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The Formulation of Imitation Learning is Limited
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« Models learn only “the mapping” between observations and actions,
instead of “the effect” of each action on an observation



The Formulation of Imitation Learning is Limited
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Demonstration dataset

« Models learn only “the mapping” between observations and actions,
instead of “the effect” of each action on an observation

» (Canwe achieve the goal with the current action?
» How long does it take to achieve the goal?

-
» How will the world change? T
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Demonstration dataset

« Models learn only “the mapping” between observations and actions,
instead of “the effect” of each action on an observation

 Imitation learning assumes the existence of an expert, limiting the
application scenario



Can We Have a General Learning Framework for All Different Tasks?
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Magnetic control of tokamak plasmas through deep reinforcement learning. Degrave et al.

AnyCar to Anywhere: Learning Universal Dynamics Model for Agile and
Adaptive Mobility. Xiao et al.
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: a; - action
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Demonstration dataset

« Models learn only “the mapping” between observations and actions,
instead of “the effect” of each action on an observation

 Imitation learning assumes the existence of an expert, limiting the
application scenario

 Imitation learning is “at best” as good as the expert
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Can We Reformulate the Learning Problem with
Rewards not Action Labels?




Can We Reformulate the Learning Problem with
Trial-and-Error not Imitation?




A Learning Framework that Solves Locomotion

RMA: Rapid Motor Adaptation for Legged Robots. Kumar et al. 9



A Learning Framework that Solves Complex Locomotion

= 0.8m(2x Rohot Length)

-
——

Extreme Parkour with Legged Robots. Chen et al. 10



A Learning Framework that Solves Rubik’s Cube

Solving Rubik's Cube with a Robot Hand. OpenAl. 11



A Learning Framework that Solves Multi-Agent Competition

- Mehsive behavior:
Positiomfg be SRl d coal (player in blue)

Learning Agile Soccer Skills for a Bipedal Robot with Deep Reinforcement Learning.
DeepMind. 12



A Learning Framework that Surpasses Experts

Sclencems -.




Actions Induce Changes of the Environment

 Atrajectory of interaction in the environment

t

At+1 At+2
State s

Reward r;

State s¢qq
Reward 441
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The Reward Function r(s, a) Estimates
Goodness of Each State-Action Pair

 Atrajectory of interaction in the environment
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In fact, Defining Reward Functions is Tricky...

Leading others

Energy efficiency

Tire wear

Safety

Acceleration smoothness
Circular motion

» The most general form of rewards The biased form of rewards

» Don't need domain knowledge » Need domain knowledge
« The sparsest form of rewards « Denser forms of rewards
» Credit assignment issue » Guide / facilitate learning with
« Learning with only these rewards is expert knowledge / prior
sample inefficient « Require huge human efforts

» LLMs sometimes can help

16



Reinforcement Learning: Learns to Maximize
the Total Reward of an Episode of Interaction

« Atrajectory of interaction in the environment

T
po(si,a, ..., s, aT H (ay|s¢)p(sir1|se, ar)

Action a;

State s;
Reward r;

« Maximize the expected value of the cumulative sum of reward

State s¢4q 0* = arg max Erpo(r) [Z (8¢, at)]
Reward 444 t
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Reinforcement Learning: Learns to Maximize
the Total Reward of an Episode of Interaction

« Atrajectory of interaction in the environment

4

. po(si,a1.....sp,ar) =p(s1) | [ mo(arls:)p(siilsi| )
Action a; \ , 1 ——
Stat po(T) Previous actions decide what future states
e St we will perceive
Reward r;

« Maximize the expected value of the cumulative sum of reward

State s¢4q 0* = arg max Erpo(r) [Z (8¢, at)]
Reward 444 t
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A Sequence of Actions are Not Temporally Independent...

« An action induce changes of the environment state
» An action may have low reward now, but lead to very high-reward future states
» An action may have high reward now, but lead to very low-reward future states

Tt Tt+1 Tt+2
//‘\\ //\\\ //\\
\
N m N m N
At At+1 At+2

O — arg Iﬂéﬂ,}{ ETNTI’J (1) {? ?*(Sf, af):|

Consider an entire episode of the
interaction, not each individual action
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A Sequence of Actions are Not Temporally Independent...

« An action induce changes of the environment state
» An action may have low reward now, but lead to very high-reward future states
» An action may have high reward now, but lead to very low-reward future states

Tt Tt+1 Tt+2
//‘\ //\\ //\
N m S m S
at At+1 At+2

Or, we can have better estimation of state-action
reward, that consider possible future rewards?
5 ~pe(T)

ofrme]

Consider an entire episode of the
interaction, not each individual action

* L]
0™ = arg max [~
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Reinforcement Learning: Trial-and-Error Learning

B TRAINING..

21



Reinforcement Learning: Trial-and-Error Learning

Task: make a right turn

.

DJeMB.

S
=
« Explore: discover actions that may have high
rewards, but usually are suboptimal
22 « Exploit: take the current best action



Let's Consider a Non-Sequential Setup

« Non-sequential setup:
> Each action results in an immediate reward
> We want to choose actions that maximize our immediate reward
in expectation
> There is no state

—()
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Let's Consider a Non-Sequential Setup

Non-sequential setup:
> Each action results in an immediate reward
> We want to choose actions that maximize our immediate reward
in expectation
> There is no state

® r

a O « For example, choosing which restaurant to go
» Actions: the restaurants to choose from
» Rewards: your happiness

« Let's say you can eat outside 100 times, what's the best strategy to
maximize your total happiness?
» Explore: discover new restaurants
» Exploit: go to the favorite restaurant

« Without exploration, you may end up going to 7-11 all the time,
Without exploitation, you keep trying new but bad restaurants.



Let's Consider a Non-Sequential Setup

« Non-sequential setup:
» Each action results in an immediate reward
> We want to choose actions that maximize our immediate reward

In expectation
> There is no state

® r

a Q « For example, choosing which restaurant to go
» Actions: the restaurants to choose from
» Rewards: your happiness

« Let's say you can eat outside 100 times, what's the best strategy to
maximize your total happiness?
» Explore: discover new restaurants

> it: he favori i
Exploit: go to the favorite restaurant This is the key question in RL

« Without exploration, you may end up going to 7-11 all the time,
Without exploitation, you keep trying new but bad restaurants.




Real world motivation: content presentation

We have two variations of content of a webpage, A and B, and we want to
decide which one to display to engage more users.

e Two arm bandits: each arm corresponds to a content variation shown to users
(not necessarily the same user).

e Reward: 1 if the user clicks, O otherwise.

e Mean reward (success probability) for each invitation: the click-through-rate,
the percentage of users that click on each ad

AAAAA @ nipEN

DINNER - BARACK DINNER = BARACK

e President

g

DINNER = BARACK

e N

BARACK
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Real world motivation: NETFLIX artwork

For a particular movie, we want to decide what image to show (to all the
NEFLIX users)

e Actions: uploading one of the Kimages to a user’s home screen
e Reward: 1 if the user clicks and watches, O otherwise.

e Mean reward (success probability) for each image: the percentage of users
that clicked and watched

27 Netflix Artwork



Let's Consider a Non-Sequential Setup

« Non-sequential setup:
» Each action results in an immediate reward

> We want to choose actions that maximize our immediate reward in

expectation
» There is no state

« This simplified setup is also called “Bandit Problem”

« This simplified setup helps us to focus on key components / tools in RL

28



Multi-Armed Bandit Problem




Multi-Armed Bandit Problem

« Attimestept
» The agent plays one of the Karms
» The kth arm produces reward 1, . when played
» Therewardr,, is drawnfrom a probability
distribution P, with mean u, and std g3, (Note:
the distribution could be non-Gaussian).
» The real reward distribution is unknown

r~P; ry~P; r3~P;3
Pr=N(u,01) Pp =N 02) Ps=N(ps 03) +  How to maximize the total reward for playing the
bandit machines within a finite or infinite horizon?

30



What's the Strategy if the Reward Distribution is Known

.(3)
! g«(5)
\ 2+(9)
Reward o -B-0R ¥ q*_(_ B B N BN B
distribution (0 ¢.(10)
‘I*(z) ’
- 4+(8)
q-(6)
3
| I I | T | | T |
1 2 3 4 5 6 7 8 9 10

Action

N

—

—

N

If the distribution is known, the best strategy is to exploit:
play the arm with the highest expected reward

Image credit Microsoft 31



How to Formulate the Behavior of Exploitation?

« Expected reward: q*(a) = E[r¢|A; = a;]
« Action-value estimates: Q.(ay) « Characterizes how good an action ay is
« Greedy action selection method: select the action with the highest estimated value:

A" = argmax Q. (a)
a

> IfA, = A", you are exploiting your current knowledge of the values of the actions
> It A, # A", you are exploring. You improve your estimate of the non-greedy actions

32



How to Formulate the Behavior of Exploitation?

Expected reward: q*(ai) = E[r|A; = a;]
Action-value estimates: Q.(ay) « Characterizes how good an action ay is
Greedy action selection method: select the action with the highest estimated value:

A" = argmax Q. (a)
a

> IfA, = A", you are exploiting your current knowledge of the values of the actions
> It A, # A", you are exploring. You improve your estimate of the non-greedy actions

If Q:(ax) = q*(a,), N0 need for exploration. Greedy action selection is the best strategy.

If Q:(ai) # q*(ay), you need exploring different actions to refine your action-value
estimation, otherwise, you end up choosing sub-optimal actions

33



Estimate Values of Actions by Sample-Average Method

« Expected reward: q*(a) = E[r|A; = a;]
« Action-value estimates: Q.(ay)

« Sample-average method: Average the rewards actually received:

0.(a) = sum of rewards when a;, taken priortot tin 1Al
k) T imber of times a, taken priortot P | A=
1. When you have enough samples (¥;Z] 14,24, = o): Q.(a,) = q*(ay)

2. When you don't have enough samples, Q;(ay) differs from q*(ay)
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Estimate Values of Actions by Sample-Average Method

« Expected reward: q*(a) = E[r|A; = a;]
« Action-value estimates: Q.(ay)

« Sample-average method: Average the rewards actually received:

0.(a) sum of rewards when a,, taken prior to t bl O P,
., ) = . , —
ATk number of times a,, taken prior to t Yici1a-a,
1. When you have enough samples (¥;Z] 14,24, = o): Q.(a,) =~ q*(ay)

2. When you don't have enough samples, Q;(ay) differs from q*(ay)

» We need to keep a huge table to store the received rewards

35



Estimate Values of Actions by Incremental Implementation

- Let Q, denote the estimate of its action value after being selected n — 1 times

;Rl—I—Rg—I—---—I—Rn_l
B n—1

Qn

36



Let Q,, denote the estimate of its action value after being selected n — 1 times

Let's start rewriting Q,,:

Qn

Qn-l—l

. Ri+Ry+- 4Ry

n—1



Estimate Values of Actions by Incremental Implementation

Let Q,, denote the estimate of its action value after being selected n — 1 times

. Ri+Ry+---+ Ry
B n—1

Qn
Let’s start rewriting Q,,:

Quit = Qut [Ra—Qu],

NewEstimate « OldEstimate + StepSize X [Target — OldEstimate]

38



Estimate Values of Actions by Incremental Implementation

- Let Q, denote the estimate of its action value after being selected n — 1 times

. Ri+Ry+---+ Ry
B n—1

Qn

« Let's start rewriting Qy:

1
n

Quir = Qu+ R Qul,

‘\IewEstimate « OldEstimate + StepSize X | |

Doesn't this look familiar? This is a standard form for learning/update rules!

39



Waitl We Assumed Stationary Reward Distributions
What it Reward Distributions are Nonstationary

« Adistribution is stationary if it is fixed over time, otherwise, it is nonstationary

f a distribution is nonstationary, we should trust recent rewards more than long-
past rewards.

« We can re-write the incremental implementation with a step-size parameter a €
(0,1], which denotes how much we emphasize on recent rewards.

Qni1 = Qn+a|Rn—Qn

40



Exponential Recency-Weighted Average Method

Qn+1 QH+H[R Qﬂ}

aR,+ (1—-a)Q,

) @R, —1 + (1 —a)Qp—1]
JaR, 1+ (1 — )?Qn1
D:R +(1—r:r)aRn 1+ (1 —a)*aR,_o +

(1 —a)" taR + (1 — a)"Q

(1—-a)"Q1+ Z ol —a)" 'R,

1=1

| | |
Q
T
_|_
|
o

41



Exponential Recency-Weighted Average Method

Qni1 = QH+H[RH_Q”]
= aR,+(1-a)Q,
= aR,+(1—a)[aR, 1+ (1 —a)Q,_1]
= aR,+ (1 —a)aR,_1+ (1 —a)?’Qn_1
= aR, —|—(1—cr)aRn 1+ (1 —a)aR,—2 +

+(1-a)" taR + (1 —a)"Q,

(1— a) )Ql + Z of1 — )" R,

1=1
How fast a term is forgotten

42



The Exploration / Exploitation Dilemma

- Exploitation: Make the best decision given current information
« Exploration: Sacrifice some action budget to gather more information

« Key question: when to explore and when to exploit?

« |dea 1: e-greedy method, a nalve solution that decide to explore / exploit
by throwing a dice with probability &

43



e-Greeady Method

A simple bandit algorithm

Initialize, for a = 1 to k:
Q(a) 0
N(a) <0

it?
Loop forever: Explore or Exploit:

Ao { argmax, Q(a) with probability 1 — e (breaking ties randomly)
a random action with probability &

I < bandit(A)

N(A) < N(A) +1

Q(A) + Q(A) + ﬁ [R — Q(A)] | Update the action-value estimation..

44



Average
reward

1.5

054

e=0.01

£ : (greedy)

[
250

I | 1
500 750 1000

Steps

With higher g, the agent sacrifice performance in
the earlier steps for exploration, but it becomes
superior later with better action-value estimation

With € = 0, the agent is stuck in the local minimum

45
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Reinforcement Learning: An Introduction. R. Sutton and A. Barto. 46



The Exploration / Exploitation Dilemma

- Exploitation: Make the best decision given current information
« Exploration: Sacrifice some action budget to gather more information

« Key question: when to explore and when to exploit?

« |dea 2: upper confidence bound (UCB) method, the more uncertain we are
about an action-value, the more important it is to explore that action

11(0))

47



Upper Confidence Bounds

e Estimate an upper confidence U.(a) for each action value such that with high
probability:

q«(a) < Qfa) + Ufa)

/ N\

Estimated Upper
Confidence

Estimated mean

e Thisupper confidence depends on the number of times action a has been
selected

o Small N(a) = large U(a) (estimated value is uncertain)
e Large Ni(a) = small Ui(a) (estimated value is accurate)

e Select action maximizing Upper Confidence Bound (UCB)

a, = argmax . ,0/(a) + Ufa)



Upper Confidence Bound (UCB)

e A clever way of reducing exploration over time
e Estimate an upper bound on the true action values

e Select the action with the largest (estimated) upper bound

logt ]

A = argmax [Qt(a) +c N,(a)

e cis ahyper-parameter that trades-off explore/exploit

e the confidence bound grows with the total number of actions we have
taken t but shrinks with the number of times we have tried this particular

action N,(a). This ensures each action is tried infinitely often but still
balances exploration and exploitation.

e t: how many times | have played any action,

e N(a): how many times | have played action ain t interactions

i)
Slide credit K. Fragkiadaki UCB1: Auer, Cesa-bianchi, and Fischer, Finite-time analysis of the multiarmed bandit problem, 2002



Upper Confidence Bound (UCB)

e A clever way of reducing exploration over time
e Estimate an upper bound on the true action values

e Select the action with the largest (estimated) upper bound

logt

A; = argma a)+c
t ga X Qt() Nt(ﬁ)

i b g i b B M T i
*J#,-;H-MM'!'HF e,
*l.ﬂqlﬁﬁ E-greedy £ =01
.r‘
Average I‘.a
reward
L]
01
] =) S50 = 000
Steps

52
UCRB1: Auer, Cesa-bianchi, and Fischer, Finite-time analysis of the multiarmed bandit problem, 2002



The Exploration / Exploitation Dilemma

- Exploitation: Make the best decision given current information
« Exploration: Sacrifice some action budget to gather more information

« Key question: when to explore and when to exploit?

 |dea 3: gradient bandit method, sample an action based on relative
preference over other actions

51



Gradient Bandit Method

« Define H;(a;) which characterizes relative preference of action a; over other
actions at time step t
« The probability for sampling an action is based on its preference value:

Hy(a)

Pr{Ai=a} = — =
Zb=1 BHi(b)

mi(a).

52



Gradient Bandit Method

Define H;(a;) which characterizes relative preference of action a; over other
actions at time step t

The probability for sampling an action is based on its preference value:

BHL({I.)

ZJE::l BHE(b) B

On each step, after selecting action A; and receiving the reward R;, the action
preferences are updated by

Pr{A;=a} = mi(a).

Ht—f—l(At) = Ht(At) -+ le(Rt — Rt) (1 — ‘ﬂ't(At)), and
Hii1(a) = Hi(a) — E}:(Rt — Rt)‘ﬂ‘t({l), for all a # A,

53



Gradient Bandit Method

« On each step, after selecting action A, and receiving the reward R;, the action
preferences are updated by

Ht+1(At) = Ht(At) -+ H(Rt — Rt: (1 — ﬂ't(At)), and
Hiiq(a) = Hy(a) — r_:u(Rt —|R¢) ¢ (a), for all a # A,

« R, is called baseline, with which an action is compared to
> a, is preferred if its reward R; surpasses the baseline

« We can define R, as the average of all rewards.

54



Gradient Bandit Method

« On each step, after selecting action A, and receiving the reward R;, the action
preferences are updated by

Ht+1(At) = Ht(At) -+ H(Rt — Rt: (1 — ﬂ't(At)), and
Hiiq(a) = Hy(a) — r_:u(Rt —|R¢) ¢ (a), for all a # A,

« R, is called baseline, with which an action is compared to
> a, is preferred if its reward R; surpasses the baseline

« We can define R, as the average of all rewards.
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Gradient Bandit Method

« On each step, after selecting action A, and receiving the reward R;, the action
preferences are updated by

Ht+1(At) = Ht(At) -+ H(Rt — Rt: (1 — ﬂ't(At)), and
Hiiq(a) = Hy(a) — r_:u(Rt —|R¢)me(a), for all a # A,

« R, is called baseline, with which an action is compared to
> a, is preferred if its reward R; surpasses the baseline

« We can define R, as the average of all rewards.

56



Gradient Bandit Method

100% [

80% |

% 60%
Optimal

action 1%}

20% |

0% L,

250
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Comparison of Three Methods

1.5¢

UCB

14}

Average ;|
reward
over first
1000 steps

gradient

1.2+ bandit

].-I L L 1 'l L L 1 1 ]
1/128 1/64 1/32 1/16 1/8 1/4 172 1 2 4

e o ¢ Qo
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S0 Far, We've Considered a Non-Sequential Setup

But in most cases, we have “states” and every action
has sequential effect!

Tt Te+1 Te+2
//‘\ //\\ //\\
e —
at At+1 At+2

Moreover, we often don't know “states” but have
only “observations”...

Tt Tt+1 Tt+2

K 7
/,\ /,\ PR

59



Let's First Define the Following Components

state

""_| Agent I

reward
R

I

i_‘ R.!'+|

”~

Sr+]

-

.

Environment J«—

action

Agent: the decision maker that senses the
environment and decide “what actions” to take in
the environment

Environment: the world

Policy: a mapping function from states /
observations to actions.

Reward: the signal indicates “what” you want a
robot to achieve, not “how” you want it to achieve
State: the representations that retain all “essential”
information for decision making

(World) Model: the transition function that maps
states / observations and actions to future states /
observations

60



MDP vs. POMDP

Markov Decision Process

« Markov property:
» The transition to s; only depends on the

immediately preceding state and action, s;_4
0 and a,_,, not at all on earlier states and actions.
» The state must include information about all
e aspects of the past agent-environment
/ /V /' interaction that make a difference for the
Ag A, A,

future

61



MDP vs. POMDP

Markov Decision Process

Partiall Observable Markov
Decision Process

o
ey

State is a hidden variable. The decision is
only conditioned on partial observations

62



(Partially Observable) Markov Decision Process

at
S; — state
The observed information of o; — observation mo(as|os) — policy
the environment a; — action wo(ay|s;) — policy (fully observed)

Markov property
independent of s;_1

p(S,H_llSt, at) '\/
\

The true information of Transition function models how the
the environment environment changes with the action

Slide adapted from S. Levine 63

Reward function signals if

the goal is achieved:

* 1t =1 (S¢t+1, St Ar)
* 1 =71(S50ag)



Markov Decision Process

The observed information of
the environment o , , ,
Reward function signals if

Markov property the goal is achieved:
independent of s;_q * 1t =1(St41 S, At)
pSimlsnan) o2 plsipalse ar) * Tt =71(Se ar)
d ~—
The true information of Transition function models how the
the environment environment changes with the action
Most General Case: Most Specific Case:
Transition function is unknown Transition function is known
Reward function is unknown Reward function is known
Observed information is incomplete (o; # s¢) Observed information is complete (o; = s¢)

64



Reinforcement Learning: Learns a Policy that Maximizes
the Total Reward of a sequence of actions

« Atrajectory of interaction in the environment
-
Po(s1,a1,...,s7,ar) = p(s1) Hﬁﬂ(at|st)p(st+1‘st: ay)
* ' t=1

Action a;

po(T)
State s;
Reward r;

«  Maximize the expected value of the cumulative sum of reward

0* = arg max(F;

0
State s¢qq

Reward Tt+1 4

Policy may be stochastic

Environment may be stochastic

Initial state may be randomly sampled
Er,[r(x)] is smoothin 6

Slide adapted from S. Levine 65



Remember We Talked about Optimal Control

« Constrained Optimal Control Problem:

N-1

min z c(xp, ug) + ¢ (xy)

XU
k=0

S.tXO — 5&0
Xik+1 = f(xk,uk),k = O, ,N —1

 Solution 1: Consider it as a mathematical optimization problem. We can solve it
with existing optimization toolboxes (e.g. linear programming, quadratic
programming, non-linear programming ...)

 Solution 2: Solve it with dynamic programming!

66



Remember We Talked about Optimal Control

The objective of RL:

« Constrained Optimal Control Problem:
0* = arg max Eorpy(r) Z r(se, aﬁ)]

N-1 t
min z ¢, we) + ¢r (o) In fact, they are very similar problems
k=0 with different notations:
o e controlu < actiona
S.tXg = Xg e sState x « state s

Xee1 = (o we) k=0, ,N =1 . c(x,u) «>reward r(s, a)
e Mminimize cost < maximize reward

 Solution 1: Consider it as a mathematical optimization problem. We can solve it
with existing optimization toolboxes (e.g. linear programming, quadratic
programming, non-linear programming ...)

 Solution 2: Solve it with dynamic programming!
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Returns G; in Episodic Tasks

Episode: A sequence of interactions based on which the reward will be judged at
the end

Episodic tasks: interaction breaks naturally into episodes, e.g., plays of a game,
trips through a maze

Returns G;: the cumulative sum of reward, or total reward, starting from time t
Let T be the final time step:

Gt —_ Rt+1 + Rt+2 + ...+ RT
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Returns G; in Continuing Tasks

Continuing tasks: interaction does not have natural episodes, but just goes on
and on...just like real life

Discounted returns G;: the cumulative sum of reward, weighted by the discount
rate y

Let T be the final time step, where T — oo

(0.0)

Gt = Ry T VReyo + o = zk_OVkRHkH

Discount rate y decides the present value of future rewards.
» Ify =0, model is "myopic” concerning only the immediate reward
> Ify =1, model is “farsighted” ignoring the efficiency of achieving the goal
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Lecture 2: Markov Decision Processes

|—Markov Reward Processes
. Return

Why discount?

Most Markov reward and decision processes are discounted. Why?

Mathematically convenient to discount rewards
Avoids infinite returns in cyclic Markov processes

Uncertainty about the future may not be fully represented

If the reward is financial, immediate rewards may earn more
interest than delayed rewards

m Animal/human behaviour shows preference for immediate
reward

m It is sometimes possible to use undiscounted Markov reward
processes (i.e. v = 1), e.g. if all sequences terminate.
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Mountain Car

Get to the top of the hill
as quickly as possible.

reward = -1 for each step where notat top of hill

=> return = - number of steps before reaching top of hill

Return is maximized by minimizing
number of steps to reach the top of the hill.
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Why Discount

« Recursive relationships for discounted returns:
Gt = Rey1 + YRe2 + V?Rpgs + o

= Ryy1 +Y(Rpy2 + YReyz ++++)

=Riy1 +vGeiq
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Value Functions are Expected Returns

« The state value function v, (s): the expected return starting from state s following
policy

U (8) = E [G¢|S; = 5]

« The state value function is dependent on the deployed policy, since different
actions lead to varied future states and total rewards.
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The Recursive Relationships ot Value Functions

« The state value function v, (s): the expected return starting from state s following

olicy T
policy Gt = Rey1 + YRey2 + Y?Rpyz + -+ = Re1 +¥Gipn

Vn(S) = En[Gt|5t =s] = ]ETL'[Rt+1 + VGt+1|St = 5] T

« The state value function is dependent on the deployed policy, since different
actions lead to varied future states and total rewards.
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The Recursive Relationships of Value Functions

« The state value function v, (s): the expected return starting from state s following
policy

Ur(s) = Ep[GelS; = I =Ep[Resq1 +¥Gri1|Se = 5]
=) m(als) Y p(s",7ls, I + VErlGerlSear = ']

a

The state value function is dependent on the deployed policy, since different
actions lead to varied future states and total rewards.

The state value function v, (s) estimates the “goodness” of state s when deploying
policy . Simply speaking, how easy it is to achieve the goal from state s.
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The Recursive Relationships of Value Functions

« The state value function v, (s): the expected return starting from state s following
policy

Ur(s) = Ep[Ge|S; = SI=1Er[Rr 41 + ¥GrsalSe = 5]
=) n(als) » p(s',ls, O + VExlGarlSeas = 5'1

a

N

= Z (als) Z p(s’,rls,A)[r + ypa(s')]

a

« The state value function is dependent on the deployed policy, since different
actions lead to varied future states and total rewards.
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Value Functions are Expected Returns

« The action value function g, (s, a): the expected return starting from state s and
action a following policy

q9.(s,a) = E [G:|S; = s, A, = a] = Zp(s’,rls, a)[r +yv,(s")]
s'r

The action-value function g, (s, a) estimates the “goodness” of action a at state s

when deploying policy m. Simply speaking, how easy it is to achieve the goal with
action a at state s.

e |t's obvious to see

v (s) = 2 n(als) z p(s’,rls,a)[r +yv,(s")] = z n(al|s)q.(s, a)

a a
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Back-up diagram for value functions

The probabilities of landing on each of the leaves sumto 1

il \OK

Vv, (85) = ZH(HlE‘)Zp s’ r|?a [r+yv (f.*}]
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Back-up diagram for value functions

The probabilities of landing on each of the leaves sumto 1

qr(8,0) <4 8,a

g=(s',a’) < 1a

vas) = ) w(als) Y p (s rls.a) [r+yve(s)) gi(s,@) = ) p(s,rls, a)(r +7 ), 7@ ]5)gy(s" a'))
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Relating state and state/action value functions

gr(8,a) ++ a

V(s) = ) m(a|s)q,(s.a)

acsf



Optimal Value Functions

« Definition: The optimal state-value function v*(s) is the maximum state-value function over
all policies. In other words, the optimal value function specifies the best possible
performance in the MDP.

v*(s) = max vy, (s)

« Definition: The optimal action-value function q*(s, @) is the maximum action-value function
over all policies

q*(s,a) = maxq,(s, a)
T
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Optimal Value Functions

Definition: The optimal state-value function v*(s) is the maximum state-value function over
all policies. In other words, the optimal value function specifies the best possible
performance in the MDP.

v*(s) = max vy, (s)

Definition: The optimal action-value function g*(s, a) is the maximum action-value function
over all policies

q*(s,a) = maxq,(s, a)
T
The optimal value function specifies the best possible performance in the MDP.

An MDP is “solved” when we know the optimal value function
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Value Functions

e Value functions measure the goodness of a particular state or state/
action pair: how good is for the agent to be in a particular state or
execute a particular action at a particular state, for a given policy.

e Optimal value functions measure the best possible goodness of states or
state/action pairs under all possible policies.

state ~  action
values : values

prediction

control

Slide credit K. Fragkiadaki 83



Why Value Functions are useful

Value functions capture the knowledge of the agent regarding how good is
each state for the goal she is trying to achieve.

"...knowledge is represented as a large number of
approximate value functions learned in parallel...”

Horde: A Scalable Real-time Architecture for Learning Knowledge from Unsupervised Sensorimotor Interaction, Sutton et al.

Slide credit K. Fragkiadaki 84



We Have the Optimal Policy it We Know q*(s, a)
« An optimal policy can be found by maximizing over q*(s, a):

a

1,if a = argmax q*(s, a).
*(als) =
0, otherwise.
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We Have the Optimal Policy it We Know q*(s, a)
« An optimal policy can be found by maximising over q*(s, a):

a

1,if a = argmax q*(s, a).
*(als) =
0, otherwise.

« An optimal policy can be found by maximizing over v*(s) with one-step look ahead:

{1, if a = argmax(Z. ,.p(s',rls,a))(r +yv.(s"))
m*(als) = a '

0, otherwise.
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Bellman Optimality Equation for v*

1. We have v*(s) = maxq,+(s,a)
a



Bellman Optimality Equation for v*

1. We have v*(s) = maxq,+(s,a)
a

Why?

ve(8) = ) (als)ax(s,0)

aceA

= v*(s) = z m*(a|s)q+(s,a) = max q,-(s,a)
a

aEA

1,if a = argmaxq*(s, a).
m*(als) = a

0, otherwise.
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Bellman Optimality Equation for v*

1. We have v*(s) = maxq,+(s,a)
a

2. We can further write the equation:

v*(s) = maxq,-(s,a)
a
= max E «[G.|S; = s,A; = a]
a
= max Ep+[R;yq +vVGr44lS: = 5, 4; = al

a

— max E[Rry1 + vV (Ses)ISe = 5, 4; = al

- maxz p(s’,rls,a)[r + yv*(s')]
a
slr
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Bellman Optimality Equation for v*

1. We have v*(s) = maxq,+(s,a)
“ (vs) >
. L max
2. We can further write the equation: /&\ a
v*(s) = maxq,-(s,a)
a

= max E «[G.|S; = s,A; = a]
a

= max Ep+[R;yq +vVGr44lS: = 5, 4; = al

a

= max E[Rry1 + vV (Ses)ISe = 5, 4; = al

— Z p(s’,r|s,a)[r + yv*(s")]

This is again the recursive relationship!

90



Bellman Optimality Equation for g*

1. We have

q"(s,a) = Ep+[Reyq +VGri1lSe = 5,4 = al
= E[Re1 + ¥V (St IS = 5,4 = a

=E [Rt+1 + )/II}lé}X Ar-(St41,a') [Se =5, A = a]

= E p(s’,rls,a)[r+yma,1XC[*(S',a')]
a
s'r

91



1.

Bellman Optimality Equation for g*

We have

q"(s,a) = Eg+[Reyq + VGry1lSe = 5,4 = al
= E[Re1 + ¥V (St IS = 5,4 = a

=E [Rt+1 + ]/II}lE,lX Ar-(St41,a') [Se =5, A = a]

= p(s',rls, )l +y max g’ (s',a))
s'r

(g+)
This is again the recursive relationship! A
!
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Back-up Diagrams for Value Functions

qr(8,0) <—~1su

X X
Q/ X
(l ;
// \ 4 v j‘/’\\» ‘
B

,// ; \\ // \\
/ s \ { \ ‘
va(s) <« s O ) ©) O gz (s",a") < 1a

v,(s) = Z m(als) Z p (S’. r|s, a) [r + YV, (S’)] q,(s,a) = Z pisi, rls; a)(r +7y Z m(a’| s")q, (s, a’))
a s'r r.s' a’
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Back-up Diagrams for Optimal Value Functions

For the Bellman g«(s,a) —i s,a
expectation
equations we
sum over all the
leaves, here we
choose only the

best action . ;
g«(s,a’) — a

branch!

0n(s) = max | 3 pls' 715,000+ p0(s) :(5.) = ElR,y; + 7 max q.(S,,1, @)1, = 5.4, = a]
g

= Z p(s’,r|s,a) [r + y max g.(s’, a’)]

q* is the unique solution of this system of nonlinear equations
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Relating Optimal State and Action Value Functions

Gx(s,a) <1 a

V:i: (S,) — max q:&:(s, a)
a
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How to Calculate Value Functions?

1. Matrix-form solution: solving linear systems of equations
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Matrix-Form Solution of Value Functions

« The state value function v, (s):

v (s) = 2 r(als) 2 p(s’,rls,a)[r + yv,(s)]

a

« When the policy m is fixed, MDP becomes Markov Reward Process (MRP)

v.(s) = Z m(als) 2 T(s'|s,a)[r(s,a) +yv,(s')]

a
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Matrix Form

The Bellman expectation equation can be written concisely as a system
of linear equations

v, =r*+yT"v,
with direct solution
—1
v, = ([— yT”) r*

of complexity O(|S|*)

here 7' is an ISIXISI matrix, whose (j,k) entry gives P(s, | s, a=Ti(s)))
r ™ is an ISI-dim vector whose j* entry gives EJr | S;, a:rt(sj) ]
v_ is an ISI-dim vector whose j" entry gives Vi(s;)

where |S| is the number of distinct states

Slide credit K. Fragkiadaki 98



How to Calculate Value Functions?

1. Matrix-form solution: solve linear systems of equations
2. lIterative estimation: utilize the recursive relationships

Vo (s) <4 S Q
/ \\
/// R
/ X
« »
a
/ \
P £ \'\ // \
/ \ / \
/ \ / \
/ ) A~ ) 4 M\
A\ ( S ) ey ) C) i B) )

v,(s) = Z n(als) Z p(s,r|s,a) [r + 7\’,,(5")]

99



terative Policy Evaluation

« The state value function v, (s):

b (s) = z r(als) Z p(s', s, D[r + yve(s)]

a

« We can utilize the the recursive relationship to update v, (s)

fork=1--00:
Vi1 (8) = 2 n(als)zp(s’,rls, a)[r + yv, (s
shr

a Vik+1)(8) ¢ 8

vig) (') s
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terative Policy Evaluation

« We can utilize the the recursive relationship to update v,(s)

fork=1--00:
Ve (s) = ) m(als) ) p(s',rls )l +yvi(s)]

a

« Dynamic programming solution: use a table to keep track of the value function

(2% Vk+1

0.6410.8110.9 | 1 0.6410.811 0.9 | 1
Vik+1)(8) ¢ 8

0.58 0.81(0.9 [ update [0.58 0.81(0.9

0.52] O 0.81 0.5210.47 0.81

0 0 0.64 047] O 0.64 V[;,,](S’) e g
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Estimate Value Function with Dynamic
Programming

« Current policy: going up, down, left, right with even probability. The action
that would take the agent off the grid would leave the state unchanged.

« Task: Travel from the to the goal location
« Reward: reach goal = 1, otherwise 0
Reward map Vg %1
O10] 0|1 0101 01]0 01 0 10.250.5
0 010 0 OO0 0 0 10.25
010 0 010 0 010 0
010 0 010 0 010 0
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Estimate Value Function with Dynamic
Programming

« Backward dynamic programming, let y = 1.0 (no discount)

N Z r(als) Z p(s',rls, A)[r +yvi(s"]

a
Reward m A Vo A vy

0|0 }o\1 o|lolo\lo 0| 0 (02505

0 0 [/o\ 0 0 [/ O\ 0 0 [0.25

Of O 0 010 0 Of O 0

OO0 0 OO 0 O O 0
1 1 1 1
=2xX(1+1x0)+3X + 7 X +4 X
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Estimate Value Function with Dynamic
Programming

« Backward dynamic programming, let y = 1.0 (no discount)

N Z r(als) Z p(s',rls, A)[r +yvi(s"]

a

Reward map v, A v,

0]0f0 /1\ 0|0 OJ/L\ 0| 0 (02505

0 | 0 | 0 0 0 | 0 0 0 [0.28

0|0 | 0 | 010 | 0 | 0|0 0

0|0 0 0|0 0 0|0 0
=2x(1+1x0)+3x + 2 X +2 X
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Estimate Value Function with Dynamic
Programming

« Backward dynamic programming, let y = 1.0 (no discount)

N Z r(als) Z p(s',rls, A)[r +yvi(s"]

a

Reward map v A v,

0|l0] O /1\ 010 0.25@‘ 0 |0.06/0.44]0.88

0 | 0 | 0 0 | 0 lo.25 0 0.13(0.44

010 | 0 | 0|0 | 0 | 0|0 0.06

0|0 0 0|0 0 0|0 0
=2x(14+1x0.5)+7X + X + 2 X
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terative Policy Evaluation
Vier (5) 1= Tam(als) B, p(s',ls, @[ +yv,(s")]

Iterative Policy Evaluation, for estimating V =~ v,

Input 7, the policy to be evaluated
Algorithm parameter: a small threshold 8 > 0 determining accuracy of estimation
Initialize V (s), for all s € 8%, arbitrarily except that V (terminal) =0

Loop:
A+0
Loop for each s € &:
v+ V(s)
V(s) = o mlals) T, p(s',7]s,0) [r + 4V (5)]
A + max(A, |v — V(s)])
until A < 6
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Can We Improve the Current Policy?

« Let's say we obtain the value function v,(s) based on policy T using dynamic programming,
How can we improve the policy?

« Switch to a greedy policy!

1,if a = argmax(X, .p(s’,r|s,a))(r + yv.(s"))
'(als) = a '
0, otherwise.

« Why greedy policy i’ is better than the original policy m at state s?
Since a greedy policy is deterministic: ©r’(s) = argmax( Xy . p(s’,7|s, a))(r + yv,(s'))

a

q-(s|m'(5)) |= max Y 0(s,7ls, ) [r + yvr(s)]

The value of selecting action n'(s) is higher > ' (als) Yo, p(s',rls, )lr + yv, (s)] =|v,(s)
than following policy m at state s (here we ’
still follow policy m at other states)
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Lecture 3: Planning by Dynamic Programming

|—F’a|ic:-,r Evaluation
I—E:-:a\|m|:::le: Small Gridworld

Evaluating a Random Policy in the Small Gridworld

1 2 3
4 Is s |7 nm =1
on all transitions
8 9 10 (11
actions
12 13 |14

m Undiscounted episodic MDP (v = 1)

m Nonterminal states 1, ..., 14

m One terminal state (shown twice as shaded squares)
m Actions leading out of the grid leave state unchanged
m Reward is —1 until the terminal state is reached

m Agent follows uniform random policy

n(n]-) = n(el-) = n(s|) = w(w|-) = 0.25
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Lecture 3: Planning by Dynamic Programming
L Policy Evaluation

L Example: Small Gridworld

lterative Policy Evaluation in Small Gridworld

V. for the Greedy Policy
Random Policy w.rt Vg
0.0 0.0 0.0] 0.0 S B
-0 0.0[0.0/ 00|00 el e L o random
B 0.0]0.0/0.0] 0.0 el policy
>¢—:—>

A
o

0.0]0.0{0.0f0.0

0.0[-1.0]-1.0]-1.0 —
- - - - l PN
k=1 1.0/-1.0/-1.0]-1.0 i
-1.0[-1.0]-1.0]-1.0 blb|
-1.0-1.0[-1.0] 0.0 ¢ :: —
0.0]-1.7]-2.0]-2.0 — |
k=2 -1.7)-2.0|-2.0|-2.0 Pl [
2.0[-2.0]-2.0[-1.7 bl ol
2.0[-2.00-1.7 0.0 N N N
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Lecture 3: Planning by Dynamic Programming
|—F’n|icy Evaluation
I—E:-:eilmprlfz: Small Gridworld

Iterative Policy Evaluation in Small Gridworld (2)

0.0]-2.4|-2.9]-3.0 — = |q
k=3 -2.4[-2.9[-3.0/-2.9 Pl 1o |
-2.9|-3.0/-2.9/-2.4 ol o
-3.0[-2.9]-2.4| 0.0 L = =
0.0]-6.1|-8.4/-9.0 — |- |9
k=10 6.1)-7.7|-8.4|-8 .4 T e |, optimal
- 8.4|-8.4|-7.7|-6.1 bl policy
=09 ==/ =0, r) l
-9.0[-8.4]-6.1] 0.0 Ll 5 =
0.0]-14.[-20.|-22. — = |9
k= oo -14.[-18.[-20.|-20. Pl e |
-20.|-20.|-18.]-14, HENr
-22.|-20.|-14.| 0.0 L -5 —
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Summary

RL as a general learning framework for Multi-armed Bandit Problem
H 9 £=0.1 PR " s s
diferent tasks © Bxpected reward: q'(a) =Elnldc=a] | S
«  Action-value estimates:  Q,(ay) s |
. Greedy action selection method: select the
action with the highest estimated value: % = 5 5

A" = arg max Q,(a)
a

100%

> If A, = A", you are exploiting your current ]
knowledge of the values of the actions oo ™1

» I A # A", you are exploring. You improve seten 1
your estimate of the non-greedy actions

Markov Decision Process

. Discounted returns: G = Ry4q + ¥Gryq
. The state value function v,(s) = E,[GS; = s]

The learning objective of RL
.
po(s1,au,...,sp.ar) = p(s1) | [ mo(alse)p(sisilse ar)
‘ Y ! t=1
po(T)

qr(8,0) < s,a

a(ssa')<1ad & ® C/ \

v (s) = Z n(als) Ep (s%rls.a) [r+yv ()] q(s,a) = Ep(s’, rls, a)(r +7 Z 7(a’] )q (s, u’))

0* = arg mgxx Erpe(r) [Z r(s;, a;)
t
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