
Robot Perception and Learning

Tsung-Wei Ke

Multi-arm Bandits, Markov Decision Processes, Policy
Iteration and Value Iteration

Fall 2025

1

The Formulation of Imitation Learning is Limited

Image credit Ali Yahya and S. Levine

Demonstration dataset

𝑜1
1, 𝑎1

1, 𝑜2
1, 𝑎2

1, … , 𝑜𝑇
1 , 𝑎𝑇

1

𝑜1
2, 𝑎1

2, 𝑜2
2, 𝑎2

2, … , 𝑜𝑇
2, 𝑎𝑇

2

⋮
𝑜1
𝑁, 𝑎1

𝑁, 𝑜2
𝑁, 𝑎2

𝑁, … , 𝑜𝑇
𝑁, 𝑎𝑇

𝑁

𝑜𝑡 - observation
𝑎𝑡 - action

𝜋𝜃(𝑎𝑡|𝑜𝑡) - policy

• Models learn only “the mapping” between observations and actions,
instead of “the effect” of each action on an observation

2

The Formulation of Imitation Learning is Limited

Demonstration dataset

𝑜1
1, 𝑎1

1, 𝑜2
1, 𝑎2

1, … , 𝑜𝑇
1 , 𝑎𝑇

1

𝑜1
2, 𝑎1

2, 𝑜2
2, 𝑎2

2, … , 𝑜𝑇
2, 𝑎𝑇

2

⋮
𝑜1
𝑁, 𝑎1

𝑁, 𝑜2
𝑁, 𝑎2

𝑁, … , 𝑜𝑇
𝑁, 𝑎𝑇

𝑁

• Models learn only “the mapping” between observations and actions,
instead of “the effect” of each action on an observation

➢ Can we achieve the goal with the current action?

➢ How long does it take to achieve the goal?

➢ How will the world change?

𝑜𝑡 - observation
𝑎𝑡 - action

𝜋𝜃(𝑎𝑡|𝑜𝑡) - policy

Image credit Ali Yahya and S. Levine 3

The Formulation of Imitation Learning is Limited

Demonstration dataset

𝑜1
1, 𝑎1

1, 𝑜2
1, 𝑎2

1, … , 𝑜𝑇
1 , 𝑎𝑇

1

𝑜1
2, 𝑎1

2, 𝑜2
2, 𝑎2

2, … , 𝑜𝑇
2, 𝑎𝑇

2

⋮
𝑜1
𝑁, 𝑎1

𝑁, 𝑜2
𝑁, 𝑎2

𝑁, … , 𝑜𝑇
𝑁, 𝑎𝑇

𝑁

𝑜𝑡 - observation
𝑎𝑡 - action

𝜋𝜃(𝑎𝑡|𝑜𝑡) - policy

• Models learn only “the mapping” between observations and actions,
instead of “the effect” of each action on an observation

• Imitation learning assumes the existence of an expert, limiting the
application scenario

Image credit Ali Yahya and S. Levine 4

Can We Have a General Learning Framework for All Different Tasks?
Power Plant Control

Magnetic control of tokamak plasmas through deep reinforcement learning. Degrave et al.

Adaptive VisuoMotor Control

AnyCar to Anywhere: Learning Universal Dynamics Model for Agile and
Adaptive Mobility. Xiao et al.

Trading

Content Generation Training Animals

Gaming

5

The Formulation of Imitation Learning is Limited

Demonstration dataset

𝑜1
1, 𝑎1

1, 𝑜2
1, 𝑎2

1, … , 𝑜𝑇
1 , 𝑎𝑇

1

𝑜1
2, 𝑎1

2, 𝑜2
2, 𝑎2

2, … , 𝑜𝑇
2, 𝑎𝑇

2

⋮
𝑜1
𝑁, 𝑎1

𝑁, 𝑜2
𝑁, 𝑎2

𝑁, … , 𝑜𝑇
𝑁, 𝑎𝑇

𝑁

𝑜𝑡 - observation
𝑎𝑡 - action

𝜋𝜃(𝑎𝑡|𝑜𝑡) - policy

• Models learn only “the mapping” between observations and actions,
instead of “the effect” of each action on an observation

• Imitation learning assumes the existence of an expert, limiting the
application scenario

• Imitation learning is “at best” as good as the expert

Image credit Ali Yahya and S. Levine 6

https://youtu.be/yhvaSEJtOV8?si=jjW_kZP5FT2JX7wk

Can We Reformulate the Learning Problem with
Rewards not Action Labels?

7

Playing Atari with Deep Reinforcement Learning

Can We Reformulate the Learning Problem with
Trial-and-Error not Imitation?

8

A Learning Framework that Solves Locomotion

RMA: Rapid Motor Adaptation for Legged Robots. Kumar et al. 9

Extreme Parkour with Legged Robots. Chen et al.

A Learning Framework that Solves Complex Locomotion

10

Solving Rubik's Cube with a Robot Hand. OpenAI.

A Learning Framework that Solves Rubik’s Cube

11

Learning Agile Soccer Skills for a Bipedal Robot with Deep Reinforcement Learning.
DeepMind.

A Learning Framework that Solves Multi-Agent Competition

12

A Learning Framework that Surpasses Experts

Champion-level drone racing using deep reinforcement learning. Kaufmann et al. 13

Action 𝑎𝑡

State 𝑠𝑡
Reward 𝑟𝑡

State 𝑠𝑡+1
Reward 𝑟𝑡+1

• A trajectory of interaction in the environment

𝑠𝑡 𝑠𝑡+1 𝑠𝑡+2 𝑠𝑡+3
𝑎𝑡 𝑎𝑡+1 𝑎𝑡+2

Actions Induce Changes of the Environment

14

Action 𝑎𝑡

State 𝑠𝑡
Reward 𝑟𝑡

State 𝑠𝑡+1
Reward 𝑟𝑡+1

• A trajectory of interaction in the environment

𝑠𝑡 𝑠𝑡+1 𝑠𝑡+2 𝑠𝑡+3
𝑎𝑡 𝑎𝑡+1 𝑎𝑡+2

𝑟𝑡 𝑟𝑡+1 𝑟𝑡+2

The Reward Function 𝑟(𝑠, 𝑎) Estimates
Goodness of Each State-Action Pair

high reward low reward ? reward

15

In fact, Defining Reward Functions is Tricky…

Success ✓ Fail ⤫ Leading others ?
Energy efficiency ?
Tire wear ?
Safety ?
Acceleration smoothness ?
Circular motion ?

• The most general form of rewards
➢ Don’t need domain knowledge

• The sparsest form of rewards
➢ Credit assignment issue

• Learning with only these rewards is
sample inefficient

• The biased form of rewards
➢ Need domain knowledge

• Denser forms of rewards
➢ Guide / facilitate learning with

expert knowledge / prior
• Require huge human efforts

➢ LLMs sometimes can help

16

Reinforcement Learning: Learns to Maximize
the Total Reward of an Episode of Interaction

Slide adapted from S. Levine

• A trajectory of interaction in the environment

Action 𝑎𝑡

State 𝑠𝑡
Reward 𝑟𝑡

State 𝑠𝑡+1
Reward 𝑟𝑡+1

• Maximize the expected value of the cumulative sum of reward

17

Reinforcement Learning: Learns to Maximize
the Total Reward of an Episode of Interaction

• A trajectory of interaction in the environment

Action 𝑎𝑡

State 𝑠𝑡
Reward 𝑟𝑡

State 𝑠𝑡+1
Reward 𝑟𝑡+1

• Maximize the expected value of the cumulative sum of reward

Previous actions decide what future states
we will perceive

Slide adapted from S. Levine 18

• An action induce changes of the environment state
➢ An action may have low reward now, but lead to very high-reward future states
➢ An action may have high reward now, but lead to very low-reward future states

𝑠𝑡 𝑠𝑡+1 𝑠𝑡+2 𝑠𝑡+3
𝑎𝑡 𝑎𝑡+1 𝑎𝑡+2

𝑟𝑡 𝑟𝑡+1 𝑟𝑡+2

A Sequence of Actions are Not Temporally Independent…

Consider an entire episode of the
interaction, not each individual action

19

• An action induce changes of the environment state
➢ An action may have low reward now, but lead to very high-reward future states
➢ An action may have high reward now, but lead to very low-reward future states

𝑠𝑡 𝑠𝑡+1 𝑠𝑡+2 𝑠𝑡+3
𝑎𝑡 𝑎𝑡+1 𝑎𝑡+2

𝑟𝑡 𝑟𝑡+1 𝑟𝑡+2

Consider an entire episode of the
interaction, not each individual action

Or, we can have better estimation of state-action
reward, that consider possible future rewards?

20

A Sequence of Actions are Not Temporally Independent…

Reinforcement Learning: Trial-and-Error Learning

https://youtu.be/kojH8a7BW04?si=Kc5H1cENuslClgxT 21

Diffusion-ES: Gradient-free Planning with Diffusion for Autonomous
Driving and Zero-Shot Instruction Following. Yang et al.

Task: make a right turn
re

w
a

rd
lo

w
h

ig
h

• Explore: discover actions that may have high
rewards, but usually are suboptimal

• Exploit: take the current best action22

Reinforcement Learning: Trial-and-Error Learning

Let’s Consider a Non-Sequential Setup

𝑎
𝑟

• Non-sequential setup:
➢ Each action results in an immediate reward
➢ We want to choose actions that maximize our immediate reward

in expectation
➢ There is no state

Slide adapted from K. Fragkiadaki 23

Let’s Consider a Non-Sequential Setup

𝑎
𝑟

• Non-sequential setup:
➢ Each action results in an immediate reward
➢ We want to choose actions that maximize our immediate reward

in expectation
➢ There is no state

• For example, choosing which restaurant to go
➢ Actions: the restaurants to choose from
➢ Rewards: your happiness

• Let’s say you can eat outside 100 times, what’s the best strategy to
maximize your total happiness?
➢ Explore: discover new restaurants
➢ Exploit: go to the favorite restaurant

• Without exploration, you may end up going to 7-11 all the time;
Without exploitation, you keep trying new but bad restaurants.

Slide adapted from K. Fragkiadaki

Let’s Consider a Non-Sequential Setup

𝑎
𝑟

• Non-sequential setup:
➢ Each action results in an immediate reward
➢ We want to choose actions that maximize our immediate reward

in expectation
➢ There is no state

• For example, choosing which restaurant to go
➢ Actions: the restaurants to choose from
➢ Rewards: your happiness

• Let’s say you can eat outside 100 times, what’s the best strategy to
maximize your total happiness?
➢ Explore: discover new restaurants
➢ Exploit: go to the favorite restaurant

• Without exploration, you may end up going to 7-11 all the time;
Without exploitation, you keep trying new but bad restaurants.

This is the key question in RL

Slide adapted from K. Fragkiadaki

26Slide credit K. Fragkiadaki

Slide credit K. Fragkiadaki 27

Let’s Consider a Non-Sequential Setup

𝑎
𝑟

• Non-sequential setup:
➢ Each action results in an immediate reward
➢ We want to choose actions that maximize our immediate reward in

expectation
➢ There is no state

• This simplified setup is also called “Bandit Problem”

• This simplified setup helps us to focus on key components / tools in RL

Slide adapted from K. Fragkiadaki 28

Multi-Armed Bandit Problem

Image credit Microsoft

Slide adapted from K. Fragkiadaki 29

Multi-Armed Bandit Problem

𝑟1~𝑃1
𝑃1 = 𝒩(𝜇1, 𝜎1)

𝑟2~𝑃2
𝑃2 = 𝒩(𝜇2, 𝜎2)

𝑟3~𝑃3
𝑃3 = 𝒩(𝜇3, 𝜎3)

• At timestep t
➢ The agent plays one of the K arms
➢ The kth arm produces reward 𝑟𝑘,𝑡 when played

➢ The reward 𝑟𝑘,𝑡 is drawn from a probability
distribution 𝑃𝑘 with mean 𝜇𝑘 and std 𝜎𝑘 (Note:
the distribution could be non-Gaussian).

➢ The real reward distribution is unknown

• How to maximize the total reward for playing the
bandit machines within a finite or infinite horizon?

Slide adapted from K. Fragkiadaki 30

What’s the Strategy if the Reward Distribution is Known

Image credit Microsoft

If the distribution is known, the best strategy is to exploit:
play the arm with the highest expected reward

31

How to Formulate the Behavior of Exploitation?

• Expected reward: 𝑞∗ 𝑎𝑘 = 𝔼 𝑟𝑡|𝐴𝑡 = 𝑎𝑘

• Action-value estimates: 𝑄𝑡 𝑎𝑘 ← Characterizes how good an action 𝑎𝑘 is

• Greedy action selection method: select the action with the highest estimated value:

𝐴𝑡
∗ = arg max

𝑎
𝑄𝑡(𝑎)

➢ If 𝐴𝑡 = 𝐴𝑡
∗, you are exploiting your current knowledge of the values of the actions

➢ If 𝐴𝑡 ≠ 𝐴𝑡
∗, you are exploring. You improve your estimate of the non-greedy actions

32

How to Formulate the Behavior of Exploitation?

• Expected reward: 𝑞∗ 𝑎𝑘 = 𝔼 𝑟𝑡|𝐴𝑡 = 𝑎𝑘

• Action-value estimates: 𝑄𝑡 𝑎𝑘 ← Characterizes how good an action 𝑎𝑘 is

• Greedy action selection method: select the action with the highest estimated value:

𝐴𝑡
∗ = arg max

𝑎
𝑄𝑡(𝑎)

➢ If 𝐴𝑡 = 𝐴𝑡
∗, you are exploiting your current knowledge of the values of the actions

➢ If 𝐴𝑡 ≠ 𝐴𝑡
∗, you are exploring. You improve your estimate of the non-greedy actions

• If 𝑄𝑡 𝑎𝑘 ≈ 𝑞∗ 𝑎𝑘 , no need for exploration. Greedy action selection is the best strategy.

• If 𝑄𝑡 𝑎𝑘 ≠ 𝑞∗ 𝑎𝑘 , you need exploring different actions to refine your action-value
estimation, otherwise, you end up choosing sub-optimal actions

33

Estimate Values of Actions by Sample-Average Method

• Expected reward: 𝑞∗ 𝑎𝑘 = 𝔼 𝑟𝑡|𝐴𝑡 = 𝑎𝑘

• Action-value estimates: 𝑄𝑡 𝑎𝑘

• Sample-average method: Average the rewards actually received:

𝑄𝑡 𝑎𝑘 ≔
sum of rewards when 𝑎𝑘 taken prior to 𝑡

number of times 𝑎𝑘 taken prior to 𝑡
=
σ𝑖=1
𝑡−1 𝑟𝑖 ∙ 𝟏𝐴𝑖=𝑎𝑘
σ𝑖=1
𝑡−1𝟏𝐴𝑖=𝑎𝑘

1. When you have enough samples (σ𝑖=1
𝑡−1𝟏𝐴𝑖=𝑎𝑘 → ∞): 𝑄𝑡 𝑎𝑘 ≈ 𝑞∗ 𝑎𝑘

2. When you don’t have enough samples, 𝑄𝑡 𝑎𝑘 differs from 𝑞∗ 𝑎𝑘

34

Estimate Values of Actions by Sample-Average Method

• Expected reward: 𝑞∗ 𝑎𝑘 = 𝔼 𝑟𝑡|𝐴𝑡 = 𝑎𝑘

• Action-value estimates: 𝑄𝑡 𝑎𝑘

• Sample-average method: Average the rewards actually received:

𝑄𝑡 𝑎𝑘 ≔
sum of rewards when 𝑎𝑘 taken prior to 𝑡

number of times 𝑎𝑘 taken prior to 𝑡
=
σ𝑖=1
𝑡−1 𝑟𝑖 ∙ 𝟏𝐴𝑖=𝑎𝑘
σ𝑖=1
𝑡−1𝟏𝐴𝑖=𝑎𝑘

1. When you have enough samples (σ𝑖=1
𝑡−1𝟏𝐴𝑖=𝑎𝑘 → ∞): 𝑄𝑡 𝑎𝑘 ≈ 𝑞∗ 𝑎𝑘

2. When you don’t have enough samples, 𝑄𝑡 𝑎𝑘 differs from 𝑞∗ 𝑎𝑘

➢ We need to keep a huge table to store the received rewards

35

Estimate Values of Actions by Incremental Implementation

• Let 𝑄𝑛 denote the estimate of its action value after being selected 𝑛 − 1 times

36

• Let 𝑄𝑛 denote the estimate of its action value after being selected 𝑛 − 1 times

• Let’s start rewriting 𝑄𝑛:

37

• Let 𝑄𝑛 denote the estimate of its action value after being selected 𝑛 − 1 times

• Let’s start rewriting 𝑄𝑛:

NewEstimate ← OldEstimate + StepSize × Target − OldEstimate

Estimate Values of Actions by Incremental Implementation

38

• Let 𝑄𝑛 denote the estimate of its action value after being selected 𝑛 − 1 times

• Let’s start rewriting 𝑄𝑛:

NewEstimate ← OldEstimate + StepSize × Target − OldEstimate

Estimate Values of Actions by Incremental Implementation

Doesn’t this look familiar? This is a standard form for learning/update rules!

Error

Slide adapted from K. Fragkiadaki 39

Wait! We Assumed Stationary Reward Distributions
What if Reward Distributions are Nonstationary

• A distribution is stationary if it is fixed over time, otherwise, it is nonstationary

• If a distribution is nonstationary, we should trust recent rewards more than long-
past rewards.

• We can re-write the incremental implementation with a step-size parameter 𝛼 ∈
(0,1], which denotes how much we emphasize on recent rewards.

40

Exponential Recency-Weighted Average Method

41

Exponential Recency-Weighted Average Method

How fast a term is forgotten

42

The Exploration / Exploitation Dilemma

• Exploitation: Make the best decision given current information
• Exploration: Sacrifice some action budget to gather more information

• Key question: when to explore and when to exploit?

• Idea 1: 𝜀-greedy method, a naïve solution that decide to explore / exploit
by throwing a dice with probability 𝜀

Slide adapted from K. Fragkiadaki 43

𝜀-Greedy Method

Reinforcement Learning: An Introduction. R. Sutton and A. Barto.

Explore or Exploit?

Update the action-value estimation..

44

• With higher 𝜀, the agent sacrifice performance in
the earlier steps for exploration, but it becomes
superior later with better action-value estimation

• With 𝜀 = 0, the agent is stuck in the local minimum

Reinforcement Learning: An Introduction. R. Sutton and A. Barto. 45

Reinforcement Learning: An Introduction. R. Sutton and A. Barto. 46

The Exploration / Exploitation Dilemma

• Exploitation: Make the best decision given current information
• Exploration: Sacrifice some action budget to gather more information

• Key question: when to explore and when to exploit?

• Idea 1: 𝜀-greedy method, a naïve solution that decide to explore / exploit
by throwing a dice with probability 𝜀

• Idea 2: upper confidence bound (UCB) method, the more uncertain we are
about an action-value, the more important it is to explore that action

Slide adapted from K. Fragkiadaki 47

48
Slide credit K. Fragkiadaki

49
Slide credit K. Fragkiadaki

50
Slide adapted from K. Fragkiadaki

The Exploration / Exploitation Dilemma

• Exploitation: Make the best decision given current information
• Exploration: Sacrifice some action budget to gather more information

• Key question: when to explore and when to exploit?

• Idea 1: 𝜀-greedy method, a naïve solution that decide to explore / exploit
by throwing a dice with probability 𝜀

• Idea 2: upper confidence bound (UCB) method, the more uncertain we are
about an action-value, the more important it is to explore that action

• Idea 3: gradient bandit method, sample an action based on relative
preference over other actions

Slide adapted from K. Fragkiadaki 51

Gradient Bandit Method

• Define 𝐻𝑡(𝑎𝑘) which characterizes relative preference of action 𝑎𝑘 over other
actions at time step 𝑡

• The probability for sampling an action is based on its preference value:

52

Gradient Bandit Method

• Define 𝐻𝑡(𝑎𝑘) which characterizes relative preference of action 𝑎𝑘 over other
actions at time step 𝑡

• The probability for sampling an action is based on its preference value:

• On each step, after selecting action 𝐴𝑡 and receiving the reward 𝑅𝑡 , the action
preferences are updated by

53

Gradient Bandit Method

• On each step, after selecting action 𝐴𝑡 and receiving the reward 𝑅𝑡 , the action
preferences are updated by

• ത𝑅𝑡 is called baseline, with which an action is compared to
➢ 𝑎𝑘 is preferred if its reward 𝑅𝑡 surpasses the baseline

• We can define ത𝑅𝑡 as the average of all rewards.

54

Gradient Bandit Method

• On each step, after selecting action 𝐴𝑡 and receiving the reward 𝑅𝑡 , the action
preferences are updated by

• ത𝑅𝑡 is called baseline, with which an action is compared to
➢ 𝑎𝑘 is preferred if its reward 𝑅𝑡 surpasses the baseline

• We can define ത𝑅𝑡 as the average of all rewards.

If 𝑅𝑡 > ത𝑅𝑡 , the preference of 𝑎𝑘 should be largely
increased if it was not frequently picked

55

Gradient Bandit Method

• On each step, after selecting action 𝐴𝑡 and receiving the reward 𝑅𝑡 , the action
preferences are updated by

• ത𝑅𝑡 is called baseline, with which an action is compared to
➢ 𝑎𝑘 is preferred if its reward 𝑅𝑡 surpasses the baseline

• We can define ത𝑅𝑡 as the average of all rewards.

If 𝑅𝑡 > ത𝑅𝑡 , the preference of 𝑎𝑘 should be largely
increased if it was not frequently picked

the preference of other actions should be
largely decreased if they were frequently picked

56

Gradient Bandit Method

Reinforcement Learning: An Introduction. R. Sutton and A. Barto. 57

Comparison of Three Methods

Reinforcement Learning: An Introduction. R. Sutton and A. Barto. 58

So Far, We’ve Considered a Non-Sequential Setup

𝑎
𝑟

But in most cases, we have “states” and every action
has sequential effect!

𝑠𝑡 𝑠𝑡+1 𝑠𝑡+2 𝑠𝑡+3
𝑎𝑡 𝑎𝑡+1 𝑎𝑡+2

𝑟𝑡 𝑟𝑡+1 𝑟𝑡+2

Moreover, we often don’t know “states” but have
only “observations”…

𝑠𝑡 𝑠𝑡+1 𝑠𝑡+2 𝑠𝑡+3

𝑎𝑡 𝑎𝑡+1 𝑎𝑡+2

𝑟𝑡 𝑟𝑡+1 𝑟𝑡+2

𝑜𝑡 𝑜𝑡+1 𝑜𝑡+2 𝑜𝑡+3

Slide adapted from K. Fragkiadaki 59

Let’s First Define the Following Components

• Agent: the decision maker that senses the
environment and decide “what actions” to take in
the environment

• Environment: the world
• Policy: a mapping function from states /

observations to actions.
• Reward: the signal indicates “what” you want a

robot to achieve, not “how” you want it to achieve
• State: the representations that retain all “essential”

information for decision making
• (World) Model: the transition function that maps

states / observations and actions to future states /
observations

Reinforcement Learning: An Introduction. R. Sutton and A. Barto. 60

MDP vs. POMDP

Markov Decision Process

• Markov property:
➢ The transition to 𝑠𝑡 only depends on the

immediately preceding state and action, 𝑠𝑡−1
and 𝑎𝑡−1 , not at all on earlier states and actions.

➢ The state must include information about all
aspects of the past agent–environment
interaction that make a difference for the
future

https://artint.info/3e/html/ArtInt3e.Ch12.S5.html 61

MDP vs. POMDP

https://www.inf.unibz.it/~franconi/teaching/artint.info/html/ArtInt_230.html

Markov Decision Process Partiall Observable Markov
Decision Process

State is a hidden variable. The decision is
only conditioned on partial observations

https://artint.info/3e/html/ArtInt3e.Ch12.S5.html 62

(Partially Observable) Markov Decision Process

The true information of
the environment

The observed information of
the environment

Transition function models how the
environment changes with the action

Reward function signals if
the goal is achieved:
• 𝑟𝑡 = 𝑟(𝑠𝑡+1, 𝑠𝑡, 𝑎𝑡)
• 𝑟𝑡 = 𝑟(𝑠𝑡, 𝑎𝑡)

Slide adapted from S. Levine 63

Markov Decision Process
The observed information of
the environment

Reward function signals if
the goal is achieved:
• 𝑟𝑡 = 𝑟(𝑠𝑡+1, 𝑠𝑡, 𝑎𝑡)
• 𝑟𝑡 = 𝑟(𝑠𝑡, 𝑎𝑡)

The true information of
the environment

Transition function models how the
environment changes with the action

Most General Case:
Transition function is unknown
Reward function is unknown
Observed information is incomplete (𝑜𝑡 ≠ 𝑠𝑡)

Most Specific Case:
Transition function is known
Reward function is known
Observed information is complete (𝑜𝑡 = 𝑠𝑡)

Slide adapted from S. Levine 64

Reinforcement Learning: Learns a Policy that Maximizes
the Total Reward of a sequence of actions

• A trajectory of interaction in the environment

Action 𝑎𝑡

State 𝑠𝑡
Reward 𝑟𝑡

State 𝑠𝑡+1
Reward 𝑟𝑡+1

• Maximize the expected value of the cumulative sum of reward

• Policy may be stochastic
• Environment may be stochastic
• Initial state may be randomly sampled
• 𝐸𝜋𝜃[𝑟(𝑥)] is smooth in 𝜃

Slide adapted from S. Levine 65

• Constrained Optimal Control Problem:

min
𝑥,𝑢

෍

𝑘=0

𝑁−1

𝑐 𝑥𝑘 , 𝑢𝑘 + cf (𝑥𝑁)

𝑠. 𝑡 𝑥0 = ො𝑥0
𝑥𝑘+1 = 𝑓 𝑥𝑘 , 𝑢𝑘 , 𝑘 = 0,… ,𝑁 − 1

• Solution 1: Consider it as a mathematical optimization problem. We can solve it
with existing optimization toolboxes (e.g. linear programming, quadratic
programming, non-linear programming …)

• Solution 2: Solve it with dynamic programming!

66

Remember We Talked about Optimal Control

• Constrained Optimal Control Problem:

min
𝑥,𝑢

෍

𝑘=0

𝑁−1

𝑐 𝑥𝑘 , 𝑢𝑘 + cf (𝑥𝑁)

𝑠. 𝑡 𝑥0 = ො𝑥0
𝑥𝑘+1 = 𝑓 𝑥𝑘 , 𝑢𝑘 , 𝑘 = 0,… ,𝑁 − 1

• Solution 1: Consider it as a mathematical optimization problem. We can solve it
with existing optimization toolboxes (e.g. linear programming, quadratic
programming, non-linear programming …)

• Solution 2: Solve it with dynamic programming!

Remember We Talked about Optimal Control
The objective of RL:

In fact, they are very similar problems
with different notations:
• control 𝑢 action 𝑎
• state 𝑥 state 𝑠
• cost 𝑐(𝑥, 𝑢) reward 𝑟(𝑠, 𝑎)
• minimize cost maximize reward

67

Returns 𝐺𝑡 in Episodic Tasks

• Episode: A sequence of interactions based on which the reward will be judged at
the end

• Episodic tasks: interaction breaks naturally into episodes, e.g., plays of a game,
trips through a maze

• Returns 𝐺𝑡: the cumulative sum of reward, or total reward, starting from time 𝑡

• Let T be the final time step:

𝐺𝑡 = 𝑅𝑡+1 + 𝑅𝑡+2 + …+ 𝑅𝑇

Slide adapted from K. Fragkiadaki 68

Returns 𝐺𝑡 in Continuing Tasks

• Continuing tasks: interaction does not have natural episodes, but just goes on
and on...just like real life

• Discounted returns 𝐺𝑡: the cumulative sum of reward, weighted by the discount
rate 𝛾

• Let T be the final time step, where 𝑇 → ∞:

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + … =෍
𝑘=0

∞

𝛾𝑘𝑅𝑡+𝑘+1

• Discount rate 𝛾 decides the present value of future rewards.
➢ If 𝛾 = 0, model is “myopic” concerning only the immediate reward
➢ If 𝛾 = 1, model is “farsighted” ignoring the efficiency of achieving the goal

Slide adapted from K. Fragkiadaki 69

Slide adapted from D. Silver 70

Slide credit K. Fragkiadaki 71

Why Discount

• Recursive relationships for discounted returns:

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 +⋯

= 𝑅𝑡+1 + 𝛾 𝑅𝑡+2 + 𝛾𝑅𝑡+3 +⋯

= 𝑅𝑡+1 + 𝛾𝐺𝑡+1

72

Value Functions are Expected Returns

• The state value function 𝑣𝜋(𝑠): the expected return starting from state 𝑠 following
policy 𝜋

𝑣𝜋 𝑠 = 𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠

• The state value function is dependent on the deployed policy, since different
actions lead to varied future states and total rewards.

73

• The state value function 𝑣𝜋(𝑠): the expected return starting from state 𝑠 following
policy 𝜋

𝑣𝜋 𝑠 = 𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠 = 𝔼𝜋 𝑅𝑡+1 + 𝛾𝐺𝑡+1 𝑆𝑡 = 𝑠

• The state value function is dependent on the deployed policy, since different
actions lead to varied future states and total rewards.

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 +⋯ = 𝑅𝑡+1 + 𝛾𝐺𝑡+1

The Recursive Relationships of Value Functions

74

• The state value function 𝑣𝜋(𝑠): the expected return starting from state 𝑠 following
policy 𝜋

𝑣𝜋 𝑠 = 𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠 = 𝔼𝜋 𝑅𝑡+1 + 𝛾𝐺𝑡+1 𝑆𝑡 = 𝑠

=෍

𝑎

𝜋(𝑎|𝑠)෍

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝔼𝜋 𝐺𝑡+1 𝑆𝑡+1 = 𝑠′]

=෍

𝑎

𝜋(𝑎|𝑠)෍

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝜋 𝑠′]

• The state value function is dependent on the deployed policy, since different
actions lead to varied future states and total rewards.

• The state value function 𝑣𝜋(𝑠) estimates the “goodness” of state 𝑠 when deploying
policy 𝜋. Simply speaking, how easy it is to achieve the goal from state 𝑠.

The Recursive Relationships of Value Functions

75

The Recursive Relationships of Value Functions

• The state value function 𝑣𝜋(𝑠): the expected return starting from state 𝑠 following
policy 𝜋

𝑣𝜋 𝑠 = 𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠 = 𝔼𝜋 𝑅𝑡+1 + 𝛾𝐺𝑡+1 𝑆𝑡 = 𝑠

=෍

𝑎

𝜋(𝑎|𝑠)෍

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝔼𝜋 𝐺𝑡+1 𝑆𝑡+1 = 𝑠′]

=෍

𝑎

𝜋(𝑎|𝑠)෍

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝜋 𝑠′]

• The state value function is dependent on the deployed policy, since different
actions lead to varied future states and total rewards.

76

Value Functions are Expected Returns

• The action value function 𝑞𝜋(𝑠, 𝑎): the expected return starting from state 𝑠 and
action 𝑎 following policy 𝜋

𝑞𝜋 𝑠, 𝑎 = 𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 = ෍

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝜋 𝑠′]

• The action-value function 𝑞𝜋(𝑠, 𝑎) estimates the “goodness” of action 𝑎 at state 𝑠
when deploying policy 𝜋. Simply speaking, how easy it is to achieve the goal with
action 𝑎 at state 𝑠.

• It’s obvious to see

𝑣𝜋 𝑠 =෍

𝑎

𝜋(𝑎|𝑠)෍

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝜋 𝑠′] =෍

𝑎

𝜋(𝑎|𝑠)𝑞𝜋 𝑠, 𝑎

77

Slide credit K. Fragkiadaki 78

Slide credit K. Fragkiadaki 79

Slide credit K. Fragkiadaki 80

Optimal Value Functions

• Definition: The optimal state-value function 𝑣∗(𝑠) is the maximum state-value function over
all policies. In other words, the optimal value function specifies the best possible
performance in the MDP.

𝑣∗ 𝑠 = max
𝜋

𝑣𝜋(𝑠)

• Definition: The optimal action-value function 𝑞∗(𝑠, 𝑎) is the maximum action-value function
over all policies

𝑞∗ 𝑠, 𝑎 = max
𝜋

𝑞𝜋(𝑠, 𝑎)

81

• Definition: The optimal state-value function 𝑣∗(𝑠) is the maximum state-value function over
all policies. In other words, the optimal value function specifies the best possible
performance in the MDP.

𝑣∗ 𝑠 = max
𝜋

𝑣𝜋(𝑠)

• Definition: The optimal action-value function 𝑞∗(𝑠, 𝑎) is the maximum action-value function
over all policies

𝑞∗ 𝑠, 𝑎 = max
𝜋

𝑞𝜋(𝑠, 𝑎)

• The optimal value function specifies the best possible performance in the MDP.

• An MDP is “solved” when we know the optimal value function

82

Optimal Value Functions

Slide credit K. Fragkiadaki 83

Slide credit K. Fragkiadaki 84

85

We Have the Optimal Policy if We Know 𝑞∗ 𝑠, 𝑎

• An optimal policy can be found by maximizing over 𝑞∗ 𝑠, 𝑎 :

𝜋∗ 𝑎 𝑠 = ቐ
1, 𝑖𝑓 𝑎 = argmax

𝑎
𝑞∗ 𝑠, 𝑎 .

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

We Have the Optimal Policy if We Know 𝑞∗ 𝑠, 𝑎

• An optimal policy can be found by maximising over 𝑞∗ 𝑠, 𝑎 :

𝜋∗ 𝑎 𝑠 = ቐ
1, 𝑖𝑓 𝑎 = argmax

𝑎
𝑞∗ 𝑠, 𝑎 .

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

• An optimal policy can be found by maximizing over 𝑣∗ 𝑠 with one-step look ahead:

𝜋∗ 𝑎 𝑠 = ቐ
1, 𝑖𝑓 𝑎 = argmax

𝑎
(Σ𝑠′,𝑟𝑝(𝑠

′, 𝑟|𝑠, 𝑎))(𝑟 + 𝛾𝑣∗ 𝑠
′)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

86

Bellman Optimality Equation for 𝑣∗

1. We have 𝑣∗ 𝑠 = max
𝑎

𝑞𝜋∗ 𝑠, 𝑎

87

Bellman Optimality Equation for 𝑣∗

1. We have 𝑣∗ 𝑠 = max
𝑎

𝑞𝜋∗ 𝑠, 𝑎

Why?

𝑣𝜋 𝑠 = ෍

𝑎∈𝒜

𝜋(𝑎|𝑠)𝑞𝜋(𝑠, 𝑎)

⇒ 𝑣∗ 𝑠 = ෍

𝑎∈𝒜

𝜋∗(𝑎|𝑠)𝑞𝜋∗(𝑠, 𝑎) = max
𝑎

𝑞𝜋∗ 𝑠, 𝑎

88

Bellman Optimality Equation for 𝑣∗

1. We have 𝑣∗ 𝑠 = max
𝑎

𝑞𝜋∗ 𝑠, 𝑎

2. We can further write the equation:

𝑣∗ 𝑠 = max
𝑎

𝑞𝜋∗ 𝑠, 𝑎

= max
𝑎

𝔼𝜋∗ 𝐺𝑡 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= max
𝑎

𝔼𝜋∗ 𝑅𝑡+1 + 𝛾𝐺𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= max
𝑎

𝔼 𝑅𝑡+1 + 𝛾𝑣∗(𝑆𝑡+1) 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= max
𝑎

෍

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣∗ 𝑠′]

89

Bellman Optimality Equation for 𝑣∗

1. We have 𝑣∗ 𝑠 = max
𝑎

𝑞𝜋∗ 𝑠, 𝑎

2. We can further write the equation:

𝑣∗ 𝑠 = max
𝑎

𝑞𝜋∗ 𝑠, 𝑎

= max
𝑎

𝔼𝜋∗ 𝐺𝑡 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= max
𝑎

𝔼𝜋∗ 𝑅𝑡+1 + 𝛾𝐺𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= max
𝑎

𝔼 𝑅𝑡+1 + 𝛾𝑣∗(𝑆𝑡+1) 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= max
𝑎

෍

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣∗ 𝑠′]

This is again the recursive relationship!

90

Bellman Optimality Equation for 𝑞∗

1. We have

𝑞∗ 𝑠, 𝑎 = 𝔼𝜋∗ 𝑅𝑡+1 + 𝛾𝐺𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= 𝔼 𝑅𝑡+1 + 𝛾𝑣∗(𝑆𝑡+1) 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= 𝔼 𝑅𝑡+1 + 𝛾max
𝑎′

𝑞𝜋∗ 𝑆𝑡+1, 𝑎
′ 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

=෍

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾max
𝑎′

𝑞∗ 𝑠′, 𝑎′]

91

Bellman Optimality Equation for 𝑞∗

1. We have

𝑞∗ 𝑠, 𝑎 = 𝔼𝜋∗ 𝑅𝑡+1 + 𝛾𝐺𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= 𝔼 𝑅𝑡+1 + 𝛾𝑣∗(𝑆𝑡+1) 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= 𝔼 𝑅𝑡+1 + 𝛾max
𝑎′

𝑞𝜋∗ 𝑆𝑡+1, 𝑎
′ 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

=෍

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾max
𝑎′

𝑞∗ 𝑠′, 𝑎′]

This is again the recursive relationship!

92

Back-up Diagrams for Value Functions

Slide credit K. Fragkiadaki 93

Back-up Diagrams for Optimal Value Functions

Slide credit K. Fragkiadaki 94

Slide credit K. Fragkiadaki 95

How to Calculate Value Functions?

1. Matrix-form solution: solving linear systems of equations

96

Matrix-Form Solution of Value Functions

• The state value function 𝑣𝜋(𝑠):

𝑣𝜋 𝑠 =෍

𝑎

𝜋(𝑎|𝑠)෍

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝜋 𝑠′]

• When the policy 𝜋 is fixed, MDP becomes Markov Reward Process (MRP)

𝑣𝜋 𝑠 =෍

𝑎

𝜋(𝑎|𝑠)෍

𝑠′

𝑇 𝑠′ 𝑠, 𝑎 [𝑟(𝑠, 𝑎) + 𝛾𝑣𝜋 𝑠′]

=෍

𝑎

𝜋(𝑎|𝑠)𝑟(𝑠, 𝑎) + 𝛾෍

𝑎

𝜋(𝑎|𝑠)෍

𝑠′

𝑇 𝑠′ 𝑠, 𝑎 𝑣𝜋 𝑠′

= 𝕣𝑠
𝜋 + 𝛾෍

𝑠′

𝕋𝑠′,𝑠
𝜋 𝑣𝜋 𝑠′

Slide adapted from K. Fragkiadaki 97

Slide credit K. Fragkiadaki 98

How to Calculate Value Functions?

1. Matrix-form solution: solve linear systems of equations
2. Iterative estimation: utilize the recursive relationships

99

• The state value function 𝑣𝜋(𝑠):

𝑣𝜋 𝑠 =෍

𝑎

𝜋(𝑎|𝑠)෍

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝜋 𝑠′]

• We can utilize the the recursive relationship to update 𝑣𝜋 𝑠

𝑓𝑜𝑟 𝑘 = 1⋯∞ ∶

𝑣𝑘+1 𝑠 ≔ ෍

𝑎

𝜋(𝑎|𝑠)෍

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝑘 𝑠′]

Iterative Policy Evaluation

100

• We can utilize the the recursive relationship to update 𝑣𝜋 𝑠

𝑓𝑜𝑟 𝑘 = 1⋯∞ ∶

𝑣𝑘+1 𝑠 ≔ ෍

𝑎

𝜋(𝑎|𝑠)෍

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝑘 𝑠′]

• Dynamic programming solution: use a table to keep track of the value function

1

0.9

0.81

0.64

0.9

0.81

0.81

0.47

0

0.64

0.58

0.52

0.47

1

0.9

0.81

0.64

0.9

0.81

0.81

0

0

0.64

0.58

0.52

0

𝑣𝑘 𝑣𝑘+1

update

101

Iterative Policy Evaluation

• Current policy: going up, down, left, right with even probability. The action
that would take the agent off the grid would leave the state unchanged.

• Task: Travel from the start to the goal location
• Reward: reach goal = 1, otherwise 0

Estimate Value Function with Dynamic
Programming

1

0

0

0

0

0

0

0

0

0

0

0

0

Reward map

0

0

0

0

0

0

0

0

0

0

0

0

0

𝑣0

0.5

0.25

0

0

0.25

0

0

0

0

0

0

0

0

𝑣1

102

• Backward dynamic programming, let 𝛾 = 1.0 (no discount)

𝑣𝑘+1 𝑠 =෍

𝑎

𝜋(𝑎|𝑠)෍

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝑘 𝑠′]

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Reward map

0.5 = 1
4
× 1 + 1 × 0 + 1

4
× 1 + 1 × 0 + 1

4
× 0 + 1 × 0 + 1

4
× 0 + 1 × 0

𝑣0

0.5

0.25

0

0

0.25

0

0

0

0

0

0

0

0

𝑣1

Estimate Value Function with Dynamic
Programming

103

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Reward map

0.25 = 1
4
× 1 + 1 × 0 + 1

4
× 0 + 1 × 0 + 1

4
× 0 + 1 × 0 + 1

4
× 0 + 1 × 0

𝑣0

0.5

0.25

0

0

0.25

0

0

0

0

0

0

0

0

𝑣1

• Backward dynamic programming, let 𝛾 = 1.0 (no discount)

𝑣𝑘+1 𝑠 =෍

𝑎

𝜋(𝑎|𝑠)෍

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝑘 𝑠′]

Estimate Value Function with Dynamic
Programming

104

1

0

0

0

0

0

0

0

0

0

0

0

0

0.5

0.25

0

0

0.25

0

0

0

0

0

0

0

0

Reward map

0.44

= 1
4
× 1 + 1 × 0.5 + 1

4
× 0 + 1 × 0.25 + 1

4
× 0 + 1 × 0 + 1

4
× 0 + 1 × 0

𝑣1

0.88

0.44

0.06

0

0.44

0.13

0.06

0

0

0

0

0

0

𝑣2

• Backward dynamic programming, let 𝛾 = 1.0 (no discount)

𝑣𝑘+1 𝑠 =෍

𝑎

𝜋(𝑎|𝑠)෍

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝑘 𝑠′]

Estimate Value Function with Dynamic
Programming

105

Iterative Policy Evaluation

𝑣𝑘+1 𝑠 ≔ σ𝑎 𝜋(𝑎|𝑠) σ𝑠′,𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝑘 𝑠′]

106

Can We Improve the Current Policy?

• Let’s say we obtain the value function 𝑣𝜋 𝑠 based on policy 𝜋 using dynamic programming,
How can we improve the policy?

• Switch to a greedy policy!

𝜋′ 𝑎 𝑠 = ቐ
1, 𝑖𝑓 𝑎 = argmax

𝑎
(Σ𝑠′,𝑟𝑝(𝑠

′, 𝑟|𝑠, 𝑎))(𝑟 + 𝛾𝑣𝜋 𝑠′)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

• Why greedy policy 𝜋′ is better than the original policy 𝜋 at state 𝑠?
Since a greedy policy is deterministic: 𝜋′(𝑠) = argmax

𝑎
(Σ𝑠′,𝑟𝑝(𝑠

′, 𝑟|𝑠, 𝑎))(𝑟 + 𝛾𝑣𝜋 𝑠′)

𝑞𝜋 𝑠|𝜋′(𝑠) = max
𝑎

σ𝑠′,𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝜋 𝑠′]

≥ σ𝑎 𝜋 𝑎 𝑠 σ𝑠′,𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎 𝑟 + 𝛾𝑣𝜋 𝑠′ = 𝑣𝜋 𝑠The value of selecting action 𝜋′(𝑠) is higher
than following policy 𝜋 at state 𝑠 (here we
still follow policy 𝜋 at other states)

107

Slide credit D. Silver 108

Slide credit D. Silver 109

Slide credit D. Silver 110

Summary
RL as a general learning framework for

different tasks
Multi-armed Bandit Problem

The learning objective of RL

• Expected reward: 𝑞∗ 𝑎𝑘 = 𝔼 𝑟𝑡|𝐴𝑡 = 𝑎𝑘
• Action-value estimates: 𝑄𝑡 𝑎𝑘
• Greedy action selection method: select the

action with the highest estimated value:
𝐴𝑡

∗ = arg max
𝑎

𝑄𝑡(𝑎)

➢ If 𝐴𝑡 = 𝐴𝑡
∗, you are exploiting your current

knowledge of the values of the actions
➢ If 𝐴𝑡 ≠ 𝐴𝑡

∗, you are exploring. You improve
your estimate of the non-greedy actions

Markov Decision Process

• Discounted returns: 𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝐺𝑡+1
• The state value function 𝑣𝜋 𝑠 = 𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠

111

	Slide 1: Robot Perception and Learning
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Reinforcement Learning: Learns to Maximize the Total Reward of an Episode of Interaction
	Slide 18: Reinforcement Learning: Learns to Maximize the Total Reward of an Episode of Interaction
	Slide 19
	Slide 20
	Slide 21: Reinforcement Learning: Trial-and-Error Learning
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63: (Partially Observable) Markov Decision Process
	Slide 64: Markov Decision Process
	Slide 65: Reinforcement Learning: Learns a Policy that Maximizes the Total Reward of a sequence of actions
	Slide 66
	Slide 67
	Slide 68: Returns cap G sub t in Episodic Tasks
	Slide 69: Returns cap G sub t in Continuing Tasks
	Slide 70
	Slide 71
	Slide 72: Why Discount
	Slide 73: Value Functions are Expected Returns
	Slide 74: The Recursive Relationships of Value Functions
	Slide 75
	Slide 76: The Recursive Relationships of Value Functions
	Slide 77: Value Functions are Expected Returns
	Slide 78
	Slide 79
	Slide 80
	Slide 81: Optimal Value Functions
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86: We Have the Optimal Policy if We Know q to the asterisk operator , open paren s ,a. , close paren
	Slide 87: Bellman Optimality Equation for v to the asterisk operator
	Slide 88: Bellman Optimality Equation for v to the asterisk operator
	Slide 89: Bellman Optimality Equation for v to the asterisk operator
	Slide 90: Bellman Optimality Equation for v to the asterisk operator
	Slide 91: Bellman Optimality Equation for q to the asterisk operator
	Slide 92: Bellman Optimality Equation for q to the asterisk operator
	Slide 93: Back-up Diagrams for Value Functions
	Slide 94: Back-up Diagrams for Optimal Value Functions
	Slide 95
	Slide 96: How to Calculate Value Functions?
	Slide 97: Matrix-Form Solution of Value Functions
	Slide 98
	Slide 99: How to Calculate Value Functions?
	Slide 100
	Slide 101
	Slide 102: Estimate Value Function with Dynamic Programming
	Slide 103
	Slide 104
	Slide 105
	Slide 106: Iterative Policy Evaluation
	Slide 107: Can We Improve the Current Policy?
	Slide 108
	Slide 109
	Slide 110
	Slide 111: Summary

