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Configuration Space (C-Space):

16-735, Howie Choset with slides from G.D. Hager and Z. Dodds this is twisted...

Recap

Motion Planning

Create a graph Search the graph Densify the graph

S g

RRT vs. RRT*

We can create and search the graph (e.g.

grid search) in the C-space, however, the C-

1.
2.

space is high-dimensional:
Computing the C-space obstacle is hard

Searching is computationally expensive

Task and Planning

SubTask 1: Grasp the Cheezit

SubTask N: Grasp theomustard
»  Subgoal configuration of the

gripper pose
»  Motion planning for the
trajectory

SubTask N+1: Lift up the mustard
*  Subgoal configuration of the
gripper pose
» Motion planning for the
trajectory
SubTask N+2: Carry the mustard above the
blue region
*  Subgoal configuration of the
gripper pose
» Motion planning for the
trajectory
SubTask N+3: Put down the mustard
*  Subgoal configuration of the

gripper pose
»  Motion planning for the
trajectory



How to Control Robots to Follow Plans?




What are Missing? We Ignore Motion Constraints

Create a graph Search the graph Densify the graph
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« We have only considered path and obstacle, but ignore:
» How to traverse from one node to another



We lgnore How to Traverse the Planned Path
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We Ignore the Dimension of Time for the Path

Trajectory: time-parameterized path q(t) vt € [0, T]




We Ignore How to Control to Follow the Trajectory

t3, X3, Y3, 03

Steering?
Acceleration?




What are Missing? We Ignore Motion Constraints

Create a graph Search the graph Densify the graph
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« We have only considered path and obstacle, but ignore:
» How to traverse from one node to another
» Motion (velocity/acceleration) constraints
» Safety constraints
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Control is Hard, as Robots may be Underactuated...

Underactuated system: a mechanical system that cannot be commanded to
follow arbitrary trajectories in configuration space. Obvious cases are
systems that have less actuators than degrees of freedom.

[ N
Definition 1.1 (Underactuated Control Differential Equations) A second-order
control differential equation described by the equations

q= f(qs éls u, t) (1)

is fully actuated in state x = (q, q) and time ¢ if the resulting map f is surjective: for every g
there exists a u which produces the desired response. Otherwise it is underactuated (at state x
Kat time t).

/

q: a vector of robot configurations; : a vector of velocities



Control is Hard, as Robots may be Underactuated...

Underactuated system: a mechanical system that cannot be commanded to
follow arbitrary trajectories in configuration space. Obvious cases are
systems that have less actuators than degrees of freedom.

=

NNy
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We |gnore the Dynamics...
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Control Systems that Cancel vs. Involve Dynamic

Which one looks more natural? Which one consumes less energy?
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Can We Extend the Motion Planning Framework?

Create a graph Search the graph Densify the graph
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« (Can we extend the motion planning framework to:
» Consider configuration constraints
» Consider motion (velocity/acceleration) constraints
» Generate control trajectories
> Involve dynamic

13



Can We Generate Paths that Respect
Directional Constraints?

« Take car as an example. How can we reformulate the roadmap planners?

A ¥
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Path Planning with Directional Constraints

v oYY




Can We Reformu

ate Path Plan

Genera

ning Problems to

Control trajectory u(t):
« Acceleration, determined by imposed force/torque, at time t

« Velocity at time ¢t (

e.g. stepper motors)

e Control Tra

ectory?

16



Control is Hard, as Robots may be Underactuated...

 Underactuated system: a mechanical system that cannot be commanded to
follow arbitrary trajectories in configuration space. Obvious cases are

systems that have less actuators than degrees of freedom.
« The double pendulum with one missing actuator is underactuated. The

neighboring configurations take more motions to achieve

17



Control is Hard, as Robots may be Underactuated...

 Underactuated system: a mechanical system that cannot be commanded to
follow arbitrary trajectories in configuration space. Obvious cases are
systems that have less actuators than degrees of freedom.

« The double pendulum with one missing actuator is underactuated. The
neighboring configurations take more motions to achieve

* |dea: Building graph by sampling real/simulated interactions

C’)
n3

’

’

’

Actual trajectory depends on force
constraints and velocity conditions

18



Can We Generate Control Trajectories with Motion
Planning Methods?

« To generate control trajectories, we need to take dynamic into consideration
 Previously, we only consider “configurations” (joint angles) of a robot. Such
representations ignore “dynamics” of a robot.
> |s the C-space obstacle fixed when the initial velocity v of an object varies?

configuration space configuration space

S A 180°

90°

19



State-space Representations

« Generalize the planning space from configurations (the configuration space C) to
dynamics (the state space X)

q q
 Definition: a state vector x € X as x = |q|, then we have x = q] = f(x,u,t),
where g € C, u denotes controls (e.g. torque) and function f describes how the

motion changes conditioned on the state x, control u and time ¢t

20



State-space Representations

« Generalize the planning space from configurations (the configuration space C) to
dynamics (the state space X)
q] q
 Definition: a state vector x € X as x = lq then we have x = ] f(x,u,t),
where g € C, u denotes controls (e.g. torque) and function f describes how the
motion changes conditioned on the state x, control u and time t

A 2nd-order equation of motion:

'WW mq(t) = u(t) — bq(t) — kq(t)
> u(t) . .
— Rewrite the equation as:
b
T q(t) [ q(t) B
"o #= a0l = [1uco - mw—%«o‘iﬁJ“”+LfV“)

A B
21



Obstacles in the State Space

Let's assume we have a point mass robot

Xric denotes the set of states where the
robot cannot avoid collision. Y,ps € Xric

Obstacles y,ps
A

|

®
» §

q IA->
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Obstacles in the State Space

|

0
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Let's assume we have a point mass robot

Region of inevitable
collision xpic

Xric denotes the set of states where the
robot cannot avoid collision. x,ps € Xric

Obstacl
\ T - [
1 @ t

>

. i,
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Kinodynamic Planning with RRT

 Kinematic RRT: Grow a tree of feasible configuration paths from the
start to the goal configuration
» Select a random / the goal configuration g, find the nearest
configuration gpeqr t0 g, and greedily move from geqr 10 q.

 Kinodynamic RRT: Grow a tree of feasible control trajectories u(t),t €
{0, ..., T} from the start to the goal state
» Select a random / the goal configuration g, find the nearest
configuration g,eqr t0 q, randomly select a control u, and execute
u from greqr.

24



Kinodynamic Planning with RRT

BUILD RRT(x;niz)

1 Tinit(x;niz);

2 fork =1to K do

3 Xrand < RANDOM_STATE();
4 EXTEND(T, x;4n4);

5 Return 7

EXTEND(T7; x)

1 Xpear < NEAREST_NEIGHBOR(x, 7);

2 if NEW_STATE(x, Xnear, Xnew | Unew ] then

3 T.add_vertex(x,eyw);

4 T.add_edge(xnear» Xnews

5 if x,,.,, = x then

6 Return Reached; ° Randomly sample uy,,,

7 else *  Find uy,,, that yields xyey, as
8 Return Advanced, close as possible to x

9

Return Trapped,

25



Kinodynamic Planning with RRT

BUILD RRT(x;niz)

1 Tinit(x;niz);

2 fork=1to K do

3 Xrand < RANDOM_STATE();
4 EXTEND(T, x;4n4);

5 Return 7

Execute u,,,, to obtain x,,,,. Also,
do collision checking on x,,.,y

EXTEND(T7; x)

1 Xnear < NEAREST_NEIGHBOR(x, 7);
2 if NEW_STATE(x, Xnear, Xnew, Unew) then
3 T.add_vertex(x,0u);

4 T.add_edge(Xnear» Xnew, Unew);

5 if x,,.,, = x then

6 Return Reached,

7 else

8 Return Advanced,

9

Return Trapped,

“new
. Vs

26



Kinodynamic Planning with RRT




Kinodynamic RRT Still Has Problems

« Metric choice: The Euclidean distance between two states often
correspond poorly with the length of exact control trajectories
» We need to decide x,0q4r
» We need to decide if x,0, IS ClOSe enough to x

 Control choice: we need to sample a lot of uy,,,, which is sample
inefficient

« Open-loop control: we decide the whole control trajectory from the
initial state. We need to replan again the whole trajectory if
something goes wrong...

28



Open-loop Control: Plan and Execute the
Whole Trajectory without Feedback



Open-loop Control: Plan and Execute the
Whole Trajectory without Feedback



Open-loop Control for Robot Juggling

Two forms of SHapRoen juggling.

https://youtu.be/2ZfaADDIHAW?si=ilw)vLjgGYoZufP 18t=856 31



What it the Ball is Disturbed? We need to Re-
decide the Control Inputs

i

V-ball

juggling:
Another
example

of open-

[o]e]¢

stable
(blind)
juggling



Close-loop Con

rol: Repeat

Planning ano

Executing the

rajectory wi

'h Feedback



Close-loop Con

rol: Repeat

Planning ano

Executing the

rajectory wi

'h Feedback



Close-loop Con

rol: Repeat

Planning ano

Executing the

rajectory wi

'h Feedback



Close-loop Con

rol: Repeat

Planning ano

Executing the

rajectory wi

'h Feedback



Close-loop Con

rol: Repeat

Planning ano

Executing the

rajectory wi

'h Feedback



Close-loop Con

rol: Repeat

Planning ano

Executing the

rajectory wi

'h Feedback



Feedback Control: Track a reference trajectory



Measure and Minimize Error to Reference Points

o

\ reference point
\‘) e(t)

le(t)]

40



Measure and Minimize Error to Reference Points

reference point

le(t)] e(t)

41



Basic Recipe of Planning and Control

1. Motion planning: compute a feasible path
« grid search/PRM /RRT ...

2. Controller: predict a control to follow the path or
minimize the "tracking” error.

State S Goal 4| Motion 4| Low-level
Estimation Prediction Planning Controller
N
Y
Sensor Actuator

3/

42




Motion Planning Computes a Sparse Path

Create a graph Search the graph Densify the graph
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RRT
Roadmap planner
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Should We Traverse the Path in Straight Lines?

. Straight lines are discontinuous,
S\ TN robots could overshoot...

44



Traverse in Smooth Curves

45



Traverse in Smooth Trajectories

46




Basic Recipe of Planning and Control

1. Motion planning: compute a feasible path
« grid search/PRM /RRT ...
2. Trajectory generalization: time-scale the path into a trajectory
3. Controller: predict a control to follow the path or minimize
the "tracking” error.

Trajectory
F Generation

State - Goal -l Motion Low-level
Estimation | “| Prediction [ ~| Planning Controller
N
\ 4
sSensor Actuator

7
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Trajectory Generation

« (Constraints as continuity, smoothness,
velocity/acceleration limit, kinematic,
« optimality criteria (min transfer time / energy...)

Path Trajectory _ Trajectory
qo,q1, > qN Generator q(t)

Y

o © _
&
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Point-to-Point Trajectory Generation

 Let's start with an easy example: point-to-point trajectory generation

qr o

49



Point-to-Point Trajectory Generation with Straight Lines

e Straight-line paths:

q®) = q; + t(qr — q;)
dr—di

a(®) = % and §(6) = 0
q/\ q/\ q/\
qr /,Q
qdr — qi
qi()'/, 0

~ V
~ V
-V

50



Point-to-Point Trajectory Generation with Straight Lines

q, a,
NoN-smMooth
// S
-, N
P N
AN 0
o .
N
Qo)

v

~
7

t t
non-smooth
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Point-to-Point Trajectory Generation with Cubic Polynomials

 Cubic polynomial paths:
q(t) = azt3 + a,t? + a;t + aq
g(t) = 3ast? + 2a,t + a4
G(t) = 6ast + 2a,

52



Equations:

Cubic Polynomial Paths

q(t) = azt3 + a,t? + a;t + aq
q(t) — 3a3t2 + Zazt + a1
q(t) — 6a3t + Zaz

Solve the equation

« whent=0
as03 + a,02 + 4,0+ a, =q; 2 a, = q;
3a50° + 2a,0+a, =q¢; = a; = q;
* whent =t

aste® + ate® + agty + ag = qr

t 3a3tf2+2a2tf+a1 =q]f-'
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Point-to-Point Trajectory Generation with Cubic Polynomials

W
+
\\"4
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What it We Want to Impose
Velocity/Acceleration Constraints?

q q
qr o

? Amax
ql()

qmax




Point-to-Point Trajec

ory Generation with

Trapezoidal Motion Profiles

gA qA
q,
qc - tf _to tf _
0 t {
t 0 ¢ AR

56



Point-to-Point Trajectory Generation with
Trapezoidal Motion Profiles

Also known as Linear Segments with Parabolic Blends:
1. Fit with quadratic polynomials (linear ramp velocity)
2. At the blend time, switch to a linear function (constant velocity)

~+Y

57



_ q
qc - t
fle Lo
0 te t
t 0 le —g,l

* Average point: g, = (qr+q;)/2 at t, = t¢/2

« Velocity:
_9m — ¢
CtC -
tm — tc
él.ctc2 — éI.ctftc +qr—q; = 0
. = q; +léictc2 l We can specity g,
Constraints 2
o dlar — gl ty 1 [tpde —4as — )
|qc| > 2 te =+ — = - .

58



| d.
qc - t
fle by o
0 le ¢
> |
t 0 le —g,l

* Average point: g, = (qr+q;)/2 at t, = t¢/2

« Velocity:
. dm — qc
Gclc = —
tm — t¢ . Lo .
qcte” —qctete Y qr —q; = 0
. = q; +léictc2 l We can specify g,
Constraints 2 .

| | 2 | ; Qi — g5 +qcty

—_. . c = _
Qf q’b < |qC| S qf Q’L qc

Ly Ly

59



Point-to-Point Trajectory Generation with
Trapezoidal Motion Profiles

0<t<t,
e <t <ty—1t.
by —te <t < ty.




What it We Want to Generate Trajectory from
Multiple Waypoints?

g A
95
I R
0y
Q1 =qq
L=0 iz I3 e



Can We Fit a High-Order Polynomials?

CI(t) —_ aKtK ~+ aK_ltK_l + .-+ alt + aO

Drawbacks:

« The polynomial function overfits,
resulting in oscillatory curves

« The system of constraint
equations is heavy to solve

Q1: i

=0  ta ts T =t

62



Can We Fit with Multiple Trapezoidal Motion Profiles?

g A
q
'S Iy =4y
do N, -1 1
' q, |3 |
'y , |
0, A !
=
Q1ZQ'E e q | ol ¢ trte ;j}%
ti=0 to ts ’ tN_tf>t




Can We Fit with Multiple Trapezoidal Motion Profiles?

:
g _ 9k — k-1 Ay =4y
k—1,k = ’
’ Atp_q |
9, =9 ¢ -
RAYZ- I
| ! (
L=0 2 3 =t

64



Can We Fit with Multiple Trapezoidal Motion Profiles?

¢

b1 p = k. — dk—1 v =9,
k—1k = .
’ Atg_1
G, = Qk,k+1 — Qk—1k
k — /
7= ¢

=1, t

65



Can We Fit with Multiple Trapezoidal Motion Profiles?

q A

The discrepancy to waypoints is
determined by At,

dk — qk—1

qN — th'
Atp_q

dk—1k =

kel — Qk—1,k
At

dk

=1, t

See “Turning paths into Trajectories Using Parabolic
ss  Blends” by T. Kunz and M. Stilman for more details



Basic Recipe of Planning and Control

1. Motion planning: compute a feasible path

« grid search/PRM /RRT ...
2. Trajectory generalization: time-scale the path into a trajectory

3. Controller: predict a control to follow the path or minimize

the "tracking” error. ,
Trajectory
F Generation

State - Goal -l Motion Low-level
Estimation | “| Prediction [ ~| Planning Controller
N
\ 4
sSensor Actuator

7

67



Control Systems

1. Controller: predict a control to follow the path / desired behavior

e Feedback control
« Optimal control

2. Control u(t) can be velocity / torque inputs

desired
behavior
ﬁ

68

controller

forces
and
torques

ﬁ-

dynamics of
arm and
environment

motions

and

forces




Feedback Controller: Continuously Adjust the
Control Input to Minimize the Tracking Error

desired

forces
tracking and
eIror torques
> controller >

behavior )Q

e(t)

dynamics of
arm and
environment

motions
and
forces

69




An Overview of PID Controller

Image generated by Gemini

arm.
dynamics

6

Current temperature difference (immediate error)
Future temperature difference (derivatives of errors)
Accumulated temperature difference (accumulated
error)

70



Linear Error Dynamics

o Let'sdefine g.(t) = q4(t) — q(t) as the tracking error, where
q,(t) is the desired behavior and q(t) is the current behavior

« The purpose of the feedback controller is to create an error
dynamics such that g, (t) tends to a small value, as t increases

71



Linear Error Dynamics

« Linear error dynamics:

Control signal

a,qe P (t) + ap_1qe PV + - + azde(t) + a1Ge(t) + apqe(t) =

« An example of a 2"d-order error dynamics: the linear mass-spring-damper

de

N

O —

AN

m —f mq.e(t) +bq.e(t) + :f

> =

72



* Ifc=0:

apqeP () + ap_1qe PV () + -+ + 4z (t) + a1 (8) + agqe(t) =0

1 . .
= q,P(t) = —— |a,-1qeP D) + - + a2G.(£) + a14.() + agqe(0)]
p

= q, P (t) = —ap—1’CIe(p_1)(t) — = ay e (t) —ay'qe(t) —apy'qe(t)

« Express a pth-order differential equation as p coupled 1%t-order differential
equations:

X1 = (e
X2 = X1 = (e

xp = ).Cp_l = qe(p_l)

73



fc=0:

apqeP () + ap_1qe PV () + -+ + 4z (t) + a1 (8) + agqe(t) =0

1 . . :
= q. P (t) = —— la,1qe PP (@) + - + a2G.(£) + a14.() + apqe(t)
D

=|q. P (t) = —ap—1’CIe(p_1)(t) — = ay e (t) —ay'qe(t) —apy'qe(t)

Express a pt-order differential equation asp.coupled 1st-order differential
equations:

X1 = (e

X2 = X1 = (e

xp = _).Cp_l = qe(p_l)

74



* Ifc=0:

apqeP () + ap_1qe PV () + -+ + 4z (t) + a1 (8) + agqe(t) =0
1 . . :
= g, P (t) = —— |ap-1q.P7V (@) + -+ + a2 () + a14.(0) + agqe(t)

p

=|q. P (t) = _ap—1,CIe(p_1)(t) — = ay e (t) —ay'qe(t) —apy'qe(t)

« Express a pth-order differential equation as p.coupled 1%-order differential
equations:

X1 = (e X1 = Xy

X2 = X1 = (e Xy = X3

— — -1 y
Xp = Xp-1 = Qe(p ) Xp—-1 = Xp

75



* Ifc=0:

apqeP () + ap_1qe PV () + -+ + 4z (t) + a1 (8) + agqe(t) =0

1 . .
= q,P(t) = —— |a,-1qeP D) + - + a2G.(£) + a14.() + agqe(0)]
p

= q, P (t) = —ap—1’CIe(p_1)(t) — = ay e (t) —ay'qe(t) —apy'qe(t)

« Express a pth-order differential equation as p coupled 1%t-order differential
equations:

X1 = Xy x1 0 1 0 0 0 11%17
T

Xp —ay," —a;' —a;’ _ap—Zl ap—ll_ Xp
Xp-1 = Xp

y - I/ !/ !/ !/
xp — _ap_l xp - ”’_az X3 _a1 X2 _ao x1

76




Linear Error Dynamics

e x(t) = Ax(t) has solution x(t) = e”tx(0)

o Just like x(t) = e**x(0) converge if a < 0, x(t) converge if A is
negative definite

« Matrix 4 is negative definite iff all eigenvalues of 4 (which maybe
complex) have negative real components. The eigenvalues s of A
must satisty:

det(s] —A) =sP +a,_4'sP"' + -+ a,'s* —a;'s' —ay =0
with necessary conditions:

1. Cli, >0 Vi
2. ..

77



Tst-order Error Dynamics

« Take linear mass-spring-damper for example, letm = 0 and f = 0:

k
bqe(t) + kq.(t) = 0= g.(t) +qu(t) =0

de

NN

> =

78



Tst-order Error Dynamics

« Take linear mass-spring-damper for example, letm = 0 and f = 0:

« We have solution g,(t) = e

k
bqe(t) + kq.(t) = 0= g.(t) +qu(t) =0

de

P

NN

/}ﬂﬂ

7

> =

k
——t

>"qe(0) q.(0)

k . ,
3 INcreasing

qe(t)

The mass-spring stops

time  quew damping

79



2"d-order Error Dynamics

« Take linear mass-spring-damper for example, let f = 0:

b k
méie(t) + bc?e(t) + kqe(t) =0= éI.e(t) +n_1C.Ie(t) +n_1Qe(t) =0

de

>

NN

> =

7

= §o () + 28w qe(t) + w,%qe(t) =0

80

,k .
w, = [— isknown as the natural frequency
m

&= Zﬁ(—m is known as the damping ratio




2"d-order Error Dynamics

« Take linear mass-spring-damper for example, let f = 0:

b k
méie(t) + bc?e(t) + er(t) =0= éI.e(t) +n_1C.Ie(t) +n_1Qe(t) =0

NN

> =

de

= §o () + 28w qe(t) + w,%qe(t) =0

The characteristic polynomial:

Stable conditions:

s* + 2(wps + w2 =0
Cwn, > 0

TwoO roots: %27, > 0.

s1 = —Cwp +wp V(% —1
So = —Cwy, — wp/ (% — 1.

81



2"d-order Error Dynamics

e (t)

q.(0)

' / critically damped ¢ =1

0 I
t

The solution of §,(t) + 2éw,q,.(t) + w,*q.(t) = 0:
qe(t) = (c1 + ¢ t)e™@nt
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2"d-order Error Dynamics

e (t)

q.(0)

\ overdamped ¢ > 1
critically damped ¢ =1

The solution of §,(t) + 2éw,q,.(t) + w,*q.(t) = 0:
q.(t) = c ettt + c,e52t

83



2"d-order Error Dynamics

e (t)

q.(0)

overdamped ¢ > 1
critically damped ¢ =1

0
t
Umderdamped { <1

The solution of §,(t) + 2éw,q,.(t) + w,*q.(t) = 0:

qe(t) = (Cl cosw,\/1—E&%t+c,sinw,/1— &2 t) p—Swnt

84




PID Feedback Controller

« PID feedback controller:
> 1st-order error (immediate error)
» Higher-order error (derivatives of errors)

> Historical error (accumulated error)
t

w(®) = K,q0(6) + Kado () + K, j 00(D) dt
0

85



PID feedback controller:
> 1st-order error (immediate error)
» Higher-order error (derivatives of errors)

> Historical error (accumulated error)
t

w(®) = K,q0(6) + Ko (6) + K, j 00 (0) dt
0

Error

Present

<

>

Past l Future

TN | | \ Time
t t+Tqg

86  Feedback Systems: An Introduction for Scientists and Engineers. K.]. Astrém and R. M. Murray.



A Simplitied Block Diagram of PID Controller

« Control u(t) can be velocity / torque inputs

t)+ e(t +
qa(t) @ qe(?) - K, ~ u(t) arm
4+

dynamics

_|_

q(t)

— [dt | K;
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Proportional Controller: Minimize Immediate Error

« Control with velocity inputs:

u(t) = q(t) = (Qd(t)\ —q(t)) = K,qe(t)

desired q(t)

- The constant control gain K, acts somewhat like a virtual spring

de

P

—f

AN
=

> =
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Proportional Controller: Minimize Immediate Error

« Control with velocity inputs:
u(®) = q(t) = K,(qq(®) — q(t)) = K,q.(t)
« Case 1::if g4(t) is constant
Ge(®) = 4o — (1) = 4(6) = =4, (t)
—.(t) = Kpq.(t) = q.(t) = e *r'q,(0)

20 - —— Kp=1,q.(0)=20
——- Kp=1,0.(0)=-20
15 - —— Kp=2,0.(0)=20
5 ——- Kp=2,9.(0)=-20
—— Kp=3,9.(0)=20
e ——- Kp=3,9.(0)=-20
O— -
1.0
Iy
LN
1/
]
iod &
]
]
[]
[ ]

T © T T O ©
L I [ [ I |

de(t)
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Proportional Controller: Minimize Immediate Error

« Control with velocity inputs:

u(t) = q(0) = K,(qq(t) — q(8)) = K,q(t)

« (Case 2:if g4(t) is not constant, but g, (t) is constant

ga(t) =c
. ) C cC_
Qe(t) = C— CI(t) = C— Kp‘]e(t) = qe(t) — K_ + (qe(o) _K_)e Kt
p p
201 —— Kp=1,q¢(0)=20
~=- Kp=1,0¢(0)=-20
151 — Kp=2,9.(0)=20
XD
5 -==- Kp=3,0.(0)=-20
=
=
-104{ &
~15 - i
-204 !
(I) é 1I0 115 2IO 2I5 3IO
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Proportional Controller: Minimize Immediate Error

« Control with velocity inputs:

u(t) = q(0) = K,(qq(t) — q(8)) = K,q(t)

« (Case 2:if g4(t) is not constant, but g, (t) is constant

qqa(t) =c
: : C cC_
Qe(t) = C— CI(t) = C— que(t) = qe(t) — K_ + (Qe(o) _K_)e Kt
p p
201 — Kp=1,0(0)=20
——- Kp=1,0e(0)=-20
151 — Kp=2,9.(0)=20
o ——- Kp=2,0e(0)=-20
— Kp=3,9¢(0)=20
51 el Solution?

* Increase K. What if K, is bounded?
« Minimize accumulated error
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Proportional Integral Controller: Minimize Historical Error

« Control with velocity inputs:

t

§(0) = K,q0(6) + K, f 0.(8) dt

0

Error

Present
Past J?
NN A
TN | "N Time



Proportional Integral Controller: Minimize Historical Error

« Control with velocity inputs:

t
u(®) = 40 = Koo (©) + K; | ac(0) de
0
« It g4(t)is constant
t

q(t) = qq(t) — 4.(t) = Kpq.(t) + K; j qe(t) dt
0

= ¢ = @ (t) + K,q.(t) + Kl-f qe(t) dt
0

= qe(t) + Kp‘?e(t) + Kiqe(t) =0
\ J

|
second-order error dynamics
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2"d-order Error Dynamics

e (t)

q.(0)

overdamped & > 1
critically damped ¢ =1

0
t
Umderdamped E<1
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2"d-order Error Dynamics

Given the standard second-order form:
éie(t) + Z(wnC.Ie(t) + wnZCIe(t) =0
Our Pl controller:
Ge(t) + Kpqe(t) + K;qe(t) =0
Kp
2\/?1' de \

To achieve critically damped state, ]
we need{ =1, {w, > 0and w,? >0

We have w, = /K; and { =

overdamped

critically damped

S ¢

underdamped

Need to tune carefully!
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1.0

q(t) 0.5

P| Controller vs. P Controller

| PI control

P control

0 0.5

time (s)

1.0
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0.2

P control

™|

PI control

-b-ia-a;, of g.(t) i removed!

0.5
time (s)

1.0



How About Force Inputs?

 Velocity inputs are limited to applications with low/predictable force-
torque requirements. Here, we consider control force inputs.
« Let's take a single-joint robot for example

T =M{G(t) + mgr cosq(t) + bq(t)
—
Damping (e.g friction)

+ PID controller: 7= K,q.(t) + Kgqo(t) + K; [, q.(t) dt
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Proportional Derivatives Controller

« PD controller: T = K,q.(t) + K;3q.(¢t)
« Let's consider the robot is placed on a plane (g = 0)

M(t) + mgreos q(t) + bq(t) = Kpq.(t) + K4G.(t)

= MG(t) + bq(t) = K,(qq(t) — q(®)) + K;(q4(t) — q(0))
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Proportional Derivatives Controller

« PD controller: T = K,q.(t) + K;3q.(¢t)
« Let's consider the robot is placed on a plane (g = 0)

Mq(t) + bq(t) = K, (qa(t) — q(0)) + K4(4a(t) — q(0))

o (Case 1:if g4(t) = cis constant
> We have Qd — q.d — Orqe =C —Cl,q — _Qerq. — _Qe
» Substituting q, g, g, we have
e
M. (t) + (b + K4)q.(t) + que(t) =0 9¢(0)]

overdamped

Doesn't this look familiar? critically damped

underdamped
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Proportional Derivatives Controller

« Let's consider the robot is placed vertically
Mq(t) + mgr cos q(t) + bq(t) = K, (qa(t) — q(t)) + Ka(4a(t) — q(t))
« Case 1:if q4(t) = cis constant

M. (t) + (b + Kq)q.(t) + K,q.(t) = mgr cos q(t)
\ J
|
Very complex to get an explicit solution. But let's observe
when the system is stable
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Proportional Derivatives Controller

« Let's consider the robot is placed vertically
Mq(t) + mgr cos q(t) + bq(t) = K, (qa(t) — q(t)) + Ka(4a(t) — q(t))
« Case 1:if q4(t) = cis constant

Mg, (t) + (b + K3)q.(t) + K,q.(t) = mgr cos q(t)

\ J
|

when the joint comes to rest (g.(t) = 0 and g.(t) = 0),
the final error g, (t) # 0:

Kpq.(t) = mgr cos q(t)

In other words, the robot has to provide a torque to hold
the link at rest & # +£7, which happens when g, # 0
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Add Integral Controller to Reduce the Bias

« Let's consider the robot is placed vertically and a PID controller is used:
t

Mijo(©) + (b + K do(D) + K, (©) + K, f 0. (0) dt = mgr cos q(¢)

 Still a complex equation.... Let's envision what happens when the system is close to
equilibrium g, = 0 (and thus q is also close to 0), since the desired q4(t) is constant :

Explain this better!

Mg, (t) + (b + Kz)G.(t) + K, 4. () + K;q.(t) =0
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PID Controller

M.q.e(t) + (b + Kd)éie(t) + KpéIe(t) + KiQe(t) =0

« The characteristic equation is

s3 +

b+Ky
M

« The conditions for g, to converge to zero

(b+ Ka)Kp

M

Kd > —b
K, > 0
> K; > 0.

ge(t)

K, K

S+ —Ss+— =

M M

0

PD control

PID control

Require parameter tuning!

\___/
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g

desired config =

[\I_ PID final config

initial config

[ e
l ‘ PD final config



There are more optimal controllers than PID
g i

b | | n;
B LW

— E—

-

5

MichicanEngineering

it

https://youtu.be/onOd7xWbGAk?si=azyRe0Gz_yOe29nw 104



Summary

Motion Planning with Directional Trajectory Generation Feedback Controller
Constraints forces
desired tracking and
behavior ) error contraller torques\ dy;;nnifls of B
(0] ("?\ - () troll - environni:nt

\\D
(@] t3,q3 ?
V 4 motions
2 and
° ® .-G - A

forces
t, 4 tis qus b2

9:51 0 1 0 0 0 X1
Kinodynamic RRT 7 A H = l /A G S ]H
Xp —ay —ay —ay’ v —apy —apy *p
4y — 3, X A X
qe(tR
qe(o) n

overdamped ¢ > 1

¢, =9 critically damped ¢ =1

07 S
underdamped ¢ <1

S |
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