜋′ 𝑎 𝑠 = ቐ
1, 𝑖𝑓 𝑎 = argmax

𝑎
( Σ𝑠′,𝑟𝑝(𝑠

′, 𝑟|𝑠, 𝑎))(𝑟 + 𝛾𝑣𝜋 𝑠′ )

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

• What if the new greedy policy 𝜋′ is no better than the original policy 𝜋 (𝑣𝜋′ = 𝑣𝜋)?

𝑣𝜋′ 𝑠 =෍

𝑎

𝜋′(𝑎|𝑠)෍𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝜋′ 𝑠
′ ]

= max
𝑎
(෍

𝑠′,𝑟

𝑝(𝑠′, 𝑟|𝑠, 𝑎))(𝑟 + 𝛾𝑣𝜋′ 𝑠
′ )

We have an optimal policy! 
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Remember Bellman Optimality Equation for 𝑣∗

1. We have 𝑣∗ 𝑠 = max
𝑎

𝑞𝜋∗ 𝑠, 𝑎

Why?

𝑣𝜋 𝑠 = ෍

𝑎∈𝒜

𝜋(𝑎|𝑠)𝑞𝜋(𝑠, 𝑎)

⇒ 𝑣∗ 𝑠 = ෍

𝑎∈𝒜

𝜋∗(𝑎|𝑠)𝑞𝜋∗(𝑠, 𝑎) = max
𝑎

𝑞𝜋∗ 𝑠, 𝑎
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Can We Approach Optimality by Alternating Policy 
Evaluation and Improvement?

• Policy Evaluation: update the (state) value function following the current policy 𝜋
• Policy Improvement: improve the current policy 𝜋 by acting greedily
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Policy Iteration

σ𝑎𝜋(𝑎|𝑠) σ𝑠′,𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑉 𝑠′ ]
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• Generalized Policy Iteration: general idea of 
letting policy-evaluation and policy-
improvement processes interact, 
independent of the granularity and other 
details of the two processes

Generalized Policy Iteration
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Value Iteration

Things still work out even if we are lazy and partially complete policy iteration steps
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IE 498 Tanmay Gangwani: 
https://yuanz.web.illinois.edu/teaching/IE498fa19/lec_16.pdf 15

Proof of Optimality?



Proof of Optimality?
In finite dimensional coordinate space, let 𝑥 = (𝑥1, ⋯ , 𝑥𝑛):

𝑥 ∞ ≔ max( 𝑥1 , ⋯ , 𝑥𝑛 )

Our goal is to show

IE 498 Tanmay Gangwani: 
https://yuanz.web.illinois.edu/teaching/IE498fa19/lec_16.pdf 16



Proof of Optimality?

IE 498 Tanmay Gangwani: 
https://yuanz.web.illinois.edu/teaching/IE498fa19/lec_16.pdf 17



We Need to Prove 𝒯 is a Contraction Mapping

IE 498 Tanmay Gangwani: 
https://yuanz.web.illinois.edu/teaching/IE498fa19/lec_16.pdf 18



• Assume without loss of generality max
𝑎

𝑓(𝑎) ≥ max
𝑎

𝑔(𝑎) and denote 𝑎∗ = argmax
𝑎

𝑓(𝑎)

IE 498 Tanmay Gangwani: 
https://yuanz.web.illinois.edu/teaching/IE498fa19/lec_16.pdf 19



• Assume without loss of generality max
𝑎

𝑓(𝑎) ≥ max
𝑎

𝑔(𝑎) and denote 𝑎∗ = argmax
𝑎

𝑓(𝑎)

• Let’s prove theorem 2

IE 498 Tanmay Gangwani: 
https://yuanz.web.illinois.edu/teaching/IE498fa19/lec_16.pdf 20



• Let’s prove theorem 2

Hold for any state 𝑠!

• Lemma 3 also holds when:

IE 498 Tanmay Gangwani: 
https://yuanz.web.illinois.edu/teaching/IE498fa19/lec_16.pdf 21



So far, we have several assumptions

We can solve MDP if we know:
1. The transition function (dynamics) of the 

environment
2. The reward function
3. The Markov property holds
4. We have enough computational resource
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Next, we’ll go beyond these assumptions

We can solve MDP if we know:
1. The transition function (dynamics) of the 

environment
2. The reward function
3. The Markov property holds
4. We have enough computational resource

Monte Carlo Methods! Temporal-Difference 
Learning!
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What if we don’t know the transition function 
and reward function?

Full observation 𝑜𝑡 = 𝑠𝑡
Known transition function 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)

Known reward function r(𝑠𝑡, 𝑎𝑡)

Markov Decision Processes:

𝑣𝜋 𝑠 = σ𝑎𝜋(𝑎|𝑠)σ𝑠′,𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟(𝑠, 𝑎) + 𝛾𝑣𝜋 𝑠′ ]

𝑞𝜋 𝑠, 𝑎 = σ𝑠′,𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟(𝑠, 𝑎) + 𝛾𝑣𝜋 𝑠′ ]

Value Functions

Assumptions:

𝑣∗ 𝑠 = max
𝑎

𝑞𝜋∗ 𝑠, 𝑎

= max
𝑎

σ𝑠′,𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟(𝑠, 𝑎) + 𝛾𝑣∗ 𝑠
′ ]

𝑞∗ 𝑠, 𝑎 = σ𝑠′,𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟(𝑠, 𝑎) + 𝛾max
𝑎′

𝑞∗ 𝑠
′, 𝑎′ ]

Bellman Optimality Equation

Generalized Policy Iteration
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𝑠𝑡

𝑠𝑡+1

𝑠𝑡+1

𝑎𝑡

𝑎𝑡+1

Simulated interaction: we know 𝑠𝑡+1
as we know  𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)

• No (need for) exploration
• No (need for) interaction

Monte Carlo (MC) Methods: Learning from experience 

Dynamic Programming Method
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𝑠𝑡

𝑠𝑡+1

𝑠𝑡+1

𝑎𝑡

𝑎𝑡+1

1st trial Nth trial

…

Simulated interaction: we know 𝑠𝑡+1
as we know  𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)

• No (need for) exploration
• No (need for) interaction

Actual experience: we don’t know 𝑠𝑡+1. 
unless we visit it

• Need exploration and interaction

Dynamic Programming Method Monte Carlo Method

Monte Carlo (MC) Methods: Learning from experience 
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1st trial Nth trial

…

• MC is model-free: no knowledge of MDP 
transitions / rewards

• MC learns from complete episodes: no 
bootstrapping (the estimates for each 
state is independent)

• What is “bootstrapping”?
➢ Update value estimates on the basis 

of other estimates

𝑣𝜋 𝑠 =෍

𝑎

𝜋 𝑎 𝑠 ෍

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 𝑟 + 𝛾𝑣𝜋 𝑠′

𝐺1 𝐺𝑁

Monte Carlo (MC) Methods: Learning from experience 
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1st trial Nth trial

…

• How to estimate values?
➢ The same idea of sample-average return:

𝑉𝑁 𝑠 =
𝐺1 + …+ 𝐺𝑁

𝑁

➢ The estimate converges to the true value 
with enough number of samples
𝑉𝑁 𝑠 → 𝑣𝜋 𝑠 𝑎𝑠 𝑁 → ∞

𝐺1 𝐺𝑁

average observed returns from state 𝑠

Monte Carlo (MC) Methods: Learning from experience 
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…

𝑉𝑁 𝑠 =
𝐺1+ …+ 𝐺𝑁

𝑁

=
𝑁−1

𝑁

𝐺1+ …+ 𝐺𝑁−1

𝑁−1
+

1

𝑁
𝐺𝑁

=
𝑁−1

𝑁
𝑉𝑁−1(𝑠) +

1

𝑁
𝐺𝑁

= 𝑉𝑁−1 𝑠 +
1

𝑁
(𝐺𝑁−𝑉𝑁−1 𝑠 )

• A more general form:

• An incremental implementation:

Set 𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒 < 1 to forget old estimations.  
Useful for non-stationary problems!

Non-stationary problems: 𝑟(𝑠, 𝑎) or 𝑝 𝑠′ 𝑠, 𝑎) changes over time

1st trial Nth trial𝐺1 𝐺𝑁

Monte Carlo (MC) Methods: Learning from experience 
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Backup diagram for Monte Carlo methods

Image credit D. Silver

• The entire trajectory of an episode is included

• Only applies to episodic MDPs
(all episodes must terminate)

• Only sampled transitions are included

• Does not bootstrap from successor state’s value.
(Estimates for each state are independent)
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Backup diagram: DP vs. MC

Image credit D. Silver 31



𝑺 𝑺

When to Update Value Estimation of a State

• Each green block denotes the terminal state in an episode
• State 𝐒 might appear multiple times in an episode

32



First-visit MC prediction

Estimate 𝑣𝜋(𝑠) at the first visit to 𝑠 in an episode
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Every-visit MC prediction

Estimate 𝑣𝜋(𝑠) at every visit to 𝑠 in an episode

Every
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How to Obtain Optimal Policies with Monte Carlo methods?

The same idea as generalized policy iteration: alternates optimization of policy 
evaluation and policy improvement

𝜋 𝑠 ← 𝑎𝑟𝑔max
𝑎

σ𝑠′,𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎) 𝑟 + 𝛾𝑣𝜋(𝑠
′)

𝑣 𝑠 ← σ𝑎𝜋(𝑎|𝑠) σ𝑠′,𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣 𝑠′ ]

Slide adapted from K. Fragkiadaki

But we don’t know 𝑝(𝑠′, 𝑟|𝑠, 𝑎)!
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Convergence of Monte Carlo Control

𝜋 𝑠 ← 𝑎𝑟𝑔max
𝑎

𝑞𝜋(𝑠, 𝑎)

• MC methods converge, if:
➢ We have infinite number of 

episodes (so the value estimate 
converges to the true value)

➢ We visit every state-action pairs 
(so the value estimate will be 
the same as the true value)

Use state-action value 𝑞𝜋(𝑠, 𝑎), and we don’t need to know 𝑝(𝑠′, 𝑟|𝑠, 𝑎) ! 
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𝜋 𝑠 ← 𝑎𝑟𝑔max
𝑎

𝑞𝜋(𝑠, 𝑎)

• MC methods converge, if:
➢ We have infinite number of 

episodes (so the value estimate 
converges to the true value)

➢ We visit every state-action pairs 
(so the value estimate will be 
the same as the true value)

• In other words, we need to explore!
➢ If the policy always takes greedy 

action, we can never explore 
unseen state-action pairs

Use state-action value 𝑞𝜋(𝑠, 𝑎), and we don’t need to know 𝑝(𝑠′, 𝑟|𝑠, 𝑎) ! 

Convergence of Monte Carlo Control
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The Exploration-Exploitation Dilemma

• Exploitation: maximize the current highest reward: 𝜋 𝑠 = 𝑎𝑟𝑔max
𝑎

𝑞𝜋(𝑠, 𝑎)

• Exploration: maximize the information about the environment

Slide adapted from K. Fragkiadaki 38



The Exploration-Exploitation Dilemma

• Exploitation: maximize the current highest reward: 𝜋 𝑠 = 𝑎𝑟𝑔max
𝑎

𝑞𝜋(𝑠, 𝑎)

• Exploration: maximize the information about the environment

• Solutions:
➢ exploring starts: Every state-action pair has a non-zero probability of 

being the starting pair
➢ 𝜖-soft policies: Most of the time choose the action with maximal 

estimated action values, but with probability 𝜖 select a random action
➢ off-policy: use different policies for collecting experience and evaluating

Slide adapted from K. Fragkiadaki 39



Monte Carlo ES

40



Converges to optimal policy, however, inefficient to start with every state-action pairs! 

Monte Carlo ES
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The Blackjack Example

Slide credit D. Silver 42



Value Estimate by a Monte Carlo Methods

Slide credit D. Silver 43



Optimal Policy found by Monte-Carlo ES

Slide credit D. Silver 44



Monte Carlo Control with 𝜖-soft Policies

Explore with probability 
𝜖

𝐴(𝑠)
and exploit with probability 1 − 𝜖 +

𝜖

𝐴(𝑠)

45



𝜖-soft Policies Improve the Original Policy

46
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The Exploration-Exploitation Dilemma

• Exploitation: maximize the current highest reward: 𝜋 𝑠 = 𝑎𝑟𝑔max
𝑎

𝑞𝜋(𝑠, 𝑎)

• Exploration: maximize the information about the environment

• ALL learning methods faces the dilemma: learning state-action values 
conditions on subsequent optimal behaviors but they need to act sub-
optimally to explore all state-action pairs

• Solutions:
➢ exploring starts: Every state-action pair has a non-zero probability of 

being the starting pair
➢ 𝜖-soft policies: Most of the time choose the action with maximal 

estimated action values, but with probability 𝜖 select a random action
➢ off-policy: use different policies for collecting experience and evaluating

Both methods are compromises.  They learn action values not for the 
optimal policy, but for a near-optimal policy that still explores. 

Slide adapted from K. Fragkiadaki 47



The Exploration-Exploitation Dilemma

• Exploitation: maximize the current highest reward: 𝜋 𝑠 = 𝑎𝑟𝑔max
𝑎

𝑞𝜋(𝑠, 𝑎)

• Exploration: maximize the information about the environment

• Solutions:
➢ exploring starts: Every state-action pair has a non-zero probability of 

being the starting pair
➢ 𝜖-soft policies: Most of the time choose the action with maximal 

estimated action values, but with probability 𝜖 select a random action
➢ off-policy: use different policies for collecting experience and evaluating

• ALL learning methods faces the dilemma: learning state-action values 
conditions on subsequent optimal behaviors but they need to act sub-
optimally to explore all state-action pairs
➢ Let’s have two policies: policy 𝑏 to explore, and policy 𝜋 to behave 

optimally

Both methods are compromises.  They learn action values not for the 
optimal policy, but for a near-optimal policy that still explores. 

Slide adapted from K. Fragkiadaki 48



On-Policy and Off-Policy Learning

• On-policy learning: learn 𝑣𝜋 and 𝑞𝜋 for policy 𝜋 that executes and explores

• Off-policy learning: learn 𝑣𝜋 and 𝑞𝜋 for target policy 𝜋 from experience collected by behavior 
policy 𝑏

• We only need coverage: every action taken under 𝜋 is also taken, at least occasionally, under 
𝑏

𝜋 𝑎 𝑠 > 0 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑏 𝑎 𝑠 > 0

• The goodness of decoupling target and behavior policy:
➢ Learn from observing humans or other agents
➢ Re-use experience generated from old policies
➢ Learn about optimal policy while following exploratory policy
➢ Learn about multiple policies while following one policy

Slide adapted from D. Silver 49



Slide credit K. Fragkiadaki 50



Slide credit K. Fragkiadaki 51



Image credit S. Thrun, W. Burgard and D. Fox

𝑞𝑝

importance weights
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Importance Sampling Ratio
• The probability of state-action trajectory 𝐴𝑡 , 𝑆𝑡 , … , 𝐴𝑇 , 𝑆𝑇 under policy 𝜋:

• The importance sampling ratio between target policy 𝜋 and behavior policy 𝑏:

• Estimate 𝑣𝜋 𝑠 from sampling with behavior policy 𝑏

Reinforcement Learning: An Introduction.  R. Sutton and A. Barto. 53



𝜌𝑡:𝑇(𝑡)−1𝐺𝑡

Slide credit K. Fragkiadaki 54



𝜌𝑡:𝑇(𝑡)−1𝐺𝑡

𝜌𝑡:𝑇(𝑡)−1𝐺𝑡

𝜌𝑡:𝑇(𝑡)−1

Slide credit K. Fragkiadaki 55



Ordinary vs. Weighted Importance Sampling
Ordinary Sampling:

Weighted Sampling:

First-visit MC:
• Ordinary Sampling is unbiased, but the variance is 

unbounded 
• Weighted Sampling is biased, but with much lower 

variance

Every-visit MC:
• Ordinary Sampling is biased
• Weighted Sampling is biased

Proof: 
https://link.springer.com/article/10.1007/BF00114726

𝜌𝑡:𝑇(𝑡)−1𝐺𝑡

Image credit K. Fragkiadaki 56

https://link.springer.com/article/10.1007/BF00114726


𝜌𝑡:𝑇(𝑡)−1𝐺𝑡

𝜌𝑡:𝑇(𝑡)−1𝐺𝑡

𝜌𝑡:𝑇(𝑡)−1

Correct mean of value following policy 𝜋

These ratio in the numerator is cancelled 
by the denominator.  The estimation is not 
correct anymore….

Slide credit K. Fragkiadaki 57



• Let 𝑄𝑛 denote the estimate of its action value after being selected 𝑛 − 1 times

• Let’s start rewriting 𝑄𝑛:

Remember the Incremental Implementation in the Bandit Problem
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Incremental Implementation of Ordinary Importance Sampling

• We have:

𝑉𝑛(𝑠) =
𝜌1𝐺1 +⋯𝜌𝑛−1𝐺𝑛−1

𝑛 − 1

• We can re-write 𝑉 𝑠 as:

𝑉𝑛+1 𝑠 = 𝑉𝑛 𝑠 +
1

𝑛
𝜌𝑛𝐺𝑛 − 𝑉𝑛 𝑠

59



Incremental Implementation of Weighted Importance Sampling

• We can re-write weighted importance sampling as:

• The update rule is then:

60



Off-Policy Monte Carlo Prediction

61



Off-policy Monte Carlo Control

Only learns from the tails of episodes (when 
all actions are greedy).  Learning is very slow!
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Check Section 5.8 and 5.9 of “Reinforcement 
Learning: An Introduction” for Discounting-

aware Importance Sampling
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Quick Summary: DP vs. MC
• Dynamic Programming (DP) methods are efficient, which bootstrap value functions 

from existing estimates.

𝑉 𝑆𝑡 ← σ𝐴𝑡
𝜋(𝐴𝑡|𝑆𝑡) σ𝑆𝑡+1,𝑅𝑡+1

𝑝 𝑆𝑡+1, 𝑅𝑡+1 𝑆𝑡 , 𝐴𝑡 [𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1 ]

• Monte Carlo (MC) methods: must wait until the end of the episode to learn value 
functions (only when the return is known)

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝐺𝑡 − 𝑉 𝑆𝑡 ]
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Temporal-Difference Learning
• Temporal-Difference (TD) methods: combine Monte Carlo methods with Dynamic 

Programming methods that wait only until the next time step and bootstrap value 
functions from existing estimates

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉 𝑆𝑡 ]

➢ TD target: 𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1)

➢ TD error: 𝛿𝑡 = 𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉 𝑆𝑡
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Backup Diagram for Temporal-Difference Methods

Image credit D. Silver 66



Backup diagram: DP vs. MC vs. TD

TD Backup

𝑉 𝑆𝑡 ← σ𝐴𝑡
𝜋(𝐴𝑡|𝑆𝑡) σ𝑆𝑡+1 ,𝑅𝑡+1

𝑝 𝑆𝑡+1, 𝑅𝑡+1 𝑆𝑡 , 𝐴𝑡 [𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1 ] 𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝐺𝑡 − 𝑉 𝑆𝑡 ] 𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉 𝑆𝑡 ]

Expected updates: based on the 
summation of all successors

Sample updates: based on a 
single sample successor

MC Backup

Image credit D. Silver 67



Bootstrap Sample

Dynamic Programming ✓ ⤫

Monte Carlo ⤫ ✓

Temporal Difference ✓ ✓

68
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DP vs. MC vs. TD

Image credit D. Silver 69



The Driving Home Example

Reinforcement Learning: An Introduction.  R. Sutton and A. Barto. 70



Reinforcement Learning: An Introduction.  R. Sutton and A. Barto. 71

The Driving Home Example



Nice Properties of TD

• TD can learn before knowing the final outcome
➢ TD can learn online after every step
➢ MC must wait until end of episode before return is known

• TD can learn without the final outcome
➢ TD can learn from incomplete sequences
➢ MC can only learn from complete sequences
➢ TD works in continuing (non-terminating) environments
➢ MC only works for episodic (terminating) environments

• Both TD and MC converge (under certain conditions).  Which converge better / 
faster?

Slide credit K. Fragkiadaki and D. Silver 72



Tabular TD(0) Prediction
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Random Walk Example

• Assume we have a Markov Reward Process—a MDP without actions.
• Always start from the center, moving to the left / right with equal probability

• The ground-truth values of state A to E are 
1

6
,
2

6
,
3

6
,
4

6
,
5

6

• Does TD(0) converge faster and better than MC?

Reinforcement Learning: An Introduction.  R. Sutton and A. Barto. 74



Random Walk Example

Reinforcement Learning: An Introduction.  R. Sutton and A. Barto. 75



A-B Example

Slide adapted from  D. Silver

Batch updating: Repeatedly train on episodes until 
convergence.

𝑉 𝐵 =
1

8
0 + 1 + 1 + 1 + 1 + 1 + 1 + 0 = 0.75
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For MC methods:.
𝑉 𝐴 = 𝑅𝑡 +⋯+ 𝑅𝑇 = 0 + 0 = 0

A-B Example

Slide adapted from  D. Silver 77



For MC methods:.
𝑉 𝐴 = 𝑅𝑡 +⋯+ 𝑅𝑇 = 0 + 0 = 0

For TD methods:
𝑉 𝐴 = 𝑅𝑡 + 𝑉 𝐵 = 0 + 0.75 = 0.75

A-B Example

Slide adapted from  D. Silver 78



Why Does TD Converge Better than MC?

Slide credit E. Brunskill 79



Slide credit D. Silver

Bias and Variance Analysis
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https://stats.stackexchange.com/questions/454856/why-is-
temporal-difference-learning-biased-in-reinforcement-learning

Biased Estimation of TD methods

Biased by 𝑉1(𝑠)
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Slide credit D. Silver

Bias and Variance Analysis
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Sarsa: On-policy TD Control

• We can learn an action-value function in a similar manner as a state-value function.  
Instead of considering transitions from state to state, we now consider transitions 
from state-action pair to state-action pair
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Sarsa: On-policy TD Control
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Expected Sarsa

Eliminate variance due to the 
random selection of 𝐴𝑡
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Q-learning: Off-policy TD Control

86



behavior policy

target policy

• The learned action-value function approximates 𝑞∗

• If all state-action pairs continue to be updated, Q has been shown to converge 
with probability 1 to 𝑞∗

Q-learning: Off-policy TD Control
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Cliff Walking Example

• The behavior policy uses 𝜀-greedy action selection, with 𝜀 = 0.1
• Action: up, down, left and right
• Reward is -100 at the Cliff region, otherwise, reward is -1

Q-learning path

Sarsa path
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Remember the behavior policy uses 𝜀-greedy action 
selection, which occasionally falls off the cliff!

Cliff Walking Example
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Maximization Bias and Double Q-Learning 

• The estimated values 𝑄(𝑠, 𝑎) are often uncertain and distributed some above and 
some below zero. The maximum of estimated values induces a positive bias.

• Let say the true values of state 𝑠 and many actions 𝑎 are all zero, but estimated 
values 𝑄(𝑠, 𝑎) has positive bias

• This is because we use the same samples to determine the maximizing action and 
to estimate is values!

positive bias is introduced by the “maximum” operator 

90



Maximization Bias Example

The true value 𝑉 𝑙𝑒𝑓𝑡 = −0.1

The true value 𝑉 𝑟𝑖𝑔ℎ𝑡 = 0

• Action: left and right
• Reward is 0 when transitioning from A to B; reward is drawn from 𝒩 −0.1,1 when 

transitioning from B to left.
• Taking “left” action from A should always be worse than “right” action

Q-learning was biased toward “left” 
action from A, due to the positive bias!
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Double Q-Learning 

• The estimated values 𝑄(𝑠, 𝑎) are often uncertain and distributed some above and 
some below zero. The maximum of estimated values induces a positive bias.

• This is because we use the same samples to determine the maximizing action and 
to estimate is values!

• Solution: use two sets of samples to learn two independent estimates 𝑄1 and 𝑄2
➢ 𝑄1 determines the maximizing action:

𝐴∗ = 𝑎𝑟𝑔max
𝑎

𝑄1(𝑠, 𝑎)

➢ 𝑄2 provides the estimate of its value:

𝑄2 𝑠, 𝐴∗ = 𝑄2(𝑠, 𝑎𝑟𝑔max
𝑎

𝑄1(𝑠, 𝑎))
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Double Q-Learning 
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Quick Recap: Temporal-Difference Learning
• Temporal-Difference (TD) methods: combine Monte Carlo methods with Dynamic 

Programming methods that wait only until the next time step and bootstrap value 
functions from existing estimates

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉 𝑆𝑡 ]

We call this formulation 1-step TD
We can also have n-step TD
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N-step TD Prediction
• n-step TD: 

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑅𝑡+2 +⋯+ 𝛾𝑛−1𝑅𝑡+𝑛 + 𝛾𝑛𝑉(𝑆𝑡+𝑛) − 𝑉 𝑆𝑡 ]
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• n-step TD: 

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑅𝑡+2 +⋯+ 𝛾𝑛−1𝑅𝑡+𝑛 + 𝛾𝑛𝑉(𝑆𝑡+𝑛) − 𝑉 𝑆𝑡 ]

• When 𝑛 → ∞, n-step TD becomes an MC method: 

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑅𝑡+2 +⋯+ 𝛾𝑇−1𝑅𝑇 − 𝑉 𝑆𝑡 ]

N-step TD Prediction
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No bootstrapping until time 
step 𝑡 + 𝑛

N-step TD Prediction
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Image credit K. Fragkiadaki

N-step TD Prediction
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On-policy n-step Action-Value Methods
• Action-value form of n-step return

• n-step Sarsa

• n-step expected Sarsa
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Off-policy n-step Action-Value Methods
• Importance-sampling ratio

• Weighted estimated value functions with importance-sampling ratio
• Off-policy n-step TD

• Off-policy n-step Sarsa
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TD BackupMC Backup

Summary
Generalized Policy Iteration DP vs. MC vs. TD

Bootstrap Sample

DP ✓ ⤫

MC ⤫ ✓

TD ✓ ✓

• DP: 𝑉 𝑆𝑡 ← σ𝐴𝑡 𝜋(𝐴𝑡|𝑆𝑡) σ𝑆𝑡+1,𝑅𝑡+1 𝑝 𝑆𝑡+1, 𝑅𝑡+1 𝑆𝑡, 𝐴𝑡 [𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1 ]

• MC: 𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝐺𝑡 − 𝑉 𝑆𝑡 ]
• TD: 𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉 𝑆𝑡 ]

Importance Sampling
• On-policy learning: learn value 

and execute with the same policy
• Off-policy learning: learn and 

execute with different policies
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