RODOt

Perception and Learning

Introduction of Optimal Control

Tsung-Wei Ke
Fall 2025

Disclaimer

 This lecture heavily borrows materials from Zachary Manchester’'s 16-745
Optimal Control at CMU (https://optimalcontrol.ri.cmu.edu/)

« Optimization involves rich theories. “Convex Optimization” by Stephen Boyd
and Lieven Vandenberghe is a good start.

https://optimalcontrol.ri.cmu.edu/
https://stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf

Simulation-Based LOR-Trees

Cart-Pole Swing-Up Policy Experiments

Nonlinear MPC for Quadrotor
Fault-Tolerant Control

Fang Nan, Sihao Sun, Philipp Foehn, Davide Scaramuzza

= ROBOTICS &

* University of Qjé PERCEPTION
B GROUP

virs Zurich™ .
rpg.ifi.uzh.ch

Optimal Control: Optimization of Dynamic Systems

« Feedback control: measuring and minimizing tracking error at each time step
 Alternative: defining the control problem in a more general formulation.

« Define:
1. Cost function c(xy, u,), measuring the cost of action uy, at state x;, at time step k
» The tracking error
2. Terminal cost function cg(xy), Mmeasuring the cost at state x at the last time step N
» The distance to the target location
3. Constraints h(x,, u,) < 0 and r(x;) < 0 for action u; and state x;, at time step k
» Velocity / acceleration / ... constraints

Optimal Control: Optimization of Dynamic Systems

« Deterministic Optimal Control Problem:

N-1
min Z c(xy, ug) + cp(xy)
k=1
such that
X1 = fl ------------------ initial state
X1 = O, Ug), k=1..,N—1
0 > h(x;, ug), k=1,..,.N—1

0 =r(xy)

Optimal Control: Optimization of Dynamic Systems

« Deterministic Optimal Control Problem:

N-1
min Z c(xy, ug) + cp(xy)
k=1
such that
Xy =X c--meemmecmmeo-ee- initial state
X1 = f g, ug), k=1..,.N—1----- dynamics
0 > h(x;, ug), k=1,..,.N—1
0 =r(xy)

f the dynamics is given, can we
plan a trajectory of control uy.y by
solving the optimization problem?

Dynamics

« Continuous-time dynamics:

I x|= f(xu)

Time derivatives of state

« Shouldn't dynamics consider acceleration / forces F = mg ?
> A state representations that merge multi-order equations into
multiple 15t order equations

x=[3]=>56=[g-] =f([g]'[3])

Linearization of Dynamics

« Approximate non-linear dynamics as linear systems:

I x=f(xju) = x=A)x + B(t)u

Time derivatives of state

The system is “time invariant” if A(t) = A and B(t) = B for Vt;
otherwise, the system is “time varying"

 Linear approximation with Taylor expansion:

x=f(x,u) = f(0,0) +%x +%u

A(t) B(t)

Manipulator Dynamics

« Most dynamics in robotics can be written as:

!

Mass matrix

M(q)

4 +|C(q,9)q = B(q)u +|F |

External force

« Continuous-time dynamics of manipulator dynamics:

which can be

x=fxuw=\|,,_4 1 N
M~ (@)[B(@)u+ F — C(q,9)q]
inearized as
' 0 I] 0
M1 a—F+ZM‘ 9% 0 x+[M—1B]“
0q dq ’

10

Manipulator Dynamics

« Most dynamics in robotics can be written as:

!

Mass matrix

M(q)

4 +|C(q,9)q = B(q)u +|F |

External force

« Continuous-time dynamics of manipulator dynamics:

which can be

-

x=fxuw=\|,,_4 1 N
M~ (@)[B(q)u + F — C(q,q)q]
inearized as
' 0 I :)
M1 a—F+ZM‘ a—Bu 0 [c'[]'l'[M—lB]u
- 0q aq 7

11

Continuous to Discrete dynamics

Continuous-time dynamics: x = f(x,u) = —

Xt+At—Xt
At

But we can only simulate dynamics discretely:

Time-integration algorithm:

1. Explicit time integration methods: Next time step can be computed
entirely using values from the current time step or before

2. Implicit time integration methods: Next time step is computed
using values from the future

How to choose the time integration algorithms?

» Performance

> Stability

» Accuracy

12

Time-integration Algorithm

« Explicit time integration methods (Forward Euler Time Integration):
1

X = AL (Xe4nr — Xe) = Xeqae = X + (g, u) At

Conceptually simple, but simulation often explodes

« Implicit time integration methods (Backward Euler Time Integration):

1

X = At (Xpsat — Xe) = Xepar = X¢ + [(Xppap Wernr) At

Conceptually complex, while simulation has strong damping

13

Forward vs. Backward Euler Time Integration

« (Canwe cancel out the exploding and damping effect? Yes! Let's
try to mix these two integration methods.

Explicit (exploding!!!) Implicit (damping)

14

How to Solve Optimal Control Problems?

« An example of DOC problem:

N-1
min z c(xk, ug) + cp(xy)
k=1
such that
X1 = X4
X1 = f O, Ug), k=1,..,N—1
Wi = U = Uy, k=1,..,N—1
Xpin = X = Xmary k=1,..,N—1

|xtarget o le —e=<0

15

How to Solve Optimal Control Problems?

« Deterministic Optimal Control Problem: « Options:
N—-1

| 1. Root finding
min z c(xk, ug) + cp(xy)
=] 2. Constrained minimization
such that 3. Dynamic programming
*1 =4 4. Model predictive control
Xi+1 = f(xk,uk), k = 1, ,N —1
OZh(xk,uk), k = ,...,N—l

0 =r(xy)

16

Root-Finding Problems and Newton’s Method

99

o = 0 at local minimum x*

Minimization problems: min g(x), if g is smooth,
X

Root-finding problems: Given f(x), find x* such that f(x*) =0

Newtons' method:
» Taylor's expansion: f(x + Ax) = f(x) + %Ax

» Set approximation to zero and solve for Ax:
-1

f(x) +%Ax =0=Ax = —% g(x)

» Update x « x + Ax and repeat

Newton's method is a local root-finding method, that converges to the closest
fixed point (min, max, saddle) to the initial guess

17

Root-Finding Problems and Newton’s Method

« Minimization problems: min g(x), if g is smooth, % = 0 at local minimum x*
X
« Solve Vg = 0 with Newton's method:

0
Vg(x + Ax) = Vg(x) + a(Vg)Ax =0

= Ax = _% (Vg) 'Vg(x) = Ax = —(V?g) Vg (x)

 |ssues of Newton's method:
» Convergence to local optima
» How to deal with equality / inequality constraints?

» Need to compute 2"d order derivatives

18

How to Solve Optimal Control Problems?

« Deterministic Optimal Control Problem: « Options:
N—-1

1. Root finding

min z c(xk, ug) + cp(xy)
=i 2. Constrained minimization
such that 3. Dynamic programming
*1 =4 4. Model predictive control
Xi+1 = f(xk,uk), k = 1, ,N —1
OZh(xk,uk), k = ,...,N—l

0 =r(xy)

19

Inequality-Constrained Minimization Problems

Minimization problems with inequality constraints: min g(x),s.t.r(x) = 0
X

We can define Lagrangian function:

L(x, 1) =g(x)+ Ar(x)

K.KT conditions for optimality:
» Primal feasibility: r(x) = 0

> Stationarity: Vg(x) —A'Vr(x) = 0

» Dual feasibility: 4 =0
» Complementarity: A'r(x) = 0

Very complicated...

20

K.K.T systems:
02L or"
dx? 0x
or'

L Ox

|

Ax — _vxL(x)
AA —1(x)

/1)]

How to Solve Optimal Control Problems?

« Deterministic Optimal Control Problem: « Options:
N—-1

1. Root finding

min z c(xk, ug) + cp(xy)
= 2. Constrained minimization
such that 3. Dynamic programming
*1 =4 4. Model predictive control
Xi+1 = f(xk,uk), k = 1, ,N —1
OZh(xk,uk), k = ,...,N—l

0 =r(xy)

21

Dynamic Programming
* Principle of Optimality:

"An optimal policy has the property that whatever the initial state and initial
decision are, the remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decision.”
Bellman, 1957

 In short, Bellman observed that:

1. Optimal control problems have an inherently sequential structure

2. Past control inputs can only affect future states; Future control can't

affect past states
3. Sub-trajectories of optimal trajectories have to be optimal

This suggests a recursive structure!

22

Formulation of Dynamic Programming

« Optimal trajectories for the control problem:
N—-1

J*(x;) = min E c(x;,u;) + cg(xy) S.txg = Xg ...
XU
i=k
N-1

= J*(xx) = min c(xg, u;) + min E c(x;,uy) + cp(xy)
u
. i=k+1
:]*(xk) = I{Llllcn C(xk:uk) +]*(Xk+1)

 Jis called cost-to-go function, or “value function” in RL literature

« Optimal cost-to-go function can be obtained by dynamic programming

23

An Example of Estimating Optimal Cost-to-Go
Function with Dynamic Programming

= min c(x, uy) +
Uk

Cost map Initial cost-to-go 2"d-jter cost-to-go

(RN IR 0

TAKT 1

1 M

— |] =] =

- L FEN O
1

—_\
—_\
/
/.
—_\

24

An Example of Estimating Optimal Cost-to-Go
Function with Dynamic Programming

= min c(x, uy) +
Uk

Cost map Initial cost-to-go 2 jter cost-to-go
BERER N I ERERER 0
1 BERIE N 1
1] / 1.\ 1] 1)
1] 1 \ 1| 1 ™ ~

25

An Example of Estimating Optimal Cost-to-Go
Function with Dynamic Programming

= min c(x, uy) +
Uk

Cost map Initial cost-to-go 2nd-jter cost-to-go
1 1 110 1 1 110 0
1 1 1 1 1 1 1
1|1 11] | %__ 2
1 1 1 1 1 1 2

26

An Example of Estimating Optimal Cost-to-Go
Function with Dynamic Programming

= min c(x, uy) +
Uk

Cost map Initial cost-to-go 2nd-jter cost-to-go 3nd-jter cost-to-go
1 1 110 1 1 T10 (3 0
1 1 1 1 1 1 1 1
1 1 // 1\ 1 1 1 2 2
1 1 1\ 1 1 1 2 |

~_ %

27

An Example of Estimating Optimal Cost-to-Go
Function with Dynamic Programming

Cost map Initial cost-to-go 2nd-jter cost-to-go 3rd-jter cost-to-go 4ih-jter cost-to-go 5th-iter cost-to-go
T 1 111 (11012 (2110321171032 1f0]3[2]1]20

1 1 T 1 2 2 11 3 2 |1 4 2 11 4 2 11
1 T 11 1 2 | 2 2 3 (3 2|1l 41 4 2 515 2
1 111 1 2 | 2 2 (I 3| 3 3| 4| 4 3 51| 5 3

28

7™-iter cost-to-go

6™-iter cost-to-go

%—92—91—90 3121110
|
% 2 |1 4 2 |1
516 2 516 2
i
6| / 3 6| 6 3

How to Obtain Optimal Policy?

 Q-value function estimates how good a state-action pair is:

J*(xg) = I{}’l{n c(xp, ug) +J" (Xg+1)

= min Q*(xk,uk)
Uk

« Optimal feedback control law:
m* (x;) = argmin Q" (xy, uy)
Ug
 Value iteration:
1. Compute optimal cost-to-go function J*(x)
2. Compute optimal policy m*(x) = argmin Q*(x, u)
u

We will talk more in RL sections!

29

7t-iter cost-to-go

324510
1
zTsz
51 6 2
1
6 | 7 3

How to solve optimal control with DP?

Linearized Optimal Control Problems

 Linear Quadratic Regulator (LQR): A very common formulation of
control problems, which considers a linear dynamics f(x,u) = Ax + Bu
and quadratic cost functions c(x,u) = x'Qx + u'Ru

N-1

min z x5, Qx;, + ur Ruy, + x5 Pxy, S.t.xy = Xy, Xpy1 = Axy + Bug,
XU
k=1, X) \ J
cost function terminal cost
c(xp, ug) function cg(xy)

« Both Q and R are positive definite matrices: z'Qz = 0and z'Rz = 0 for
any z
« We can obtain analytical solution!

31

Solve LQR via Dynamic Programming

« Let'signore constraints in LOQR:
N-1

1 1

1
min z — x5 Qxp + = U, Ruy, += x5 Pxy
u L2 2 2

« Optimal cost-to-go functions:
> L@t]N(X) — %XNTPXN
» Back up one step and compute

Jn-1(x) = muinExN_lTQxN_l +E“N—1TRUN—1 + Jn(Axy_1 + Buy_4)

32

Solve LQR via Dynamic Programming

« QOptimal cost-to-go functions at step N — 1:

In-1(x) = muinixN_lTQxN_l +EUN—1TRUN—1 + Jy(Axy_1 + Buy_1)

_ 1
= Jy_1(x) = mlnExN—lTQxN—l T+ EuN—lTRuN—l ‘|‘§ (Axy_q + Buy_1)'P(Axy_1 + Buy_1)
u
= V/y_1(x) =0=> Ruy_; + B'P(Axy_; + Buy_1) =0

= Uy_1 = — XnN—1 = — XN-1

° P|Ug Un-—1 = _KN_lxN_l baCk to .]N—l(x):

1
Jn-1(x) = EXT[]x =—x' X

33

Solve LQR via Dynamic Programming

« We can solve the problem recursively:

Jn(x) < cp(xy)
k <N
while k>1
Ji—1(x) = muin[C(xk—1) +]k(f(xk—1»uk—1))]
k<k—1

end

34

An Example of Cart Pole

;L

Slide adapted from Jia-Wei's note 35

Non-linear Dynamics of Cart Pole

Let the pivot point locate at (a, 0) N

The coordinate of the pole's center of mass are: 2/,-"" 6
Acom = @+ Lsin 6 |
b.om = b + lcos B
The velocities are:

Qeom = a4+ 1cos66

boom = —Lsinf 6
The accelerations are:

icom =G —1sinf 6%+ 1cos6 b
boym = —lcosB 0% —1sin6 0

36

Non-linear Dynamics of Cart Pole

« Letthe (H,V) denote the horizontal and vertical
reaction forces at the pivot:
MyQcom = H
mpl;wm =V -myg
« The rotational dynamics about the center of mass: I
I.om0 = 1(Hcos6 —Vsin8)

where

1
Icom = Emp(ZDZ

 Forceinput m.d=u—H

37

Non-linear Dynamics of Cart Pole

* The accelerations are: !7 "y
boom =d—1sinf 6%+ 1cosH b 2[p
boom = —Lcos 0 0% —1sinf 6
« Rewrite (H,V) as:
H = myécom = my(d — Isin8 6% + [cos 6 6)

V = mchom +my,g = mp(—lcosQé?2 —1lsin6 6 +g)

38

Non-linear Dynamics of Cart Pole

« Rewrite (H,V) as:
H = myécom = my(d — Isin8 6% + L cos 6 6)
V =mybeom +mypg = my(—lcos8 6% —1sind 0 + g)
 Substitute back to:

I.om6 = l(H cos 6 —Vsin8)

= gmplzé +mylcos@d+myglsind =0

39

Non-linear Dynamics of Cart Pole

« Rewrite (H,V) as:
H = myécom = my(d — Isin8 6% + L cos 6 6)

V =mybeom +mypg = my(—lcos8 6% —1sind 0 + g)

 Substitute back to: a
I.om6 = l(H cos 6 —Vsin8)

= gmplzé +mylcos@d+myglsind =0

e Substitute back to:
m.ad=u—H

= (m. +m,)d +mylcos08 —m,lsing 6% =u

40

Non-linear Dynamics of Cart Pole

« The final dynamics:

u+mp192 sin 6
(me+my)

4_ My 2
l(3 (mc+mp)cos 0)

gsinf — cos 0

0 =

Tt my)) (metmy)’

41

u+ mplé2 sin mylcosH 4

2/ 0

Non-linear Dynamics of Cart Pole

- The final dynamics: ¢ e
u+mylo? sin 6 2[|,."'I 0

gsinf — cos 0 (mormy)

0 =

4__ My 2
l(3 (mc+mp)cos 0)

u+ mplé2 sin mylcosH 4
(mc + mp) (mc + mp)

a =

N-1

1‘;131 Z c (g, ug) + cp(xy)

k=1
such that
0 =% Let's linearize dynamics!
X1 = f(r, Wie), k=1,.. N—

1
Ozh(xk,uk), k=1:-"|N_1
0= T'(XN)

42

Linearized Dynamics of Cart Pole

- The equations of motions: p A
u = (m, +mp)d +mpl§ cos 6 —mplé?z sin 6 2/,.-""I9

0= gmplzé +mylcos@d+myglsind

which can be re-written as |

F

+ [—mpglsin 9] -
'm,+m, my,lcosb

m,l cos 6 gmpl2 [9] [_mpwsmguﬁl

M(q) _ C(q,q)

43

Recap: Manipulator Dynamics

« Most dynamics in robotics can be written as:

!

Mass matrix

M(q)

4 +|C(q,9)q = B(q)u +|F |

External force

« Continuous-time dynamics of manipulator dynamics:

which can be

-

x=fxuw=\|,,_4 1 N
M~ (@)[B(q)u + F — C(q,q)q]
inearized as
' 0 I :)
M1 a—F+ZM‘ a—Bu 0 [c'[]'l'[M—lB]u
- 0q aq 7

44

An Example of Cart Pole

« The equations of motions:
u = (m. +m,)d+myld cos & —m,l0?sin6

0= gmplzé +mylcos@d+myglsind

which can be re-written as

F

+ [—mpgl sin 9] -

‘m, +m [cos

v [] [—mplﬁsmﬁ
7,

H

4 2
mplCOSH gmpl

M(q) _ C(q,q)

45

« We have
— O .
B [O —myglcos6 6
05; _ 0
dq 0

« We know linearized
dynamics!

Solve Cart Pole with Linear Quadratic Regulator

« Deterministic Optimal Control Problem:

N_
1 1 1
min Z — x5, Qx;, + = u,'Ruy += x5 Pxy
XU 2 2 2
k=1
such that
x1 —_ fl

Xi+1 = Axy + Buy, k=1,..,N—1

Both Q and R are positive definite matrices: zT'Qz = 0and z"Rz = 0 for any z

46

Solve Cart Pole with Linear Quadratic Regulator

« Deterministic Optimal Control Problem:

N-1
1 1 1

min 2 — x5, Qxp [+ = U Ruy, H=xy'Pxy

XU £ 2 2 2

What does these losses mean?

such that

Xi+1 = Ax, + Buy, k=1,..,N—1

« LOR s a state-feedback controller.
1. We can consider this formulation as minimizing the tracking error with
a reference point of x,..r = 0.
2. We can generalize the formulation to track any non-zero trajectory
« We can generalize the formulation to solve non-linear systems

47

Solution 1: Solve LOQR with DP

e |let'sconsiderk=N-1

r?Lan_lTQxN_l + uN_]_TRuN_l +xNTPxN, S.t. xO — 5C\0,XR+1 — Axk + Buk
l J \ J
|
cost function terminal cost

C(xk,uk) function Cf(xN)

48

Solution 1: Solve LOQR with DP

e |let'sconsiderk=N-1

r;liuan_lTQxN_l + uN_]_TRuN_l +xNTPxN, S. t.xO — 5C\0,XR+1 — Axk + Buk
l J \ J
|
cost function terminal cost
c(xp, ug) function cg(xy)

Jn-1Cen-1) = rrEan_lTQxN_l + Uy_1'Ruy_1 +Jy(xp)
= 1’Y%Lian—1TQ3CN—1 +uy_q'Ruy_1 +Jy(Axy_q1 + Buy_4)

= minxy_;'Qxy_q +Uy_1' Ruy_; + (Axy_; + Buy_1)'P(Axy_; + Buy_1)
u

49

Solution 1: Solve LOQR with DP

1. Let'sconsider k=N -1

Jnv—1(x) = minx'Qx + u'Ru + Jy (Ax + Bu)
u
= minx'Qx + u'Ru + (Ax + Bu)'P(Ax + Bu)
u

2. To find the minimum over u, we set the gradient w.r.t u equal to zero

V, Jv-1(x) =0=2Ru+ 2B'P(Ax + Bu) =0
s>u=—(R+BTPB)"'B'PAx
| J
|
Kn-1

50

Solution 1: Solve LOQR with DP

1. Let'sconsider k=N -1

Jnv—1(x) = minx'Qx + u'Ru + Jy (Ax + Bu)
u
= minx'Qx + u'Ru + (Ax + Bu)'P(Ax + Bu)
u

2. To find the minimum over u, we set the gradient w.r.t u equal to zero

V, Jv-1(x) =0=2Ru+ 2B'P(Ax + Bu) =0
s>u=—(R+BTPB)"'B'PAx
| J
|

3. Substitute (2) into (1), we obtain: Kn-1

]N—1(X) = XT[Q + KN—lTRKN—l + (A + BKN—1)TP(A + BKN—1)]X =>]N—1(X) = XTPN—1x

\ J

PN—l

51

Solution 1: Solve LOQR with DP

1. Let's considerk =N —2

Jnv—2(x) =minx'Qx + u'Ru + Jy_,(Ax + Bu)
u
= minx'Qx + u'Ru + (Ax + Bu)'Py_,(Ax + Bu)
u

2. To find the minimum over u, we set the gradient w.r.t u equal to zero

V, Jv—2(x) =0=2Ru+ 2B'Py_,(Ax + Bu) = 0
> U= _(R —+ BTPN_lB)_lBTPN_le
\ J

|
KN—l

52

Solution 1: Solve LOQR with DP

1. Let's considerk =N —2

Jnv—2(x) =minx'Qx + u'Ru + Jy_,(Ax + Bu)
u
= minx'Qx + u'Ru + (Ax + Bu)"Py_,(Ax + Bu)
u

2. To find the minimum over u, we set the gradient w.r.t u equal to zero

V, Jv—2(x) =0=2Ru+ 2B'Py_,(Ax + Bu) = 0
> U= _(R + BTPN_lB)_lBTPN_le
\ J
I
3. Substitute (2) into (1), we obtain: Kn-2

Jn-2(x) = x"[Q + Ky_2'RKy_» + (A+ BKy_)"Py_1 (A + BKy_1)]x = Jy_2(x) = x"Py_,x

\ J

PN—Z

53

Solution 1: Solve LOQR with DP

Problem: minYa_g x,'Qx + u,'Ruy, + x5 Pxy, S.t.xg = X, Xe1 = Axy + Buy,
xX,Uu

Set Py =P
Fori=N-1..0
Ki=—(R+B'P41B)™'B'P, ., A
P,=Q + K;'RK; + (A+ BK;)'P,,,(A + BK;)
we have
u; = K;x
Ji(x) = x'Px

54

Solution 1: Solve LOQR with DP

Problem: minYa_g xx'0x, + 'Ry + x5 Pxy, S.t.xg = X, Xpe1 = Axy + Buy,
xX,Uu

Set Py =P
Fori=N-1..0
Ki=—(R+B'P41B)™'B'P, ., A
P,=Q + K;'RK; + (A+ BK;)'P,,,(A + BK;)
we have

u; = Kl-x
Ji(x) = x'P;

Look familiar? Remember we talked about Proportional Controller: u(t) = K,q.(t).
LQR is a state-feedback controller, with a zero-valued reference trajectory!

55

We can Solve LOR was Quadratic Programming

Minimization problems with inequality constraints: min g(x),s.t.r(x) = 0
X

We can define Lagrangian function:
L(x, 1) =g(x)+ Ar(x)

K.KT conditions for optimality:

» Primal feasibility: r(x) = 0 KKT systems:
> Stationarity: Vg(x) —A'Vr(x) = 0 92L or']
Lo dx2 dx [[Ax] _ [V L(x, /1)]
> Dual feasibility: 4 =0 3T [AA | Zr
» Complementarity: A'r(x) = 0 L Ox

Very complicated...

56

Solution 2: Solve LQR via Quadratic Programming

"Uq T e The cost functions can be re-written:
X2 N-1
: Uz l T T T _1 T
¢ Definez = X szk Qx; + U, Ru, + xy PxN_ZZHZ
k=1
| Xy
R,
0
@1
e Define H = :
Ry
0
On

57

Solution 2: Solve LQR via Quadratic Programming

"Uq T « The cost functions can be re-written:
X1 N-1
Defi _ U l T TR Tp _1 Tq
* Definez = X, 5) Xk Qx;, + U, Ruy, + xy Xy =72z Hz
. k=1
Xy] e The dynamic functions can be re-written:
_Rl - —ul— __Alxl_
0, 0 B, -1 0 0 SIRIES 0
Define H = 0 A, B, -—I 0 uz| 0
0 R z 5 x| T o
QN_ i 0 O AN—l BN—l _I_ :
xyd L 0

C Z d

58

A Special Case: Linear Quadratic Regulator

« The deterministic optimal control problem is re-written as a standard QP:

1

min—-z'Hz s.t.Cz=d
xu 2

« The Lagrangian function of this QP is:

1
L(z,2) = EZTHZ + A'[Cz — d]

« KK.T conditions:

V,L(z,A) =Hz+AC=0 H o
V,L(z,A) =Cz—d =0][)J [d]

We have the exact solution! But
the complexity is too high...

59

A Closer Look at the LQR as QP

« The KKKT system for LQR is very sparse (lots of zeros) and has lots of structures

_Rl BlT] _ul_

Q1 —1 AZT X3 8
R, : BzT m Z; 8
N MR R | 5 (||| o
Qs —1|| 0
B, —I —A1%
A, B, —J 0 8
As By —I

60

Q1

Bl _I

Q3x4 — Ay = 0= A4 = Q3x4

AZ B2 —I

I
coPoocococoo
=

Q1

Q3
Bl _I
AZ BZ —I
A; By —I

Q3x4 — Ay = 0= A4 = Q3x4

R3U3 + BgTALI_ —_ O = R3U3 + BBTQ3x4_ — 0
= R3u3 + B3TQ3(A3X3 + B3U3) — O

—1
= Uz = _(Rs + B3TQ3BB) B;' Q3435

T

K3

62

I
coPololcoc oo
=

Q3x4 — Ay = 0= A4 = Q3x4

R3U,3 + B3T/14 —_ O = R3U3 + B3TQ3x4_ — 0

= R3u3 + B3TQ3(A3X3 + B3u3) =0
-1
= U3 = __(Rs + B3'Q3B3) B3TQ3A.3x3

K3

Ry BlT Uq 0
Ql —1 AZT Xo 0
R, B,' Uz 0
Q- —] A3T X3 0
R3 B.'[|¥3]|=] 0
Qs —1|[°* 0

B, -I ;2 —A01x1
A, B, —] 0 /13 0

A; By —I |

63

Qax3 — A3+ A3' 2, =0
= Qpx3 — A3+ A3'Q3x, = 0
= Qpx3 — A3 + A3 Q3(Azx3 + B3uz) =0
= Q%3 — A3 + A3 Q3(A3x3 — B3K3x3) = 0

= A3 =‘(Q2 + A5'Q3(45 — B3K3))’x3

P;

Recursive Solutions

 Ricatti equation / recursion:
Py = Qn
Kn = —(Rn + By Pry1Bn) Bo'Prsadn
Py = Qn-1 + An Pry1(An — BrKy)
« Optimal u and 1 are;
Up = —KnXn

An = Pyxy,

 Insights: The QP of LOR can be solved by a backward Ricatti pass,
followed by a forward rollout to computer x;.5 and uy.y

64

Controllability

« When will LOR work?

o Let's check the final state:
Xy = Ay-1Xn-1 + By—1Uy-—1 = Xy = Axy_1 + Buy_4
= XNy = A(AXN—Z + BuN_Z) + BuN_l

= xy = AV 1x; + AN"2Bu, + AN3Bu, + -+ Buy_4

_uN_l_

Un-2
=>xy=|B AB A?B ... AN72B]||luy_3 +AN_1x1

| U

65

Controllability

 When will LOR work?

e |et's check the final state:

_uN_l_
Uy-2 N1
Xy = Uy—3|+A4 X1
| U
>xy =Mu+AV " tx; 2 u=MMM) " (xy — A 1x,)

« The least-square solution exists when MM is invertible: rank(C) = dim(x) = d

66

Controllability

 When will LOR work?

e |et's check the final state:

_uN_l_
Uy-2 N1
Xy = Uy—3|+A4 X1
| U
>xy =Mu+AV " tx; 2 u=MMM) " (xy — A 1x,)

« The least-square solution exists when MM is invertible: rank(C) = dim(x) = d

« Computation can be more efficient: from Cayley-Hamilton's theorem, AV is a

linear combination of lower power of 4 up to a power of d: AN = Y491 o, A*

« We only need the controllability matrix:

67

Flying Helicopters by Solving Linear Quadratic Problems

LQR Extension 1: Affine Systems

« Affine system:

N-1

min z X, Qx;, + up Ruy, + x5 Pxy, S.t.xg = Xg, X141 = Ax;, + Buy, + ¢

XU
k=0

« Solution: Re-define the state as z, = [xl"]

it Bl Bl | PR B

69

LQR Extension 2: Stochastic Systems

 Stochastic system: optimize the expectations of the cost-to-go function

[N—-1
min E Z X Qx;, + up Ruy, + xn5'Pxy

x,u
| k=0

)

S.t.xg = Xo, Xr4+1 = Ax;, + Buy, + €, e,;~N(O, 2)

« Rewrite the cost-to-go function

Ji—1(x) = minx'Qx + u'Ru + E[J,(Ax + Bu + ¢)]
u

« See the solution of stochastic optimal control by Laurent Lessard

70

https://laurentlessard.com/teaching/me7247/lectures/lecture%2014%20-%20stochastic%20LQR.pdf

LQR Extension 3: Penalize for Change in Control Inputs

« Standard LOR:
N-1
min z X, Qx;, + ux Ruy, + x5 'Pxy, S.t.Xg = Xg, Xp+1 = Ax;, + Buy,

x,u
k=0

« On real systems, there’s always noise (e.g. a noisy transition function). Without
modeling the noise, we end up obtaining high-frequency control inputs.

 Solution: Include change in controls Au

[xk"'l] [A B] [uk 1] + Au= 7 = Az + B'Au

71

LQR Extension 3: Penalize for Change in Control Inputs

 Solution: Include change in controls Au
Xk+1 A B Y
[] [”uk 1]+ A=z, =A2z,+5 Au

« Re-formulated LOR:

X0

mm szQ Z, + Au'R'Au + zy'P' zy, S.t.zy = [ﬂ],zk+1 = A'z, + B'Au
0

MZ

with Q' = [g g] and R' = penalty for change in controls

72

LQR Extension 4: Linear Time Varying (LTV) System

« LTV system:

N-1
min Z X' QuXp + U Rty + x5 PXy S.t.Xg = Ko, Xpep1 = ApXy + Bruy

XU
k=0

 Algorithm:

Set Py =P
Fori=N-1..0
Ki = —(R; + B;' P11 B;) ™' B;' P11 A;
P, = Q; + K;'RiK; + (A; + B;K;))"P;, 1 (A; + BiK;)
we have
u; = K;x
Ji(x) = x"Pix

This is an uncommon case in real systems. But we can generalize the idea to solve non-linear systems!

73

LQR Extension 5: Trajectory Following for Non-Linear System

« Suppose we have a non-linear system:

Xi+1 = f (o, ug)

- A state-control trajectory(xg, ug, x&,ué, ..., x%,ug) is feasible if and only if

d
Xk+1 = f(xk uk)

(xN uN

d ..d
(x1,u7)

/4 (xo uo

LQR Extension 5: Trajectory Following for Non-Linear System

« Suppose we have a non-linear system:

Xi+1 = f (X, ug)

- A state-control trajectory(xg, ug, x&,ué, ..., x%,ug) is feasible if and only if

d _ d ..d
Xigr1 = f(x,ug)

« Inreal systems, the given trajectory might be infeasible, because of modeling
error/noise

« How can we regenerate the control inputs with which the executed trajectory
best follows a feasible trajectory?

» Regenerate more optimal control trajectories (i, u)
» Regenerate trajectories that follow additional constraints

(et uf)
* ===

75 (g, uf)

LQR Extension 5: Trajectory Following for Non-Linear System

- Trajectory following: given a feasible trajectory(xg, ug, x4, u, ..., x%, u)

N-1
min > (o~ Q—xf) + (=) R (wy—uf) + Coy —x) P ey —x),
" k=0

S. U, Xy = (X, Ug)

76

LQR Extension 5: Trajectory Following for Non-Linear System

- Trajectory following: given a feasible trajectory(xg, ug, x4, u, ..., x%, u)

min > (o= Q=) + (i —uf) R (uy—ud) + Goy—2) P o2,
S.t, Xpp1 = f (i)

 ldea: transform it into a Linear Time Varying problem

d
iers = £ Cxe) = £ o) + 5 (o) o = 28) + 5 (o) (o —)

T:aylor expansior:\ a
N X o Ox (xk) (o — x7) "‘ (xk) (we —uf)
Y} _Y_’
Ag Bk
af

= X ~ Va1 ¥ 5 (xk,) G —)+ (xk o) (e — ug)

77

LQR Extension 5: Trajectory Following for Non-Linear System

« Trajectory following: given a feasible trajectory(xg, ug, x4, ué, ..., x%, ug)

N-1
. T T T
min E X Qx;, +u, Ruy, + x5 Pxy, S.t., Xpyq = Arxy, + Bruy

x,U
k=0

with xy, = x, — x2 and uj, = u;, — u?
« Solve it as a standard LQR problem

I / _ ..d d
u; = Kix; = u, = up + Kj(x; —x77)

78

Optimal Control for Non-Linear Costs and Non-Linear Dynamics

« What if we want to solve control problems with non-linear cost functions and non-linear
dynamics?

N-1

min > (i), 5.t = Ro,Xers = (e)
" k=0

terative Linear Quadratic Regulator (iLQR)

« What if we want to solve control problems with non-linear cost functions and non-linear
dynamics?

N-1

Tgcliun z c(Xp, Ug) s.t. X9 = Xo, Xg+1 = f (g, Uge)

k=0

 ldea: First guess and then refine
1. Propose an initial control trajectory. Roll out to obtain a feasible state-control
trajectory.
2. Linearize the dynamics and make the cost function quadratic around the roll out.
3. Obtain a more optimal control trajectory by solving LQR
4. Repeat 2.

« Alocal-optimal feedback control method

80

The ILQR Algorithm

_— : . T—1
1. Propose some initial (feasible) trajectory {xt,ut}, 5. Forward simulate the full nonlinear model f(x, #) using the com-

S : : ted control. (¢ that arise from feedback matri lied
2. Linearize the dynamics, f about trajectory: puted controls {ur};_, that arise from feedback matrices applie

of of
ox Ju

to the sequence of states {x;} ;' that arise from that forward sim-
ulation.

ts = B;

21 6. Using the newly obtained {x,u;}/; repeat steps from 2.

Linearization can be obtained by three methods:

(a) Analytical: either manually or via auto-diff, compute the correct
derivatives.

Check“Synthesis and Stabilization of Complex
Behaviors through Online Trajectory Optimization” for

(b) Numerical: use finite differencing.

(c) Statistical: Collect samples by deviations around the trajectory el
and fit linear model. more details!
3. Compute second co;rder T;ylor silries expanzion the cost func- Jia-WEi will give a lecture (Iﬂ Mandari n) of i LQ R on
ti , t ti imati . /
fon (x,) around x; and i and get a quadrafic approximation next Wednesday 10/8! Sorry if you can't understand
ct(%s,) = X, QuXt + i, Rytiz where the %4, 1i; variables represent O) .
changes in the proposed trajectory in homogenous coordinates. ** Mandarin! But we will u pl oad the video and check

the translated subtitles on NTU COOL,

4. Given {A;, B;, Qy, Rt};‘rz_ol, solve an affine quadratic control prob-
lem and obtain the proposed feedback matrices (on the homoge-
neous represenation of x).

81

What Could Go Wrong?

« The new trajectory might be very different from the previous roll out. Since we
approximate cost functions and dynamics around the previous roll out, the new
trajectory might be in fact sub-optimal...

 Solution: Be conservative! Stay close to the region where linearized/quadricized
approximation is still precise

¢ G) = (1= e w) + a| x| + | ae—ud]2
| J

1
with xZ,ué as previous state-control roll out Stay close to the

previous roll out!

82

How to Solve Optimal Control Problems?

« Deterministic Optimal Control Problem: « Options:

| = 1. Root finding
min z c(xk, ug) + cp(xy)
= 2. Constrained minimization
such that 3. Dynamic programming
1 =4 4. Model predictive control
Xi+1 = f(xk,uk), k = 1, ,N —1
OZh(xk,uk), k = ,...,N—l

0 =r(xy)

83

Model Predictive Control

* Let's think the original formulation of LQR:
N—-1
min z x5, Qx;, + ur Ruy, + x5 Pxy, S.t.xy = Xy, Xp4q1 = Axy, + Bug,
X, u
k=1
We didn't consider any constraint...

84

Model Predictive Control

* Let's think the original formulation of LQR:
N—-1
min z x5, Qx;, + ur Ruy, + x5 Pxy, S.t.xy = Xy, Xp4q1 = Axy, + Bug,
X, u
k=1
We didn't consider any constraint...

 Solution 0: solve it with 1-step DP but add constraints per step
J (x) = I{}’l(n c(xp, wge) +J* (Xpq1)

= U, = arg r%}(n U, 'Ruy + (Axy + Buy) 'Pyyq (Ax;, + Buy,)

|

The solution will be sub-optimal, as this cost-
to-go function doesn't consider constraints...

85

Model Predictive Control

Solution 1: solve it with multi-step DP and add constraints
H-1

: T T T
min z Xk+h @Xg+n + Ugsn RUgin + XkiH PreuXk+H
Uk:k+HXk:k+H

where H « N is called horizon

Intuition: explicit constrained optimization over first H steps gets the state
close enough to the reference that constraints are no longer active and LQR
cost-to-go is valid further into the future

86

Model Predictive Control

« (Given initial state x, = X,

e Fort=20,1,2,...,N

Solve
H+t—-1
min) O (), 56X = R Xeas = F)
T k=t
Execute u;

Observe resulting state x; = X;

87

More Materials on Optimal Control

16-745 Optimal Control at CMU by Zachary Manchester
(https://optimalcontrol.ri.cmu.edu/)

CS 287 Advanced Robotics at UC Berkeley by Pieter Abbeel
(https://people.eecs.berkeley.edu/~pabbeel/cs287-ta19/)

Model Predictive Control and Reinforcement Learning at
University of Freiburg by Joschka Boedecker and Moritz Diehl
(https://www.syscop.de/teaching/ss2021/model-predictive-
control-and-reinforcement-learning)

6.8210 Underactuated Robotics at MIT by Russ Tedrake
(https://underactuated.csail.mit.edu/Spring2024/)

89

https://optimalcontrol.ri.cmu.edu/
https://people.eecs.berkeley.edu/~pabbeel/cs287-fa19/
https://people.eecs.berkeley.edu/~pabbeel/cs287-fa19/
https://people.eecs.berkeley.edu/~pabbeel/cs287-fa19/
https://www.syscop.de/teaching/ss2021/model-predictive-control-and-reinforcement-learning
https://www.syscop.de/teaching/ss2021/model-predictive-control-and-reinforcement-learning
https://www.syscop.de/teaching/ss2021/model-predictive-control-and-reinforcement-learning
https://www.syscop.de/teaching/ss2021/model-predictive-control-and-reinforcement-learning
https://www.syscop.de/teaching/ss2021/model-predictive-control-and-reinforcement-learning
https://www.syscop.de/teaching/ss2021/model-predictive-control-and-reinforcement-learning
https://www.syscop.de/teaching/ss2021/model-predictive-control-and-reinforcement-learning
https://www.syscop.de/teaching/ss2021/model-predictive-control-and-reinforcement-learning
https://www.syscop.de/teaching/ss2021/model-predictive-control-and-reinforcement-learning
https://www.syscop.de/teaching/ss2021/model-predictive-control-and-reinforcement-learning
https://www.syscop.de/teaching/ss2021/model-predictive-control-and-reinforcement-learning
https://underactuated.csail.mit.edu/Spring2024/

	Slide 1: Robot Perception and Learning
	Slide 2: Disclaimer
	Slide 3
	Slide 4
	Slide 5: Optimal Control: Optimization of Dynamic Systems
	Slide 6: Optimal Control: Optimization of Dynamic Systems
	Slide 7: Optimal Control: Optimization of Dynamic Systems
	Slide 8: Dynamics
	Slide 9: Linearization of Dynamics
	Slide 10: Manipulator Dynamics
	Slide 11: Manipulator Dynamics
	Slide 12
	Slide 13
	Slide 14
	Slide 15: How to Solve Optimal Control Problems?
	Slide 16: How to Solve Optimal Control Problems?
	Slide 17: Root-Finding Problems and Newton’s Method
	Slide 18: Root-Finding Problems and Newton’s Method
	Slide 19: How to Solve Optimal Control Problems?
	Slide 20: Inequality-Constrained Minimization Problems
	Slide 21: How to Solve Optimal Control Problems?
	Slide 22
	Slide 23
	Slide 24: An Example of Estimating Optimal Cost-to-Go Function with Dynamic Programming
	Slide 25: An Example of Estimating Optimal Cost-to-Go Function with Dynamic Programming
	Slide 26: An Example of Estimating Optimal Cost-to-Go Function with Dynamic Programming
	Slide 27: An Example of Estimating Optimal Cost-to-Go Function with Dynamic Programming
	Slide 28: An Example of Estimating Optimal Cost-to-Go Function with Dynamic Programming
	Slide 29: How to Obtain Optimal Policy?
	Slide 30: How to solve optimal control with DP?
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35: An Example of Cart Pole
	Slide 36: Non-linear Dynamics of Cart Pole
	Slide 37: Non-linear Dynamics of Cart Pole
	Slide 38: Non-linear Dynamics of Cart Pole
	Slide 39: Non-linear Dynamics of Cart Pole
	Slide 40: Non-linear Dynamics of Cart Pole
	Slide 41: Non-linear Dynamics of Cart Pole
	Slide 42: Non-linear Dynamics of Cart Pole
	Slide 43: Linearized Dynamics of Cart Pole
	Slide 44: Recap: Manipulator Dynamics
	Slide 45: An Example of Cart Pole
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56: We can Solve LQR was Quadratic Programming
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69: LQR Extension 1: Affine Systems
	Slide 70: LQR Extension 2: Stochastic Systems
	Slide 71: LQR Extension 3: Penalize for Change in Control Inputs
	Slide 72: LQR Extension 3: Penalize for Change in Control Inputs
	Slide 73: LQR Extension 4: Linear Time Varying (LTV) System
	Slide 74: LQR Extension 5: Trajectory Following for Non-Linear System
	Slide 75: LQR Extension 5: Trajectory Following for Non-Linear System
	Slide 76: LQR Extension 5: Trajectory Following for Non-Linear System
	Slide 77: LQR Extension 5: Trajectory Following for Non-Linear System
	Slide 78: LQR Extension 5: Trajectory Following for Non-Linear System
	Slide 79: Optimal Control for Non-Linear Costs and Non-Linear Dynamics
	Slide 80: Iterative Linear Quadratic Regulator (iLQR)
	Slide 81
	Slide 82: What Could Go Wrong?
	Slide 83: How to Solve Optimal Control Problems?
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89

