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The Formulation of Imitation Learning is Limited

Image credit Ali Yahya and S. Levine
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• Models learn only “the mapping” between observations and actions, 
instead of “the effect” of each action on an observation
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The Formulation of Imitation Learning is Limited
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• Models learn only “the mapping” between observations and actions, 
instead of “the effect” of each action on an observation

➢ Can we achieve the goal with the current action?

➢ How long does it take to achieve the goal?

➢ How will the world change?

𝑜𝑡 - observation
𝑎𝑡 - action

𝜋𝜃(𝑎𝑡|𝑜𝑡) - policy
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𝜋𝜃(𝑎𝑡|𝑜𝑡) - policy

• Models learn only “the mapping” between observations and actions, 
instead of “the effect” of each action on an observation

• Imitation learning assumes the existence of an expert, limiting the 
application scenario
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Can We Have a General Learning Framework for All Different Tasks? 
Power Plant Control

Magnetic control of tokamak plasmas through deep reinforcement learning. Degrave et al.

Adaptive VisuoMotor Control

AnyCar to Anywhere: Learning Universal Dynamics Model for Agile and 
Adaptive Mobility.  Xiao et al.

Trading

Content Generation Training Animals

Gaming
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The Formulation of Imitation Learning is Limited
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𝑎𝑡 - action

𝜋𝜃(𝑎𝑡|𝑜𝑡) - policy

• Models learn only “the mapping” between observations and actions, 
instead of “the effect” of each action on an observation

• Imitation learning assumes the existence of an expert, limiting the 
application scenario

• Imitation learning is “at best” as good as the expert
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https://youtu.be/yhvaSEJtOV8?si=jjW_kZP5FT2JX7wk

Can We Reformulate the Learning Problem with 
Rewards not Action Labels?
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Playing Atari with Deep Reinforcement Learning

Can We Reformulate the Learning Problem with 
Trial-and-Error not Imitation?
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A Learning Framework that Solves Locomotion

RMA: Rapid Motor Adaptation for Legged Robots. Kumar et al. 9



Extreme Parkour with Legged Robots. Chen et al.

A Learning Framework that Solves Complex Locomotion
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Solving Rubik's Cube with a Robot Hand.  OpenAI.

A Learning Framework that Solves Rubik’s Cube
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Learning Agile Soccer Skills for a Bipedal Robot with Deep Reinforcement Learning.  
DeepMind.

A Learning Framework that Solves Multi-Agent Competition
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A Learning Framework that Surpasses Experts

Champion-level drone racing using deep reinforcement learning.  Kaufmann et al. 13



Action 𝑎𝑡

State 𝑠𝑡
Reward 𝑟𝑡

State 𝑠𝑡+1
Reward 𝑟𝑡+1

• A trajectory of interaction in the environment

𝑠𝑡 𝑠𝑡+1 𝑠𝑡+2 𝑠𝑡+3
𝑎𝑡 𝑎𝑡+1 𝑎𝑡+2

Actions Induce Changes of the Environment
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Action 𝑎𝑡

State 𝑠𝑡
Reward 𝑟𝑡

State 𝑠𝑡+1
Reward 𝑟𝑡+1

• A trajectory of interaction in the environment

𝑠𝑡 𝑠𝑡+1 𝑠𝑡+2 𝑠𝑡+3
𝑎𝑡 𝑎𝑡+1 𝑎𝑡+2

𝑟𝑡 𝑟𝑡+1 𝑟𝑡+2

The Reward Function 𝑟(𝑠, 𝑎) Estimates 
Goodness of Each State-Action Pair

high reward low reward ? reward
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In fact, Defining Reward Functions is Tricky…

Success ✓ Fail ⤫ Leading others ?
Energy efficiency ?
Tire wear ?
Safety ?
Acceleration smoothness ?
Circular motion ?

• The most general form of rewards
➢ Don’t need domain knowledge

• The sparsest form of rewards
➢ Credit assignment issue

• Learning with only these rewards is 
sample inefficient

• The biased form of rewards
➢ Need domain knowledge

• Denser forms of rewards
➢ Guide / facilitate learning with 

expert knowledge / prior
• Require huge human efforts

➢ LLMs sometimes can help
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Reinforcement Learning: Learns to Maximize 
the Total Reward of an Episode of Interaction

Slide adapted from S. Levine

• A trajectory of interaction in the environment

Action 𝑎𝑡

State 𝑠𝑡
Reward 𝑟𝑡

State 𝑠𝑡+1
Reward 𝑟𝑡+1

• Maximize the expected value of the cumulative sum of reward
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Reinforcement Learning: Learns to Maximize 
the Total Reward of an Episode of Interaction

• A trajectory of interaction in the environment

Action 𝑎𝑡

State 𝑠𝑡
Reward 𝑟𝑡

State 𝑠𝑡+1
Reward 𝑟𝑡+1

• Maximize the expected value of the cumulative sum of reward

Previous actions decide what future states 
we will perceive

Slide adapted from S. Levine 18



• An action induce changes of the environment state
➢ An action may have low reward now, but lead to very high-reward future states
➢ An action may have high reward now, but lead to very low-reward future states

𝑠𝑡 𝑠𝑡+1 𝑠𝑡+2 𝑠𝑡+3
𝑎𝑡 𝑎𝑡+1 𝑎𝑡+2

𝑟𝑡 𝑟𝑡+1 𝑟𝑡+2

A Sequence of Actions are Not Temporally Independent…

Consider an entire episode of the 
interaction, not each individual action
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• An action induce changes of the environment state
➢ An action may have low reward now, but lead to very high-reward future states
➢ An action may have high reward now, but lead to very low-reward future states

𝑠𝑡 𝑠𝑡+1 𝑠𝑡+2 𝑠𝑡+3
𝑎𝑡 𝑎𝑡+1 𝑎𝑡+2

𝑟𝑡 𝑟𝑡+1 𝑟𝑡+2

Consider an entire episode of the 
interaction, not each individual action

Or, we can have better estimation of state-action 
reward, that consider possible future rewards?

20

A Sequence of Actions are Not Temporally Independent…



Reinforcement Learning: Trial-and-Error Learning

https://youtu.be/kojH8a7BW04?si=Kc5H1cENuslClgxT 21



Diffusion-ES: Gradient-free Planning with Diffusion for Autonomous 
Driving and Zero-Shot Instruction Following.  Yang et al.

Task: make a right turn
re

w
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lo
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• Explore: discover actions that may have high 
rewards, but usually are suboptimal

• Exploit: take the current best action22

Reinforcement Learning: Trial-and-Error Learning



Let’s Consider a Non-Sequential Setup

𝑎
𝑟

• Non-sequential setup:
➢ Each action results in an immediate reward
➢ We want to choose actions that maximize our immediate reward 

in expectation
➢ There is no state

Slide adapted from K. Fragkiadaki 23



Let’s Consider a Non-Sequential Setup

𝑎
𝑟

• Non-sequential setup:
➢ Each action results in an immediate reward
➢ We want to choose actions that maximize our immediate reward 

in expectation
➢ There is no state

• For example, choosing which restaurant to go
➢ Actions: the restaurants to choose from
➢ Rewards: your happiness

• Let’s say you can eat outside 100 times, what’s the best strategy to 
maximize your total happiness?
➢ Explore: discover new restaurants
➢ Exploit: go to the favorite restaurant

• Without exploration, you may end up going to 7-11 all the time;  
Without exploitation, you keep trying new but bad restaurants.

Slide adapted from K. Fragkiadaki



Let’s Consider a Non-Sequential Setup

𝑎
𝑟

• Non-sequential setup:
➢ Each action results in an immediate reward
➢ We want to choose actions that maximize our immediate reward 

in expectation
➢ There is no state

• For example, choosing which restaurant to go
➢ Actions: the restaurants to choose from
➢ Rewards: your happiness

• Let’s say you can eat outside 100 times, what’s the best strategy to 
maximize your total happiness?
➢ Explore: discover new restaurants
➢ Exploit: go to the favorite restaurant

• Without exploration, you may end up going to 7-11 all the time;  
Without exploitation, you keep trying new but bad restaurants.

This is the key question in RL

Slide adapted from K. Fragkiadaki
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Let’s Consider a Non-Sequential Setup

𝑎
𝑟

• Non-sequential setup:
➢ Each action results in an immediate reward
➢ We want to choose actions that maximize our immediate reward in 

expectation
➢ There is no state

• This simplified setup is also called “Bandit Problem”

• This simplified setup helps us to focus on key components / tools in RL

Slide adapted from K. Fragkiadaki 28



Multi-Armed Bandit Problem

Image credit Microsoft

Slide adapted from K. Fragkiadaki 29



Multi-Armed Bandit Problem

𝑟1~𝑃1
𝑃1 = 𝒩(𝜇1, 𝜎1)

𝑟2~𝑃2
𝑃2 = 𝒩(𝜇2, 𝜎2)

𝑟3~𝑃3
𝑃3 = 𝒩(𝜇3, 𝜎3)

• At timestep t
➢ The agent plays one of the K arms
➢ The kth arm produces reward 𝑟𝑘,𝑡 when played

➢ The reward 𝑟𝑘,𝑡 is drawn from a probability 
distribution 𝑃𝑘 with mean 𝜇𝑘 and std 𝜎𝑘 (Note: 
the distribution could be non-Gaussian). 

➢ The real reward distribution is unknown

• How to maximize the total reward for playing the 
bandit machines within a finite or infinite horizon?

Slide adapted from K. Fragkiadaki 30



What’s the Strategy if the Reward Distribution is Known

Image credit Microsoft

If the distribution is known, the best strategy is to exploit: 
play the arm with the highest expected reward
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How to Formulate the Behavior of Exploitation?

• Expected reward:    𝑞∗ 𝑎𝑘 = 𝔼 𝑟𝑡|𝐴𝑡 = 𝑎𝑘

• Action-value estimates:    𝑄𝑡 𝑎𝑘 ← Characterizes how good an action 𝑎𝑘 is

• Greedy action selection method: select the action with the highest estimated value:

𝐴𝑡
∗ = arg max

𝑎
𝑄𝑡(𝑎)

➢ If 𝐴𝑡 = 𝐴𝑡
∗, you are exploiting your current knowledge of the values of the actions

➢ If 𝐴𝑡 ≠ 𝐴𝑡
∗, you are exploring.  You improve your estimate of the non-greedy actions
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How to Formulate the Behavior of Exploitation?

• Expected reward:    𝑞∗ 𝑎𝑘 = 𝔼 𝑟𝑡|𝐴𝑡 = 𝑎𝑘

• Action-value estimates:    𝑄𝑡 𝑎𝑘 ← Characterizes how good an action 𝑎𝑘 is

• Greedy action selection method: select the action with the highest estimated value:

𝐴𝑡
∗ = arg max

𝑎
𝑄𝑡(𝑎)

➢ If 𝐴𝑡 = 𝐴𝑡
∗, you are exploiting your current knowledge of the values of the actions

➢ If 𝐴𝑡 ≠ 𝐴𝑡
∗, you are exploring.  You improve your estimate of the non-greedy actions

• If 𝑄𝑡 𝑎𝑘 ≈ 𝑞∗ 𝑎𝑘 , no need for exploration.  Greedy action selection is the best strategy.

• If 𝑄𝑡 𝑎𝑘 ≠ 𝑞∗ 𝑎𝑘 , you need exploring different actions to refine your action-value 
estimation, otherwise, you end up choosing sub-optimal actions
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Estimate Values of Actions by Sample-Average Method

• Expected reward:    𝑞∗ 𝑎𝑘 = 𝔼 𝑟𝑡|𝐴𝑡 = 𝑎𝑘

• Action-value estimates:    𝑄𝑡 𝑎𝑘

• Sample-average method: Average the rewards actually received:

𝑄𝑡 𝑎𝑘 ≔
sum of rewards when 𝑎𝑘 taken prior to 𝑡

number of times 𝑎𝑘 taken prior to 𝑡
=
σ𝑖=1
𝑡−1 𝑟𝑖 ∙ 𝟏𝐴𝑖=𝑎𝑘
σ𝑖=1
𝑡−1𝟏𝐴𝑖=𝑎𝑘

1. When you have enough samples (σ𝑖=1
𝑡−1𝟏𝐴𝑖=𝑎𝑘 → ∞):         𝑄𝑡 𝑎𝑘 ≈ 𝑞∗ 𝑎𝑘

2. When you don’t have enough samples, 𝑄𝑡 𝑎𝑘 differs from 𝑞∗ 𝑎𝑘
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Estimate Values of Actions by Sample-Average Method

• Expected reward:    𝑞∗ 𝑎𝑘 = 𝔼 𝑟𝑡|𝐴𝑡 = 𝑎𝑘

• Action-value estimates:    𝑄𝑡 𝑎𝑘

• Sample-average method: Average the rewards actually received:

𝑄𝑡 𝑎𝑘 ≔
sum of rewards when 𝑎𝑘 taken prior to 𝑡

number of times 𝑎𝑘 taken prior to 𝑡
=
σ𝑖=1
𝑡−1 𝑟𝑖 ∙ 𝟏𝐴𝑖=𝑎𝑘
σ𝑖=1
𝑡−1𝟏𝐴𝑖=𝑎𝑘

1. When you have enough samples (σ𝑖=1
𝑡−1𝟏𝐴𝑖=𝑎𝑘 → ∞):         𝑄𝑡 𝑎𝑘 ≈ 𝑞∗ 𝑎𝑘

2. When you don’t have enough samples, 𝑄𝑡 𝑎𝑘 differs from 𝑞∗ 𝑎𝑘

➢ We need to keep a huge table to store the received rewards

35



Estimate Values of Actions by Incremental Implementation

• Let 𝑄𝑛 denote the estimate of its action value after being selected 𝑛 − 1 times

36



• Let 𝑄𝑛 denote the estimate of its action value after being selected 𝑛 − 1 times

• Let’s start rewriting 𝑄𝑛:
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• Let 𝑄𝑛 denote the estimate of its action value after being selected 𝑛 − 1 times

• Let’s start rewriting 𝑄𝑛:

NewEstimate ← OldEstimate + StepSize × Target − OldEstimate

Estimate Values of Actions by Incremental Implementation
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• Let 𝑄𝑛 denote the estimate of its action value after being selected 𝑛 − 1 times

• Let’s start rewriting 𝑄𝑛:

NewEstimate ← OldEstimate + StepSize × Target − OldEstimate

Estimate Values of Actions by Incremental Implementation

Doesn’t this look familiar?  This is a standard form for learning/update rules!

Error

Slide adapted from K. Fragkiadaki 39



Wait!  We Assumed Stationary Reward Distributions
What if Reward Distributions are Nonstationary

• A distribution is stationary if it is fixed over time, otherwise, it is nonstationary

• If a distribution is nonstationary, we should trust recent rewards more than long-
past rewards.

• We can re-write the incremental implementation with a step-size parameter 𝛼 ∈
(0,1], which denotes how much we emphasize on recent rewards.

40



Exponential Recency-Weighted Average Method

41



Exponential Recency-Weighted Average Method

How fast a term is forgotten

42



The Exploration / Exploitation Dilemma

• Exploitation:  Make the best decision given current information
• Exploration:  Sacrifice some action budget to gather more information

• Key question: when to explore and when to exploit?

• Idea 1: 𝜀-greedy method, a naïve solution that decide to explore / exploit 
by throwing a dice with probability 𝜀

Slide adapted from K. Fragkiadaki 43



𝜀-Greedy Method

Reinforcement Learning: An Introduction.  R. Sutton and A. Barto.

Explore or Exploit?

Update the action-value estimation..

44



• With higher 𝜀, the agent sacrifice performance in 
the earlier steps for exploration, but it becomes 
superior later with better action-value estimation

• With 𝜀 = 0, the agent is stuck in the local minimum

Reinforcement Learning: An Introduction.  R. Sutton and A. Barto. 45



Reinforcement Learning: An Introduction.  R. Sutton and A. Barto. 46



The Exploration / Exploitation Dilemma

• Exploitation:  Make the best decision given current information
• Exploration:  Sacrifice some action budget to gather more information

• Key question: when to explore and when to exploit?

• Idea 1: 𝜀-greedy method, a naïve solution that decide to explore / exploit 
by throwing a dice with probability 𝜀

• Idea 2: upper confidence bound (UCB) method, the more uncertain we are 
about an action-value, the more important it is to explore that action

Slide adapted from K. Fragkiadaki 47
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The Exploration / Exploitation Dilemma

• Exploitation:  Make the best decision given current information
• Exploration:  Sacrifice some action budget to gather more information

• Key question: when to explore and when to exploit?

• Idea 1: 𝜀-greedy method, a naïve solution that decide to explore / exploit 
by throwing a dice with probability 𝜀

• Idea 2: upper confidence bound (UCB) method, the more uncertain we are 
about an action-value, the more important it is to explore that action

• Idea 3: gradient bandit method, sample an action based on relative 
preference over other actions

Slide adapted from K. Fragkiadaki 51



Gradient Bandit Method

• Define 𝐻𝑡(𝑎𝑘) which characterizes relative preference of action 𝑎𝑘 over other 
actions at time step 𝑡

• The probability for sampling an action is based on its preference value:

52



Gradient Bandit Method

• Define 𝐻𝑡(𝑎𝑘) which characterizes relative preference of action 𝑎𝑘 over other 
actions at time step 𝑡

• The probability for sampling an action is based on its preference value:

• On each step, after selecting action 𝐴𝑡 and receiving the reward 𝑅𝑡 , the action 
preferences are updated by
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Gradient Bandit Method

• On each step, after selecting action 𝐴𝑡 and receiving the reward 𝑅𝑡 , the action 
preferences are updated by

• ത𝑅𝑡 is called baseline, with which an action is compared to
➢ 𝑎𝑘 is preferred if its reward 𝑅𝑡 surpasses the baseline

• We can define ത𝑅𝑡 as the average of all rewards.
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Gradient Bandit Method

• On each step, after selecting action 𝐴𝑡 and receiving the reward 𝑅𝑡 , the action 
preferences are updated by

• ത𝑅𝑡 is called baseline, with which an action is compared to
➢ 𝑎𝑘 is preferred if its reward 𝑅𝑡 surpasses the baseline

• We can define ത𝑅𝑡 as the average of all rewards.

If 𝑅𝑡 > ത𝑅𝑡 , the preference of 𝑎𝑘 should be largely 
increased if it was not frequently picked
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Gradient Bandit Method

• On each step, after selecting action 𝐴𝑡 and receiving the reward 𝑅𝑡 , the action 
preferences are updated by

• ത𝑅𝑡 is called baseline, with which an action is compared to
➢ 𝑎𝑘 is preferred if its reward 𝑅𝑡 surpasses the baseline

• We can define ത𝑅𝑡 as the average of all rewards.

If 𝑅𝑡 > ത𝑅𝑡 , the preference of 𝑎𝑘 should be largely 
increased if it was not frequently picked

the preference of other actions should be 
largely decreased if they were frequently picked
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Gradient Bandit Method

Reinforcement Learning: An Introduction.  R. Sutton and A. Barto. 57



Comparison of Three Methods

Reinforcement Learning: An Introduction.  R. Sutton and A. Barto. 58



So Far, We’ve Considered a Non-Sequential Setup

𝑎
𝑟

But in most cases, we have “states” and every action 
has sequential effect! 

𝑠𝑡 𝑠𝑡+1 𝑠𝑡+2 𝑠𝑡+3
𝑎𝑡 𝑎𝑡+1 𝑎𝑡+2

𝑟𝑡 𝑟𝑡+1 𝑟𝑡+2

Moreover, we often don’t know “states” but have 
only “observations”…

𝑠𝑡 𝑠𝑡+1 𝑠𝑡+2 𝑠𝑡+3

𝑎𝑡 𝑎𝑡+1 𝑎𝑡+2

𝑟𝑡 𝑟𝑡+1 𝑟𝑡+2

𝑜𝑡 𝑜𝑡+1 𝑜𝑡+2 𝑜𝑡+3

Slide adapted from K. Fragkiadaki 59



Let’s First Define the Following Components

• Agent: the decision maker that senses the 
environment and decide “what actions” to take in 
the environment

• Environment: the world
• Policy: a mapping function from states / 

observations to actions.
• Reward: the signal indicates “what” you want a 

robot to achieve, not “how” you want it to achieve
• State: the representations that retain all “essential” 

information for decision making
• (World) Model: the transition function that maps 

states / observations and actions to future states / 
observations

Reinforcement Learning: An Introduction.  R. Sutton and A. Barto. 60



MDP vs. POMDP

Markov Decision Process

• Markov property:
➢ The transition to 𝑠𝑡 only depends on the 

immediately preceding state and action, 𝑠𝑡−1
and 𝑎𝑡−1 , not at all on earlier states and actions.

➢ The state must include information about all 
aspects of the past agent–environment 
interaction that make a difference for the 
future

https://artint.info/3e/html/ArtInt3e.Ch12.S5.html 61



MDP vs. POMDP

https://www.inf.unibz.it/~franconi/teaching/artint.info/html/ArtInt_230.html

Markov Decision Process Partiall Observable Markov 
Decision Process

State is a hidden variable.  The decision is 
only conditioned on partial observations

https://artint.info/3e/html/ArtInt3e.Ch12.S5.html 62



(Partially Observable) Markov Decision Process

The true information of 
the environment

The observed information of 
the environment

Transition function models how the 
environment changes with the action

Reward function signals if 
the goal is achieved:
• 𝑟𝑡 = 𝑟(𝑠𝑡+1, 𝑠𝑡, 𝑎𝑡)
• 𝑟𝑡 = 𝑟(𝑠𝑡, 𝑎𝑡)

Slide adapted from S. Levine 63



Markov Decision Process
The observed information of 
the environment

Reward function signals if 
the goal is achieved:
• 𝑟𝑡 = 𝑟(𝑠𝑡+1, 𝑠𝑡, 𝑎𝑡)
• 𝑟𝑡 = 𝑟(𝑠𝑡, 𝑎𝑡)

The true information of 
the environment

Transition function models how the 
environment changes with the action

Most General Case:
Transition function is unknown
Reward function is unknown
Observed information is incomplete (𝑜𝑡 ≠ 𝑠𝑡)

Most Specific Case:
Transition function is known
Reward function is known
Observed information is complete (𝑜𝑡 = 𝑠𝑡)

Slide adapted from S. Levine 64



Reinforcement Learning: Learns a Policy that Maximizes 
the Total Reward of a sequence of actions

• A trajectory of interaction in the environment

Action 𝑎𝑡

State 𝑠𝑡
Reward 𝑟𝑡

State 𝑠𝑡+1
Reward 𝑟𝑡+1

• Maximize the expected value of the cumulative sum of reward

• Policy may be stochastic
• Environment may be stochastic
• Initial state may be randomly sampled
• 𝐸𝜋𝜃[𝑟(𝑥)] is smooth in 𝜃

Slide adapted from S. Levine 65



• Constrained Optimal Control Problem:

min
𝑥,𝑢

෍

𝑘=0

𝑁−1

𝑐 𝑥𝑘 , 𝑢𝑘 + cf (𝑥𝑁)

𝑠. 𝑡 𝑥0 = ො𝑥0
𝑥𝑘+1 = 𝑓 𝑥𝑘 , 𝑢𝑘 , 𝑘 = 0,… ,𝑁 − 1

• Solution 1: Consider it as a mathematical optimization problem.  We can solve it 
with existing optimization toolboxes (e.g. linear programming, quadratic 
programming, non-linear programming …)

• Solution 2: Solve it with dynamic programming!

66
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• Constrained Optimal Control Problem:

min
𝑥,𝑢

෍

𝑘=0

𝑁−1

𝑐 𝑥𝑘 , 𝑢𝑘 + cf (𝑥𝑁)

𝑠. 𝑡 𝑥0 = ො𝑥0
𝑥𝑘+1 = 𝑓 𝑥𝑘 , 𝑢𝑘 , 𝑘 = 0,… ,𝑁 − 1

• Solution 1: Consider it as a mathematical optimization problem.  We can solve it 
with existing optimization toolboxes (e.g. linear programming, quadratic 
programming, non-linear programming …)

• Solution 2: Solve it with dynamic programming!

Remember We Talked about Optimal Control
The objective of RL:

In fact, they are very similar problems 
with different notations:
• control 𝑢 action 𝑎
• state 𝑥 state 𝑠
• cost 𝑐(𝑥, 𝑢) reward 𝑟(𝑠, 𝑎)
• minimize cost maximize reward

67



Returns 𝐺𝑡 in Episodic Tasks

• Episode: A sequence of interactions based on which the reward will be judged at 
the end

• Episodic tasks: interaction breaks naturally into episodes, e.g., plays of a game, 
trips through a maze

• Returns 𝐺𝑡: the cumulative sum of reward, or total reward, starting from time 𝑡

• Let T be the final time step:

𝐺𝑡 = 𝑅𝑡+1 + 𝑅𝑡+2 + …+ 𝑅𝑇

Slide adapted from K. Fragkiadaki 68



Returns 𝐺𝑡 in Continuing Tasks

• Continuing tasks: interaction does not have natural episodes, but just goes on 
and on...just like real life

• Discounted returns 𝐺𝑡: the cumulative sum of reward, weighted by the discount 
rate 𝛾

• Let T be the final time step, where 𝑇 → ∞:

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + … =෍
𝑘=0

∞

𝛾𝑘𝑅𝑡+𝑘+1

• Discount rate 𝛾 decides the present value of future rewards.
➢ If 𝛾 = 0, model is “myopic” concerning only the immediate reward
➢ If 𝛾 = 1, model is “farsighted” ignoring the efficiency of achieving the goal

Slide adapted from K. Fragkiadaki 69
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Why Discount

• Recursive relationships for discounted returns:

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 +⋯

= 𝑅𝑡+1 + 𝛾 𝑅𝑡+2 + 𝛾𝑅𝑡+3 +⋯

= 𝑅𝑡+1 + 𝛾𝐺𝑡+1
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Value Functions are Expected Returns

• The state value function 𝑣𝜋(𝑠): the expected return starting from state 𝑠 following 
policy 𝜋

𝑣𝜋 𝑠 = 𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠

• The state value function is dependent on the deployed policy, since different 
actions lead to varied future states and total rewards.
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• The state value function 𝑣𝜋(𝑠): the expected return starting from state 𝑠 following 
policy 𝜋

𝑣𝜋 𝑠 = 𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠 = 𝔼𝜋 𝑅𝑡+1 + 𝛾𝐺𝑡+1 𝑆𝑡 = 𝑠

• The state value function is dependent on the deployed policy, since different 
actions lead to varied future states and total rewards.

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 +⋯ = 𝑅𝑡+1 + 𝛾𝐺𝑡+1

The Recursive Relationships of Value Functions
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• The state value function 𝑣𝜋(𝑠): the expected return starting from state 𝑠 following 
policy 𝜋

𝑣𝜋 𝑠 = 𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠 = 𝔼𝜋 𝑅𝑡+1 + 𝛾𝐺𝑡+1 𝑆𝑡 = 𝑠

=෍

𝑎

𝜋(𝑎|𝑠)෍

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝔼𝜋 𝐺𝑡+1 𝑆𝑡+1 = 𝑠′ ]

=෍

𝑎

𝜋(𝑎|𝑠)෍

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝜋 𝑠′ ]

• The state value function is dependent on the deployed policy, since different 
actions lead to varied future states and total rewards.

• The state value function 𝑣𝜋(𝑠) estimates the “goodness” of state 𝑠 when deploying 
policy 𝜋.  Simply speaking, how easy it is to achieve the goal from state 𝑠.

The Recursive Relationships of Value Functions
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The Recursive Relationships of Value Functions

• The state value function 𝑣𝜋(𝑠): the expected return starting from state 𝑠 following 
policy 𝜋

𝑣𝜋 𝑠 = 𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠 = 𝔼𝜋 𝑅𝑡+1 + 𝛾𝐺𝑡+1 𝑆𝑡 = 𝑠

=෍

𝑎

𝜋(𝑎|𝑠)෍

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝔼𝜋 𝐺𝑡+1 𝑆𝑡+1 = 𝑠′ ]

=෍

𝑎

𝜋(𝑎|𝑠)෍

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝜋 𝑠′ ]

• The state value function is dependent on the deployed policy, since different 
actions lead to varied future states and total rewards.
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Value Functions are Expected Returns

• The action value function 𝑞𝜋(𝑠, 𝑎): the expected return starting from state 𝑠 and 
action 𝑎 following policy 𝜋

𝑞𝜋 𝑠, 𝑎 = 𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 = ෍

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝜋 𝑠′ ]

• The action-value function 𝑞𝜋(𝑠, 𝑎) estimates the “goodness” of action 𝑎 at state 𝑠
when deploying policy 𝜋.  Simply speaking, how easy it is to achieve the goal with 
action 𝑎 at state 𝑠.

• It’s obvious to see

𝑣𝜋 𝑠 =෍

𝑎

𝜋(𝑎|𝑠)෍

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝜋 𝑠′ ] =෍

𝑎

𝜋(𝑎|𝑠)𝑞𝜋 𝑠, 𝑎
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Optimal Value Functions 

• Definition: The optimal state-value function 𝑣∗(𝑠) is the maximum state-value function over 
all policies.  In other words, the optimal value function specifies the best possible 
performance in the MDP.

𝑣∗ 𝑠 = max
𝜋

𝑣𝜋(𝑠)

• Definition: The optimal action-value function 𝑞∗(𝑠, 𝑎) is the maximum action-value function 
over all policies

𝑞∗ 𝑠, 𝑎 = max
𝜋

𝑞𝜋(𝑠, 𝑎)
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• Definition: The optimal state-value function 𝑣∗(𝑠) is the maximum state-value function over 
all policies.  In other words, the optimal value function specifies the best possible 
performance in the MDP.

𝑣∗ 𝑠 = max
𝜋

𝑣𝜋(𝑠)

• Definition: The optimal action-value function 𝑞∗(𝑠, 𝑎) is the maximum action-value function 
over all policies

𝑞∗ 𝑠, 𝑎 = max
𝜋

𝑞𝜋(𝑠, 𝑎)

• The optimal value function specifies the best possible performance in the MDP.

• An MDP is “solved” when we know the optimal value function

82
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We Have the Optimal Policy if We Know 𝑞∗ 𝑠, 𝑎

• An optimal policy can be found by maximizing over 𝑞∗ 𝑠, 𝑎 :

𝜋∗ 𝑎 𝑠 = ቐ
1, 𝑖𝑓 𝑎 = argmax

𝑎
𝑞∗ 𝑠, 𝑎 .

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.



We Have the Optimal Policy if We Know 𝑞∗ 𝑠, 𝑎

• An optimal policy can be found by maximising over 𝑞∗ 𝑠, 𝑎 :

𝜋∗ 𝑎 𝑠 = ቐ
1, 𝑖𝑓 𝑎 = argmax

𝑎
𝑞∗ 𝑠, 𝑎 .

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

• An optimal policy can be found by maximizing over 𝑣∗ 𝑠 with one-step look ahead:

𝜋∗ 𝑎 𝑠 = ቐ
1, 𝑖𝑓 𝑎 = argmax

𝑎
(Σ𝑠′,𝑟𝑝(𝑠

′, 𝑟|𝑠, 𝑎))(𝑟 + 𝛾𝑣∗ 𝑠
′ )

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
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Bellman Optimality Equation for 𝑣∗

1. We have 𝑣∗ 𝑠 = max
𝑎

𝑞𝜋∗ 𝑠, 𝑎
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Bellman Optimality Equation for 𝑣∗

1. We have 𝑣∗ 𝑠 = max
𝑎

𝑞𝜋∗ 𝑠, 𝑎

Why?

𝑣𝜋 𝑠 = ෍

𝑎∈𝒜

𝜋(𝑎|𝑠)𝑞𝜋(𝑠, 𝑎)

⇒ 𝑣∗ 𝑠 = ෍

𝑎∈𝒜

𝜋∗(𝑎|𝑠)𝑞𝜋∗(𝑠, 𝑎) = max
𝑎

𝑞𝜋∗ 𝑠, 𝑎
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Bellman Optimality Equation for 𝑣∗

1. We have 𝑣∗ 𝑠 = max
𝑎

𝑞𝜋∗ 𝑠, 𝑎

2. We can further write the equation:

𝑣∗ 𝑠 = max
𝑎

𝑞𝜋∗ 𝑠, 𝑎

= max
𝑎

𝔼𝜋∗ 𝐺𝑡 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= max
𝑎

𝔼𝜋∗ 𝑅𝑡+1 + 𝛾𝐺𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= max
𝑎

𝔼 𝑅𝑡+1 + 𝛾𝑣∗(𝑆𝑡+1) 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= max
𝑎

෍

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣∗ 𝑠′ ]
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Bellman Optimality Equation for 𝑣∗

1. We have 𝑣∗ 𝑠 = max
𝑎

𝑞𝜋∗ 𝑠, 𝑎

2. We can further write the equation:

𝑣∗ 𝑠 = max
𝑎

𝑞𝜋∗ 𝑠, 𝑎

= max
𝑎

𝔼𝜋∗ 𝐺𝑡 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= max
𝑎

𝔼𝜋∗ 𝑅𝑡+1 + 𝛾𝐺𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= max
𝑎

𝔼 𝑅𝑡+1 + 𝛾𝑣∗(𝑆𝑡+1) 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= max
𝑎

෍

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣∗ 𝑠′ ]

This is again the recursive relationship!
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Bellman Optimality Equation for 𝑞∗

1. We have 

𝑞∗ 𝑠, 𝑎 = 𝔼𝜋∗ 𝑅𝑡+1 + 𝛾𝐺𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= 𝔼 𝑅𝑡+1 + 𝛾𝑣∗(𝑆𝑡+1) 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= 𝔼 𝑅𝑡+1 + 𝛾max
𝑎′

𝑞𝜋∗ 𝑆𝑡+1, 𝑎
′ 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

=෍

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾max
𝑎′

𝑞∗ 𝑠′, 𝑎′ ]
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Bellman Optimality Equation for 𝑞∗

1. We have 

𝑞∗ 𝑠, 𝑎 = 𝔼𝜋∗ 𝑅𝑡+1 + 𝛾𝐺𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= 𝔼 𝑅𝑡+1 + 𝛾𝑣∗(𝑆𝑡+1) 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= 𝔼 𝑅𝑡+1 + 𝛾max
𝑎′

𝑞𝜋∗ 𝑆𝑡+1, 𝑎
′ 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

=෍

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾max
𝑎′

𝑞∗ 𝑠′, 𝑎′ ]

This is again the recursive relationship!
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Back-up Diagrams for Value Functions

Slide credit K. Fragkiadaki 93



Back-up Diagrams for Optimal Value Functions

Slide credit K. Fragkiadaki 94
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How to Calculate Value Functions?

1. Matrix-form solution: solving linear systems of equations
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Matrix-Form Solution of Value Functions

• The state value function 𝑣𝜋(𝑠):

𝑣𝜋 𝑠 =෍

𝑎

𝜋(𝑎|𝑠)෍

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝜋 𝑠′ ]

• When the policy 𝜋 is fixed, MDP becomes Markov Reward Process (MRP)

𝑣𝜋 𝑠 =෍

𝑎

𝜋(𝑎|𝑠)෍

𝑠′

𝑇 𝑠′ 𝑠, 𝑎 [𝑟(𝑠, 𝑎) + 𝛾𝑣𝜋 𝑠′ ]

=෍

𝑎

𝜋(𝑎|𝑠)𝑟(𝑠, 𝑎) + 𝛾෍

𝑎

𝜋(𝑎|𝑠)෍

𝑠′

𝑇 𝑠′ 𝑠, 𝑎 𝑣𝜋 𝑠′

= 𝕣𝑠
𝜋 + 𝛾෍

𝑠′

𝕋𝑠′,𝑠
𝜋 𝑣𝜋 𝑠′

Slide adapted from K. Fragkiadaki 97
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How to Calculate Value Functions?

1. Matrix-form solution: solve linear systems of equations
2. Iterative estimation: utilize the recursive relationships

99



• The state value function 𝑣𝜋(𝑠):

𝑣𝜋 𝑠 =෍

𝑎

𝜋(𝑎|𝑠)෍

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝜋 𝑠′ ]

• We can utilize the the recursive relationship to update 𝑣𝜋 𝑠

𝑓𝑜𝑟 𝑘 = 1⋯∞ ∶

𝑣𝑘+1 𝑠 ≔ ෍

𝑎

𝜋(𝑎|𝑠)෍

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝑘 𝑠′ ]

Iterative Policy Evaluation
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• We can utilize the the recursive relationship to update 𝑣𝜋 𝑠

𝑓𝑜𝑟 𝑘 = 1⋯∞ ∶

𝑣𝑘+1 𝑠 ≔ ෍

𝑎

𝜋(𝑎|𝑠)෍

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝑘 𝑠′ ]

• Dynamic programming solution: use a table to keep track of the value function

1

0.9

0.81

0.64

0.9

0.81

0.81

0.47

0

0.64

0.58

0.52

0.47

1

0.9

0.81

0.64

0.9

0.81

0.81

0

0

0.64

0.58

0.52

0

𝑣𝑘 𝑣𝑘+1

update
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• Current policy: going up, down, left, right with even probability.  The action 
that would take the agent off the grid would leave the state unchanged.

• Task: Travel from the start to the goal location
• Reward: reach goal = 1, otherwise 0

Estimate Value Function with Dynamic 
Programming

1

0

0

0

0

0

0

0

0

0

0

0

0

Reward map

0

0

0

0

0

0

0

0

0

0

0

0

0

𝑣0

0.5

0.25

0

0

0.25

0

0

0

0

0

0

0

0

𝑣1
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• Backward dynamic programming, let 𝛾 = 1.0 (no discount)

𝑣𝑘+1 𝑠 =෍

𝑎

𝜋(𝑎|𝑠)෍

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝑘 𝑠′ ]

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Reward map

0.5 = 1
4
× 1 + 1 × 0 + 1

4
× 1 + 1 × 0 + 1

4
× 0 + 1 × 0 + 1

4
× 0 + 1 × 0

𝑣0

0.5

0.25

0

0

0.25

0

0

0

0

0

0

0

0

𝑣1
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0

0

0

0
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0

0

0

0

0

0

0

Reward map

0.25 = 1
4
× 1 + 1 × 0 + 1

4
× 0 + 1 × 0 + 1

4
× 0 + 1 × 0 + 1

4
× 0 + 1 × 0

𝑣0

0.5

0.25

0

0

0.25

0

0

0

0

0

0

0

0

𝑣1

• Backward dynamic programming, let 𝛾 = 1.0 (no discount)

𝑣𝑘+1 𝑠 =෍

𝑎

𝜋(𝑎|𝑠)෍

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝑘 𝑠′ ]
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1

0

0

0

0

0

0

0

0

0

0

0

0

0.5

0.25

0

0

0.25

0

0

0

0

0

0

0

0

Reward map

0.44

= 1
4
× 1 + 1 × 0.5 + 1

4
× 0 + 1 × 0.25 + 1

4
× 0 + 1 × 0 + 1

4
× 0 + 1 × 0

𝑣1

0.88

0.44

0.06

0

0.44

0.13

0.06

0

0

0

0

0

0

𝑣2

• Backward dynamic programming, let 𝛾 = 1.0 (no discount)

𝑣𝑘+1 𝑠 =෍

𝑎

𝜋(𝑎|𝑠)෍

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝑘 𝑠′ ]
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Iterative Policy Evaluation

𝑣𝑘+1 𝑠 ≔ σ𝑎 𝜋(𝑎|𝑠) σ𝑠′,𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝑘 𝑠′ ]
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Can We Improve the Current Policy?

• Let’s say we obtain the value function 𝑣𝜋 𝑠 based on policy 𝜋 using dynamic programming, 
How can we improve the policy?

• Switch to a greedy policy!

𝜋′ 𝑎 𝑠 = ቐ
1, 𝑖𝑓 𝑎 = argmax

𝑎
( Σ𝑠′,𝑟𝑝(𝑠

′, 𝑟|𝑠, 𝑎))(𝑟 + 𝛾𝑣𝜋 𝑠′ )

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

• Why greedy policy 𝜋′ is better than the original policy 𝜋 at state 𝑠?
Since a greedy policy is deterministic: 𝜋′(𝑠) = argmax

𝑎
( Σ𝑠′,𝑟𝑝(𝑠

′, 𝑟|𝑠, 𝑎))(𝑟 + 𝛾𝑣𝜋 𝑠′ )

𝑞𝜋 𝑠|𝜋′(𝑠) = max
𝑎

σ𝑠′,𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝜋 𝑠′ ]

≥ σ𝑎 𝜋 𝑎 𝑠 σ𝑠′,𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎 𝑟 + 𝛾𝑣𝜋 𝑠′ = 𝑣𝜋 𝑠The value of selecting action 𝜋′(𝑠) is higher 
than following policy 𝜋 at state 𝑠 (here we 
still follow policy 𝜋 at other states)
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Summary
RL as a general learning framework for 

different tasks
Multi-armed Bandit Problem

The learning objective of RL

• Expected reward:    𝑞∗ 𝑎𝑘 = 𝔼 𝑟𝑡|𝐴𝑡 = 𝑎𝑘
• Action-value estimates:    𝑄𝑡 𝑎𝑘
• Greedy action selection method: select the 

action with the highest estimated value:
𝐴𝑡

∗ = arg max
𝑎

𝑄𝑡(𝑎)

➢ If 𝐴𝑡 = 𝐴𝑡
∗, you are exploiting your current 

knowledge of the values of the actions
➢ If 𝐴𝑡 ≠ 𝐴𝑡

∗, you are exploring.  You improve 
your estimate of the non-greedy actions

Markov Decision Process

• Discounted returns: 𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝐺𝑡+1
• The state value function 𝑣𝜋 𝑠 = 𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠
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