
Robot Perception and Learning

Tsung-Wei Ke

Policy Iteration, Monte Carlo Methods and Temporal
Difference Learning

Fall 2025

1

Recap
RL as a general learning framework for

different tasks
Multi-armed Bandit Problem

The learning objective of RL

• Expected reward: 𝑞∗ 𝑎𝑘 = 𝔼 𝑟𝑡|𝐴𝑡 = 𝑎𝑘
• Action-value estimates: 𝑄𝑡 𝑎𝑘
• Greedy action selection method: select the

action with the highest estimated value:
𝐴𝑡

∗ = arg max
𝑎

𝑄𝑡(𝑎)

➢ If 𝐴𝑡 = 𝐴𝑡
∗, you are exploiting your current

knowledge of the values of the actions
➢ If 𝐴𝑡 ≠ 𝐴𝑡

∗, you are exploring. You improve
your estimate of the non-greedy actions

Markov Decision Process

• Discounted returns: 𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝐺𝑡+1
• The state value function 𝑣𝜋 𝑠 = 𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠

2

• Let’s say we obtain the value function 𝑣𝜋 𝑠 based on policy 𝜋 using dynamic programming,
How can we improve the policy?

• Switch to a greedy policy!

𝜋′ 𝑎 𝑠 = ቐ
1, 𝑖𝑓 𝑎 = argmax

𝑎
(Σ𝑠′,𝑟𝑝(𝑠

′, 𝑟|𝑠, 𝑎))(𝑟 + 𝛾𝑣𝜋 𝑠′)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

• Why greedy policy 𝜋′ is better than the original policy 𝜋 at state 𝑠?
Since a greedy policy is deterministic: 𝜋′(𝑠) = argmax

𝑎
(Σ𝑠′,𝑟𝑝(𝑠

′, 𝑟|𝑠, 𝑎))(𝑟 + 𝛾𝑣𝜋 𝑠′)

𝑞𝜋 𝑠|𝜋′(𝑠) = max
𝑎

σ𝑠′,𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝜋 𝑠′]

≥ σ𝑎 𝜋 𝑎 𝑠 σ𝑠′,𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎 𝑟 + 𝛾𝑣𝜋 𝑠′ = 𝑣𝜋 𝑠The value of selecting action 𝜋′(𝑠) is higher
than following policy 𝜋 at state 𝑠 (here we
still follow policy 𝜋 at other states)

Last Time, We Said the Greedy Strategy Improves
the Current Policy

3

In fact, the State Value Function following the Greedy
Policy 𝜋′ is Better than Original Policy 𝜋

𝜋′ 𝑎 𝑠 = ቐ
1, 𝑖𝑓 𝑎 = argmax

𝑎
(Σ𝑠′,𝑟𝑝(𝑠

′, 𝑟|𝑠, 𝑎))(𝑟 + 𝛾𝑣𝜋 𝑠′)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

4

In fact, the State Value Function following the Greedy
Policy 𝜋′ is Better than Original Policy 𝜋

5

In fact, the State Value Function following the Greedy
Policy 𝜋′ is Better than Original Policy 𝜋

6

In fact, the State Value Function following the Greedy
Policy 𝜋′ is Better than Original Policy 𝜋

7

In fact, the State Value Function following the Greedy
Policy 𝜋′ is Better than Original Policy 𝜋

8

Policy Evaluation and Policy Improvement

• Policy Evaluation: update the (state) value function following the current policy 𝜋

𝑣𝜋 𝑠 =෍

𝑎

𝜋(𝑎|𝑠)෍

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝜋 𝑠′]

• Policy Improvement: improve the current policy 𝜋 by acting greedily

𝜋′ 𝑎 𝑠 = ቐ
1, 𝑖𝑓 𝑎 = argmax

𝑎
(Σ𝑠′,𝑟𝑝(𝑠

′, 𝑟|𝑠, 𝑎))(𝑟 + 𝛾𝑣𝜋 𝑠′)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

• What if the new greedy policy 𝜋′ is no better than the original policy 𝜋 (𝑣𝜋′ = 𝑣𝜋)?

𝑣𝜋′ 𝑠 =෍

𝑎

𝜋′(𝑎|𝑠)෍𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝜋′ 𝑠
′]

= max
𝑎
(෍

𝑠′,𝑟

𝑝(𝑠′, 𝑟|𝑠, 𝑎))(𝑟 + 𝛾𝑣𝜋′ 𝑠
′)

We have an optimal policy!
9

Remember Bellman Optimality Equation for 𝑣∗

1. We have 𝑣∗ 𝑠 = max
𝑎

𝑞𝜋∗ 𝑠, 𝑎

Why?

𝑣𝜋 𝑠 = ෍

𝑎∈𝒜

𝜋(𝑎|𝑠)𝑞𝜋(𝑠, 𝑎)

⇒ 𝑣∗ 𝑠 = ෍

𝑎∈𝒜

𝜋∗(𝑎|𝑠)𝑞𝜋∗(𝑠, 𝑎) = max
𝑎

𝑞𝜋∗ 𝑠, 𝑎

10

Can We Approach Optimality by Alternating Policy
Evaluation and Improvement?

• Policy Evaluation: update the (state) value function following the current policy 𝜋
• Policy Improvement: improve the current policy 𝜋 by acting greedily

11

Policy Iteration

σ𝑎𝜋(𝑎|𝑠) σ𝑠′,𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑉 𝑠′]

12

• Generalized Policy Iteration: general idea of
letting policy-evaluation and policy-
improvement processes interact,
independent of the granularity and other
details of the two processes

Generalized Policy Iteration

13

Value Iteration

Things still work out even if we are lazy and partially complete policy iteration steps

14

IE 498 Tanmay Gangwani:
https://yuanz.web.illinois.edu/teaching/IE498fa19/lec_16.pdf 15

Proof of Optimality?

Proof of Optimality?
In finite dimensional coordinate space, let 𝑥 = (𝑥1, ⋯ , 𝑥𝑛):

𝑥 ∞ ≔ max(𝑥1 , ⋯ , 𝑥𝑛)

Our goal is to show

IE 498 Tanmay Gangwani:
https://yuanz.web.illinois.edu/teaching/IE498fa19/lec_16.pdf 16

Proof of Optimality?

IE 498 Tanmay Gangwani:
https://yuanz.web.illinois.edu/teaching/IE498fa19/lec_16.pdf 17

We Need to Prove 𝒯 is a Contraction Mapping

IE 498 Tanmay Gangwani:
https://yuanz.web.illinois.edu/teaching/IE498fa19/lec_16.pdf 18

• Assume without loss of generality max
𝑎

𝑓(𝑎) ≥ max
𝑎

𝑔(𝑎) and denote 𝑎∗ = argmax
𝑎

𝑓(𝑎)

IE 498 Tanmay Gangwani:
https://yuanz.web.illinois.edu/teaching/IE498fa19/lec_16.pdf 19

• Assume without loss of generality max
𝑎

𝑓(𝑎) ≥ max
𝑎

𝑔(𝑎) and denote 𝑎∗ = argmax
𝑎

𝑓(𝑎)

• Let’s prove theorem 2

IE 498 Tanmay Gangwani:
https://yuanz.web.illinois.edu/teaching/IE498fa19/lec_16.pdf 20

• Let’s prove theorem 2

Hold for any state 𝑠!

• Lemma 3 also holds when:

IE 498 Tanmay Gangwani:
https://yuanz.web.illinois.edu/teaching/IE498fa19/lec_16.pdf 21

So far, we have several assumptions

We can solve MDP if we know:
1. The transition function (dynamics) of the

environment
2. The reward function
3. The Markov property holds
4. We have enough computational resource

22

Next, we’ll go beyond these assumptions

We can solve MDP if we know:
1. The transition function (dynamics) of the

environment
2. The reward function
3. The Markov property holds
4. We have enough computational resource

Monte Carlo Methods! Temporal-Difference
Learning!

23

What if we don’t know the transition function
and reward function?

Full observation 𝑜𝑡 = 𝑠𝑡
Known transition function 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)

Known reward function r(𝑠𝑡, 𝑎𝑡)

Markov Decision Processes:

𝑣𝜋 𝑠 = σ𝑎𝜋(𝑎|𝑠)σ𝑠′,𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟(𝑠, 𝑎) + 𝛾𝑣𝜋 𝑠′]

𝑞𝜋 𝑠, 𝑎 = σ𝑠′,𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟(𝑠, 𝑎) + 𝛾𝑣𝜋 𝑠′]

Value Functions

Assumptions:

𝑣∗ 𝑠 = max
𝑎

𝑞𝜋∗ 𝑠, 𝑎

= max
𝑎

σ𝑠′,𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟(𝑠, 𝑎) + 𝛾𝑣∗ 𝑠
′]

𝑞∗ 𝑠, 𝑎 = σ𝑠′,𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟(𝑠, 𝑎) + 𝛾max
𝑎′

𝑞∗ 𝑠
′, 𝑎′]

Bellman Optimality Equation

Generalized Policy Iteration

24

𝑠𝑡

𝑠𝑡+1

𝑠𝑡+1

𝑎𝑡

𝑎𝑡+1

Simulated interaction: we know 𝑠𝑡+1
as we know 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)

• No (need for) exploration
• No (need for) interaction

Monte Carlo (MC) Methods: Learning from experience

Dynamic Programming Method

25

𝑠𝑡

𝑠𝑡+1

𝑠𝑡+1

𝑎𝑡

𝑎𝑡+1

1st trial Nth trial

…

Simulated interaction: we know 𝑠𝑡+1
as we know 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)

• No (need for) exploration
• No (need for) interaction

Actual experience: we don’t know 𝑠𝑡+1.
unless we visit it

• Need exploration and interaction

Dynamic Programming Method Monte Carlo Method

Monte Carlo (MC) Methods: Learning from experience

26

1st trial Nth trial

…

• MC is model-free: no knowledge of MDP
transitions / rewards

• MC learns from complete episodes: no
bootstrapping (the estimates for each
state is independent)

• What is “bootstrapping”?
➢ Update value estimates on the basis

of other estimates

𝑣𝜋 𝑠 =෍

𝑎

𝜋 𝑎 𝑠 ෍

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 𝑟 + 𝛾𝑣𝜋 𝑠′

𝐺1 𝐺𝑁

Monte Carlo (MC) Methods: Learning from experience

27

1st trial Nth trial

…

• How to estimate values?
➢ The same idea of sample-average return:

𝑉𝑁 𝑠 =
𝐺1 + …+ 𝐺𝑁

𝑁

➢ The estimate converges to the true value
with enough number of samples
𝑉𝑁 𝑠 → 𝑣𝜋 𝑠 𝑎𝑠 𝑁 → ∞

𝐺1 𝐺𝑁

average observed returns from state 𝑠

Monte Carlo (MC) Methods: Learning from experience

28

…

𝑉𝑁 𝑠 =
𝐺1+ …+ 𝐺𝑁

𝑁

=
𝑁−1

𝑁

𝐺1+ …+ 𝐺𝑁−1

𝑁−1
+

1

𝑁
𝐺𝑁

=
𝑁−1

𝑁
𝑉𝑁−1(𝑠) +

1

𝑁
𝐺𝑁

= 𝑉𝑁−1 𝑠 +
1

𝑁
(𝐺𝑁−𝑉𝑁−1 𝑠)

• A more general form:

• An incremental implementation:

Set 𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒 < 1 to forget old estimations.
Useful for non-stationary problems!

Non-stationary problems: 𝑟(𝑠, 𝑎) or 𝑝 𝑠′ 𝑠, 𝑎) changes over time

1st trial Nth trial𝐺1 𝐺𝑁

Monte Carlo (MC) Methods: Learning from experience

29

Backup diagram for Monte Carlo methods

Image credit D. Silver

• The entire trajectory of an episode is included

• Only applies to episodic MDPs
(all episodes must terminate)

• Only sampled transitions are included

• Does not bootstrap from successor state’s value.
(Estimates for each state are independent)

30

Backup diagram: DP vs. MC

Image credit D. Silver 31

𝑺 𝑺

When to Update Value Estimation of a State

• Each green block denotes the terminal state in an episode
• State 𝐒 might appear multiple times in an episode

32

First-visit MC prediction

Estimate 𝑣𝜋(𝑠) at the first visit to 𝑠 in an episode

33

Every-visit MC prediction

Estimate 𝑣𝜋(𝑠) at every visit to 𝑠 in an episode

Every

34

How to Obtain Optimal Policies with Monte Carlo methods?

The same idea as generalized policy iteration: alternates optimization of policy
evaluation and policy improvement

𝜋 𝑠 ← 𝑎𝑟𝑔max
𝑎

σ𝑠′,𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎) 𝑟 + 𝛾𝑣𝜋(𝑠
′)

𝑣 𝑠 ← σ𝑎𝜋(𝑎|𝑠) σ𝑠′,𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣 𝑠′]

Slide adapted from K. Fragkiadaki

But we don’t know 𝑝(𝑠′, 𝑟|𝑠, 𝑎)!

35

Convergence of Monte Carlo Control

𝜋 𝑠 ← 𝑎𝑟𝑔max
𝑎

𝑞𝜋(𝑠, 𝑎)

• MC methods converge, if:
➢ We have infinite number of

episodes (so the value estimate
converges to the true value)

➢ We visit every state-action pairs
(so the value estimate will be
the same as the true value)

Use state-action value 𝑞𝜋(𝑠, 𝑎), and we don’t need to know 𝑝(𝑠′, 𝑟|𝑠, 𝑎) !

36

𝜋 𝑠 ← 𝑎𝑟𝑔max
𝑎

𝑞𝜋(𝑠, 𝑎)

• MC methods converge, if:
➢ We have infinite number of

episodes (so the value estimate
converges to the true value)

➢ We visit every state-action pairs
(so the value estimate will be
the same as the true value)

• In other words, we need to explore!
➢ If the policy always takes greedy

action, we can never explore
unseen state-action pairs

Use state-action value 𝑞𝜋(𝑠, 𝑎), and we don’t need to know 𝑝(𝑠′, 𝑟|𝑠, 𝑎) !

Convergence of Monte Carlo Control

37

The Exploration-Exploitation Dilemma

• Exploitation: maximize the current highest reward: 𝜋 𝑠 = 𝑎𝑟𝑔max
𝑎

𝑞𝜋(𝑠, 𝑎)

• Exploration: maximize the information about the environment

Slide adapted from K. Fragkiadaki 38

The Exploration-Exploitation Dilemma

• Exploitation: maximize the current highest reward: 𝜋 𝑠 = 𝑎𝑟𝑔max
𝑎

𝑞𝜋(𝑠, 𝑎)

• Exploration: maximize the information about the environment

• Solutions:
➢ exploring starts: Every state-action pair has a non-zero probability of

being the starting pair
➢ 𝜖-soft policies: Most of the time choose the action with maximal

estimated action values, but with probability 𝜖 select a random action
➢ off-policy: use different policies for collecting experience and evaluating

Slide adapted from K. Fragkiadaki 39

Monte Carlo ES

40

Converges to optimal policy, however, inefficient to start with every state-action pairs!

Monte Carlo ES

41

The Blackjack Example

Slide credit D. Silver 42

Value Estimate by a Monte Carlo Methods

Slide credit D. Silver 43

Optimal Policy found by Monte-Carlo ES

Slide credit D. Silver 44

Monte Carlo Control with 𝜖-soft Policies

Explore with probability
𝜖

𝐴(𝑠)
and exploit with probability 1 − 𝜖 +

𝜖

𝐴(𝑠)

45

𝜖-soft Policies Improve the Original Policy

46

𝔼𝜋’ q𝜋 s, 𝜋 ’ s

The Exploration-Exploitation Dilemma

• Exploitation: maximize the current highest reward: 𝜋 𝑠 = 𝑎𝑟𝑔max
𝑎

𝑞𝜋(𝑠, 𝑎)

• Exploration: maximize the information about the environment

• ALL learning methods faces the dilemma: learning state-action values
conditions on subsequent optimal behaviors but they need to act sub-
optimally to explore all state-action pairs

• Solutions:
➢ exploring starts: Every state-action pair has a non-zero probability of

being the starting pair
➢ 𝜖-soft policies: Most of the time choose the action with maximal

estimated action values, but with probability 𝜖 select a random action
➢ off-policy: use different policies for collecting experience and evaluating

Both methods are compromises. They learn action values not for the
optimal policy, but for a near-optimal policy that still explores.

Slide adapted from K. Fragkiadaki 47

The Exploration-Exploitation Dilemma

• Exploitation: maximize the current highest reward: 𝜋 𝑠 = 𝑎𝑟𝑔max
𝑎

𝑞𝜋(𝑠, 𝑎)

• Exploration: maximize the information about the environment

• Solutions:
➢ exploring starts: Every state-action pair has a non-zero probability of

being the starting pair
➢ 𝜖-soft policies: Most of the time choose the action with maximal

estimated action values, but with probability 𝜖 select a random action
➢ off-policy: use different policies for collecting experience and evaluating

• ALL learning methods faces the dilemma: learning state-action values
conditions on subsequent optimal behaviors but they need to act sub-
optimally to explore all state-action pairs
➢ Let’s have two policies: policy 𝑏 to explore, and policy 𝜋 to behave

optimally

Both methods are compromises. They learn action values not for the
optimal policy, but for a near-optimal policy that still explores.

Slide adapted from K. Fragkiadaki 48

On-Policy and Off-Policy Learning

• On-policy learning: learn 𝑣𝜋 and 𝑞𝜋 for policy 𝜋 that executes and explores

• Off-policy learning: learn 𝑣𝜋 and 𝑞𝜋 for target policy 𝜋 from experience collected by behavior
policy 𝑏

• We only need coverage: every action taken under 𝜋 is also taken, at least occasionally, under
𝑏

𝜋 𝑎 𝑠 > 0 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑏 𝑎 𝑠 > 0

• The goodness of decoupling target and behavior policy:
➢ Learn from observing humans or other agents
➢ Re-use experience generated from old policies
➢ Learn about optimal policy while following exploratory policy
➢ Learn about multiple policies while following one policy

Slide adapted from D. Silver 49

Slide credit K. Fragkiadaki 50

Slide credit K. Fragkiadaki 51

Image credit S. Thrun, W. Burgard and D. Fox

𝑞𝑝

importance weights

52

Importance Sampling Ratio
• The probability of state-action trajectory 𝐴𝑡 , 𝑆𝑡 , … , 𝐴𝑇 , 𝑆𝑇 under policy 𝜋:

• The importance sampling ratio between target policy 𝜋 and behavior policy 𝑏:

• Estimate 𝑣𝜋 𝑠 from sampling with behavior policy 𝑏

Reinforcement Learning: An Introduction. R. Sutton and A. Barto. 53

𝜌𝑡:𝑇(𝑡)−1𝐺𝑡

Slide credit K. Fragkiadaki 54

𝜌𝑡:𝑇(𝑡)−1𝐺𝑡

𝜌𝑡:𝑇(𝑡)−1𝐺𝑡

𝜌𝑡:𝑇(𝑡)−1

Slide credit K. Fragkiadaki 55

Ordinary vs. Weighted Importance Sampling
Ordinary Sampling:

Weighted Sampling:

First-visit MC:
• Ordinary Sampling is unbiased, but the variance is

unbounded
• Weighted Sampling is biased, but with much lower

variance

Every-visit MC:
• Ordinary Sampling is biased
• Weighted Sampling is biased

Proof:
https://link.springer.com/article/10.1007/BF00114726

𝜌𝑡:𝑇(𝑡)−1𝐺𝑡

Image credit K. Fragkiadaki 56

https://link.springer.com/article/10.1007/BF00114726

𝜌𝑡:𝑇(𝑡)−1𝐺𝑡

𝜌𝑡:𝑇(𝑡)−1𝐺𝑡

𝜌𝑡:𝑇(𝑡)−1

Correct mean of value following policy 𝜋

These ratio in the numerator is cancelled
by the denominator. The estimation is not
correct anymore….

Slide credit K. Fragkiadaki 57

• Let 𝑄𝑛 denote the estimate of its action value after being selected 𝑛 − 1 times

• Let’s start rewriting 𝑄𝑛:

Remember the Incremental Implementation in the Bandit Problem

58

Incremental Implementation of Ordinary Importance Sampling

• We have:

𝑉𝑛(𝑠) =
𝜌1𝐺1 +⋯𝜌𝑛−1𝐺𝑛−1

𝑛 − 1

• We can re-write 𝑉 𝑠 as:

𝑉𝑛+1 𝑠 = 𝑉𝑛 𝑠 +
1

𝑛
𝜌𝑛𝐺𝑛 − 𝑉𝑛 𝑠

59

Incremental Implementation of Weighted Importance Sampling

• We can re-write weighted importance sampling as:

• The update rule is then:

60

Off-Policy Monte Carlo Prediction

61

Off-policy Monte Carlo Control

Only learns from the tails of episodes (when
all actions are greedy). Learning is very slow!

62

Check Section 5.8 and 5.9 of “Reinforcement
Learning: An Introduction” for Discounting-

aware Importance Sampling

63

Quick Summary: DP vs. MC
• Dynamic Programming (DP) methods are efficient, which bootstrap value functions

from existing estimates.

𝑉 𝑆𝑡 ← σ𝐴𝑡
𝜋(𝐴𝑡|𝑆𝑡) σ𝑆𝑡+1,𝑅𝑡+1

𝑝 𝑆𝑡+1, 𝑅𝑡+1 𝑆𝑡 , 𝐴𝑡 [𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1]

• Monte Carlo (MC) methods: must wait until the end of the episode to learn value
functions (only when the return is known)

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝐺𝑡 − 𝑉 𝑆𝑡]

64

Temporal-Difference Learning
• Temporal-Difference (TD) methods: combine Monte Carlo methods with Dynamic

Programming methods that wait only until the next time step and bootstrap value
functions from existing estimates

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉 𝑆𝑡]

➢ TD target: 𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1)

➢ TD error: 𝛿𝑡 = 𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉 𝑆𝑡

65

Backup Diagram for Temporal-Difference Methods

Image credit D. Silver 66

Backup diagram: DP vs. MC vs. TD

TD Backup

𝑉 𝑆𝑡 ← σ𝐴𝑡
𝜋(𝐴𝑡|𝑆𝑡) σ𝑆𝑡+1 ,𝑅𝑡+1

𝑝 𝑆𝑡+1, 𝑅𝑡+1 𝑆𝑡 , 𝐴𝑡 [𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1] 𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝐺𝑡 − 𝑉 𝑆𝑡] 𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉 𝑆𝑡]

Expected updates: based on the
summation of all successors

Sample updates: based on a
single sample successor

MC Backup

Image credit D. Silver 67

Bootstrap Sample

Dynamic Programming ✓ ⤫

Monte Carlo ⤫ ✓

Temporal Difference ✓ ✓

68

DP vs. MC vs. TD

DP vs. MC vs. TD

Image credit D. Silver 69

The Driving Home Example

Reinforcement Learning: An Introduction. R. Sutton and A. Barto. 70

Reinforcement Learning: An Introduction. R. Sutton and A. Barto. 71

The Driving Home Example

Nice Properties of TD

• TD can learn before knowing the final outcome
➢ TD can learn online after every step
➢ MC must wait until end of episode before return is known

• TD can learn without the final outcome
➢ TD can learn from incomplete sequences
➢ MC can only learn from complete sequences
➢ TD works in continuing (non-terminating) environments
➢ MC only works for episodic (terminating) environments

• Both TD and MC converge (under certain conditions). Which converge better /
faster?

Slide credit K. Fragkiadaki and D. Silver 72

Tabular TD(0) Prediction

73

Random Walk Example

• Assume we have a Markov Reward Process—a MDP without actions.
• Always start from the center, moving to the left / right with equal probability

• The ground-truth values of state A to E are
1

6
,
2

6
,
3

6
,
4

6
,
5

6

• Does TD(0) converge faster and better than MC?

Reinforcement Learning: An Introduction. R. Sutton and A. Barto. 74

Random Walk Example

Reinforcement Learning: An Introduction. R. Sutton and A. Barto. 75

A-B Example

Slide adapted from D. Silver

Batch updating: Repeatedly train on episodes until
convergence.

𝑉 𝐵 =
1

8
0 + 1 + 1 + 1 + 1 + 1 + 1 + 0 = 0.75

76

For MC methods:.
𝑉 𝐴 = 𝑅𝑡 +⋯+ 𝑅𝑇 = 0 + 0 = 0

A-B Example

Slide adapted from D. Silver 77

For MC methods:.
𝑉 𝐴 = 𝑅𝑡 +⋯+ 𝑅𝑇 = 0 + 0 = 0

For TD methods:
𝑉 𝐴 = 𝑅𝑡 + 𝑉 𝐵 = 0 + 0.75 = 0.75

A-B Example

Slide adapted from D. Silver 78

Why Does TD Converge Better than MC?

Slide credit E. Brunskill 79

Slide credit D. Silver

Bias and Variance Analysis

80

https://stats.stackexchange.com/questions/454856/why-is-
temporal-difference-learning-biased-in-reinforcement-learning

Biased Estimation of TD methods

Biased by 𝑉1(𝑠)

81

Slide credit D. Silver

Bias and Variance Analysis

82

Sarsa: On-policy TD Control

• We can learn an action-value function in a similar manner as a state-value function.
Instead of considering transitions from state to state, we now consider transitions
from state-action pair to state-action pair

83

Sarsa: On-policy TD Control

84

Expected Sarsa

Eliminate variance due to the
random selection of 𝐴𝑡

85

Q-learning: Off-policy TD Control

86

behavior policy

target policy

• The learned action-value function approximates 𝑞∗

• If all state-action pairs continue to be updated, Q has been shown to converge
with probability 1 to 𝑞∗

Q-learning: Off-policy TD Control

87

Cliff Walking Example

• The behavior policy uses 𝜀-greedy action selection, with 𝜀 = 0.1
• Action: up, down, left and right
• Reward is -100 at the Cliff region, otherwise, reward is -1

Q-learning path

Sarsa path

88

Remember the behavior policy uses 𝜀-greedy action
selection, which occasionally falls off the cliff!

Cliff Walking Example

89

Maximization Bias and Double Q-Learning

• The estimated values 𝑄(𝑠, 𝑎) are often uncertain and distributed some above and
some below zero. The maximum of estimated values induces a positive bias.

• Let say the true values of state 𝑠 and many actions 𝑎 are all zero, but estimated
values 𝑄(𝑠, 𝑎) has positive bias

• This is because we use the same samples to determine the maximizing action and
to estimate is values!

positive bias is introduced by the “maximum” operator

90

Maximization Bias Example

The true value 𝑉 𝑙𝑒𝑓𝑡 = −0.1

The true value 𝑉 𝑟𝑖𝑔ℎ𝑡 = 0

• Action: left and right
• Reward is 0 when transitioning from A to B; reward is drawn from 𝒩 −0.1,1 when

transitioning from B to left.
• Taking “left” action from A should always be worse than “right” action

Q-learning was biased toward “left”
action from A, due to the positive bias!

91

Double Q-Learning

• The estimated values 𝑄(𝑠, 𝑎) are often uncertain and distributed some above and
some below zero. The maximum of estimated values induces a positive bias.

• This is because we use the same samples to determine the maximizing action and
to estimate is values!

• Solution: use two sets of samples to learn two independent estimates 𝑄1 and 𝑄2
➢ 𝑄1 determines the maximizing action:

𝐴∗ = 𝑎𝑟𝑔max
𝑎

𝑄1(𝑠, 𝑎)

➢ 𝑄2 provides the estimate of its value:

𝑄2 𝑠, 𝐴∗ = 𝑄2(𝑠, 𝑎𝑟𝑔max
𝑎

𝑄1(𝑠, 𝑎))

92

Double Q-Learning

93

Quick Recap: Temporal-Difference Learning
• Temporal-Difference (TD) methods: combine Monte Carlo methods with Dynamic

Programming methods that wait only until the next time step and bootstrap value
functions from existing estimates

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉 𝑆𝑡]

We call this formulation 1-step TD
We can also have n-step TD

94

N-step TD Prediction
• n-step TD:

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑅𝑡+2 +⋯+ 𝛾𝑛−1𝑅𝑡+𝑛 + 𝛾𝑛𝑉(𝑆𝑡+𝑛) − 𝑉 𝑆𝑡]

95

• n-step TD:

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑅𝑡+2 +⋯+ 𝛾𝑛−1𝑅𝑡+𝑛 + 𝛾𝑛𝑉(𝑆𝑡+𝑛) − 𝑉 𝑆𝑡]

• When 𝑛 → ∞, n-step TD becomes an MC method:

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑅𝑡+2 +⋯+ 𝛾𝑇−1𝑅𝑇 − 𝑉 𝑆𝑡]

N-step TD Prediction

96

No bootstrapping until time
step 𝑡 + 𝑛

N-step TD Prediction

97

Image credit K. Fragkiadaki

N-step TD Prediction

98

On-policy n-step Action-Value Methods
• Action-value form of n-step return

• n-step Sarsa

• n-step expected Sarsa

99

Off-policy n-step Action-Value Methods
• Importance-sampling ratio

• Weighted estimated value functions with importance-sampling ratio
• Off-policy n-step TD

• Off-policy n-step Sarsa

100

TD BackupMC Backup

Summary
Generalized Policy Iteration DP vs. MC vs. TD

Bootstrap Sample

DP ✓ ⤫

MC ⤫ ✓

TD ✓ ✓

• DP: 𝑉 𝑆𝑡 ← σ𝐴𝑡 𝜋(𝐴𝑡|𝑆𝑡) σ𝑆𝑡+1,𝑅𝑡+1 𝑝 𝑆𝑡+1, 𝑅𝑡+1 𝑆𝑡, 𝐴𝑡 [𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1]

• MC: 𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝐺𝑡 − 𝑉 𝑆𝑡]
• TD: 𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼[𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉 𝑆𝑡]

Importance Sampling
• On-policy learning: learn value

and execute with the same policy
• Off-policy learning: learn and

execute with different policies

101

	Slide 1: Robot Perception and Learning
	Slide 2: Recap
	Slide 3
	Slide 4: In fact, the State Value Function following the Greedy Policy pi prime is Better than Original Policy pi
	Slide 5: In fact, the State Value Function following the Greedy Policy pi prime is Better than Original Policy pi
	Slide 6: In fact, the State Value Function following the Greedy Policy pi prime is Better than Original Policy pi
	Slide 7: In fact, the State Value Function following the Greedy Policy pi prime is Better than Original Policy pi
	Slide 8: In fact, the State Value Function following the Greedy Policy pi prime is Better than Original Policy pi
	Slide 9: Policy Evaluation and Policy Improvement
	Slide 10: Remember Bellman Optimality Equation for v to the asterisk operator
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: So far, we have several assumptions
	Slide 23: Next, we’ll go beyond these assumptions
	Slide 24: What if we don’t know the transition function and reward function?
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101: Summary

