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Recap
Configuration Space (C-Space): 

We can create and search the graph (e.g. 
grid search) in the C-space, however, the C-

space is high-dimensional:

1. Computing the C-space obstacle is hard

2. Searching is computationally expensive

Motion Planning

𝑠 𝑠
𝑔

𝑠

RRT vs. RRT*

Sampling-based Motion Planning
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Create a graph Search the graph Densify the graph

Task and Planning

SubTask 1: Grasp the Cheezit
⋮

SubTask N: Grasp the mustard
• Subgoal configuration of the 

gripper pose
➢ Motion planning for the 

trajectory
SubTask N+1: Lift up the mustard

• Subgoal configuration of the 
gripper pose
➢ Motion planning for the 

trajectory
SubTask N+2: Carry the mustard above the 
blue region

• Subgoal configuration of the 
gripper pose
➢ Motion planning for the 

trajectory
SubTask N+3: Put down the mustard

• Subgoal configuration of the 
gripper pose
➢ Motion planning for the 

trajectory



How to Control Robots to Follow Plans? 

Video from Boston Dynamic
https://bostondynamics.com/blog/flipping-the-script-with-atlas/ 3



What are Missing? We Ignore Motion Constraints

Create a graph Search the graph Densify the graph

• We have only considered path and obstacle, but ignore:
➢ How to traverse from one node to another

4



We Ignore How to Traverse the Planned Path
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Image credit S. Choudhury

Trajectory: time-parameterized path 𝑞 𝑡 ∀𝑡 ∈ [0, 𝑇]

𝑡1, 𝑞1
𝑡2, 𝑞2

𝑡3, 𝑞3

𝑡4, 𝑞4

𝑡1.5, 𝑞1.5

𝑡1, 𝑞1
𝑡2, 𝑞2

𝑡3, 𝑞3

𝑡4, 𝑞4

𝑡1.5, 𝑞1.5

We Ignore the Dimension of Time for the Path 
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𝑡0, 𝑥0, 𝑦0, 𝜃0

𝑡1, 𝑥1, 𝑦1, 𝜃1

𝑡2, 𝑥2, 𝑦2, 𝜃2

𝑡3, 𝑥3, 𝑦3, 𝜃3

Steering?
Acceleration?

We Ignore How to Control to Follow the Trajectory

7Image credit S. Choudhury



What are Missing? We Ignore Motion Constraints

Create a graph Search the graph Densify the graph

• We have only considered path and obstacle, but ignore:
➢ How to traverse from one node to another
➢ Motion (velocity/acceleration) constraints
➢ Safety constraints

8



Underactuated system: a mechanical system that cannot be commanded to 
follow arbitrary trajectories in configuration space.  Obvious cases are 
systems that have less actuators than degrees of freedom.

Underactuated Robotics.  R. Tedrake.

𝒒: a vector of robot configurations;  ሶ𝒒: a vector of velocities

Control is Hard, as Robots may be Underactuated…
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Video credit W. Felix, K. Shivesh, S. 
Lasse J., V. Shubam and J. Ma.
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Control is Hard, as Robots may be Underactuated…

Underactuated system: a mechanical system that cannot be commanded to 
follow arbitrary trajectories in configuration space.  Obvious cases are 
systems that have less actuators than degrees of freedom.



We Ignore the Dynamics…

https://www.youtube.com/watch?v=RqajKat0v-4 https://www.youtube.com/watch?v=-9EM5_VFlt8&t=2s https://www.youtube.com/watch?v=eFsT3QgIvoI
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Control Systems that Cancel vs. Involve Dynamic

Steven Collins.  Video credit https://youtu.be/PK7cgLJD2nQ?si=5d-Ke74URVlejBpXHonda Asimo:  Video credit https://youtu.be/vA0xLVCb-OA?si=Z4MKkuM4Wr0H7NJw

Which one looks more natural?  Which one consumes less energy?
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Can We Extend the Motion Planning Framework?

Create a graph Search the graph Densify the graph

• Can we extend the motion planning framework to:
➢ Consider configuration constraints
➢ Consider motion (velocity/acceleration) constraints
➢ Generate control trajectories
➢ Involve dynamic

13



Can We Generate Paths that Respect 
Directional Constraints?

• Take car as an example.  How can we reformulate the roadmap planners?

Image credit K. Hauser 14



Path Planning with Directional Constraints

15Image credit K. Hauser



Can We Reformulate Path Planning Problems to 
Generate Control Trajectory?

Control trajectory 𝑢(𝑡): 
• Acceleration, determined by imposed force/torque, at time 𝑡
• Velocity at time 𝑡 (e.g. stepper motors)

𝑢(𝑡)

16



Video credit W. Felix, K. Shivesh, S. Lasse 
J., V. Shubam and J. Ma.

• Underactuated system: a mechanical system that cannot be commanded to 
follow arbitrary trajectories in configuration space.  Obvious cases are 
systems that have less actuators than degrees of freedom.

• The double pendulum with one missing actuator is underactuated.  The 
neighboring configurations take more motions to achieve

Control is Hard, as Robots may be Underactuated…
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Actual trajectory depends on force 
constraints and velocity conditions𝒒𝑎 𝒒𝑏

𝒒𝑎

𝒒𝑏

• Underactuated system: a mechanical system that cannot be commanded to 
follow arbitrary trajectories in configuration space.  Obvious cases are 
systems that have less actuators than degrees of freedom.

• The double pendulum with one missing actuator is underactuated.  The 
neighboring configurations take more motions to achieve

• Idea: Building graph by sampling real/simulated interactions

Control is Hard, as Robots may be Underactuated…
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• To generate control trajectories, we need to take dynamic into consideration
• Previously, we only consider “configurations” (joint angles) of a robot.  Such 

representations ignore “dynamics” of a robot.
➢ Is the 𝐶-space obstacle fixed when the initial velocity 𝑣 of an object varies?

Can We Generate Control Trajectories with Motion 
Planning Methods?

Image credit G.D. Hager and Z. Dodds

𝑣

?
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State-space Representations

20

• Generalize the planning space from configurations (the configuration space 𝒞) to 
dynamics (the state space 𝒳)

• Definition: a state vector 𝑥 ∈ 𝒳 as 𝑥 =
𝑞
ሶ𝑞
⋮

, then we have ሶ𝑥 =
ሶ𝑞
ሷ𝑞
⋮
= 𝑓(𝑥, 𝑢, 𝑡) , 

where 𝑞 ∈ 𝒞, 𝑢 denotes controls (e.g. torque) and function 𝑓 describes how the 
motion changes conditioned on the state 𝑥, control 𝑢 and time 𝑡



• Generalize the planning space from configurations (the configuration space 𝒞) to 
dynamics (the state space 𝒳)

• Definition: a state vector 𝑥 ∈ 𝒳 as 𝑥 =
𝑞
ሶ𝑞
⋮

, then we have ሶ𝑥 =
ሶ𝑞
ሷ𝑞
⋮
= 𝑓(𝑥, 𝑢, 𝑡) , 

where 𝑞 ∈ 𝒞, 𝑢 denotes controls (e.g. torque) and function 𝑓 describes how the 
motion changes conditioned on the state 𝑥, control 𝑢 and time 𝑡

m

k

b

A 2nd-order equation of motion:
𝑚 ሷ𝑞 𝑡 = 𝑢 𝑡 − 𝑏 ሶ𝑞 𝑡 − 𝑘𝑞(𝑡)

𝑢(𝑡)

y(𝑡)

Rewrite the equation as:

ሶ𝑥 =
ሶ𝑞(𝑡)
ሷ𝑞(𝑡)

=
ሶ𝑞(𝑡)

1
𝑚𝑢 𝑡 − 𝑏

𝑚 ሶ𝑞 𝑡 − 𝑘
𝑚𝑞(𝑡)

= 𝑥(𝑡) + 𝑢(𝑡)

𝐴 𝐵

Image adapted from https://en.wikipedia.org/wiki/Mass-spring-damper_model

State-space Representations

21



Let’s assume we have a point mass robot

Obstacles in the State Space

Obstacles 𝜒𝑜𝑏𝑠

𝜒𝑟𝑖𝑐 denotes the set of states where the 
robot cannot avoid collision.  𝜒𝑜𝑏𝑠 ∈ 𝜒𝑟𝑖𝑐

𝒒
22Randomized Kinodynamic Planning.  S. LaVallel and J. J. Kuffner.



Randomized Kinodynamic Planning.  S. LaVallel and J. J. Kuffner.

Obstacles 𝜒𝑜𝑏𝑠

Region of inevitable 
collision 𝜒𝑟𝑖𝑐

ሶ𝒒

𝒒

Let’s assume we have a point mass robot

𝜒𝑟𝑖𝑐 denotes the set of states where the 
robot cannot avoid collision.  𝜒𝑜𝑏𝑠 ∈ 𝜒𝑟𝑖𝑐

Obstacles in the State Space

23



Kinodynamic Planning with RRT

• Kinematic RRT: Grow a tree of feasible configuration paths from the 
start to the goal configuration
➢ Select a random / the goal configuration 𝑞, find the nearest 

configuration 𝑞𝑛𝑒𝑎𝑟 to 𝑞, and greedily move from 𝑞𝑛𝑒𝑎𝑟 to 𝑞.

• Kinodynamic RRT: Grow a tree of feasible control trajectories 𝑢 𝑡 , 𝑡 ∈
{0, … , 𝑇} from the start to the goal state
➢ Select a random / the goal configuration 𝑞, find the nearest 

configuration 𝑞𝑛𝑒𝑎𝑟 to 𝑞, randomly select a control 𝑢, and execute 
𝑢 from 𝑞𝑛𝑒𝑎𝑟.

Randomized Kinodynamic Planning.  S. LaVallel and J. J. Kuffner. 24



• Randomly sample 𝑢𝑛𝑒𝑤
• Find 𝑢𝑛𝑒𝑤 that yields 𝑥𝑛𝑒𝑤 as 

close as possible to 𝑥

25

Kinodynamic Planning with RRT

Randomized Kinodynamic Planning.  S. LaVallel and J. J. Kuffner.



Execute 𝑢𝑛𝑒𝑤 to obtain 𝑥𝑛𝑒𝑤 .  Also, 
do collision checking on 𝑥𝑛𝑒𝑤

26

Kinodynamic Planning with RRT

Randomized Kinodynamic Planning.  S. LaVallel and J. J. Kuffner.



Vidoe credit S. LaVallel and J. J. Kuffner 27

Kinodynamic Planning with RRT



Kinodynamic RRT Still Has Problems

• Metric choice: The Euclidean distance between two states often 
correspond poorly with the length of exact control trajectories
➢We need to decide 𝑥𝑛𝑒𝑎𝑟
➢We need to decide if 𝑥𝑛𝑒𝑤 is close enough to 𝑥

• Control choice: we need to sample a lot of 𝑢𝑛𝑒𝑤 , which is sample 
inefficient

• Open-loop control: we decide the whole control trajectory from the 
initial state.  We need to replan again the whole trajectory if 
something goes wrong…

28Randomized Kinodynamic Planning.  S. LaVallel and J. J. Kuffner.



Open-loop Control: Plan and Execute the 
Whole Trajectory without Feedback

29



Open-loop Control: Plan and Execute the 
Whole Trajectory without Feedback
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Open-loop Control for Robot Juggling

https://youtu.be/2ZfaADDlH4w?si=iIwJvLjgGYoZufP1&t=856 31



What if the Ball is Disturbed?  We need to Re-
decide the Control Inputs

32
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Close-loop Control: Repeat Planning and 
Executing the Trajectory with Feedback
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Close-loop Control: Repeat Planning and 
Executing the Trajectory with Feedback
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Close-loop Control: Repeat Planning and 
Executing the Trajectory with Feedback
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Close-loop Control: Repeat Planning and 
Executing the Trajectory with Feedback
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Close-loop Control: Repeat Planning and 
Executing the Trajectory with Feedback
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Close-loop Control: Repeat Planning and 
Executing the Trajectory with Feedback



Feedback Control: Track a reference trajectory

39



𝑒(𝑡)

|𝑒 𝑡 |

𝑡

reference point

Measure and Minimize Error to Reference Points

40



𝑒(𝑡)|𝑒 𝑡 |

𝑡

reference point

41

Measure and Minimize Error to Reference Points



Basic Recipe of Planning and Control

1. Motion planning: compute a feasible path
• grid search / PRM / RRT …

2. Controller: predict a control to follow the path or 
minimize the ”tracking” error.

Sensor

State 
Estimation

Goal 
Prediction

Motion 
Planning

Actuator

Low-level 
Controller

42



Create a graph Search the graph Densify the graph

𝑔

𝑠

Roadmap planner Probabilistic Roadmaps
RRT

Motion Planning Computes a Sparse Path

43



Should We Traverse the Path in Straight Lines?

𝑣

Straight lines are discontinuous, 
robots could overshoot…

44



Traverse in Smooth Curves

45



𝑡1.5, 𝑞1.5𝑡1, 𝑞1
𝑡2, 𝑞2

𝑡3, 𝑞3

𝑡4, 𝑞4

46

Traverse in Smooth Trajectories



1. Motion planning: compute a feasible path
• grid search / PRM / RRT …

2. Trajectory generalization: time-scale the path into a trajectory
3. Controller: predict a control to follow the path or minimize 

the ”tracking” error.

Sensor

State 
Estimation

Goal 
Prediction

Motion 
Planning

Actuator

Low-level 
Controller

Trajectory 
Generation

47

Basic Recipe of Planning and Control



Trajectory Generation

Trajectory 
Generator

Path 
𝑞0, 𝑞1, … , 𝑞𝑁

Trajectory 
𝑞(𝑡)

• Constraints as continuity, smoothness, 
velocity/acceleration limit, kinematic,

• optimality criteria (min transfer time / energy…)

48



• Let’s start with an easy example: point-to-point trajectory generation

Point-to-Point Trajectory Generation

𝑡

𝑞

𝑞𝑖

𝑞𝑓

𝑡

ሶ𝑞

𝑡

ሷ𝑞

? ? ?

49



• Straight-line paths:

𝑞 𝑡 = 𝑞𝑖 + 𝑡 𝑞𝑓 − 𝑞𝑖

ሶ𝑞 𝑡 =
𝑞𝑓−𝑞𝑖

𝑡
and ሷ𝑞 𝑡 = 0

Point-to-Point Trajectory Generation with Straight Lines

𝑡

𝑞

𝑞𝑖

𝑞𝑓

𝑡

ሶ𝑞

𝑞𝑓 − 𝑞𝑖

𝑡

ሷ𝑞

0

50



𝑡

𝑞

non-smooth

𝑡

ሷ𝑞

0

non-smooth

Point-to-Point Trajectory Generation with Straight Lines
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Point-to-Point Trajectory Generation with Cubic Polynomials

Robotics: Modeling, Planning and Control. Siciliano  et al.

𝑡

𝑞

𝑞𝑖

𝑞𝑓

52

• Cubic polynomial paths:

𝑞 𝑡 = 𝑎3𝑡
3 + 𝑎2𝑡

2 + 𝑎1𝑡 + 𝑎0

ሶ𝑞 𝑡 = 3𝑎3𝑡
2 + 2𝑎2𝑡 + 𝑎1

ሷ𝑞 𝑡 = 6𝑎3𝑡 + 2𝑎2



Cubic Polynomial Paths

𝑞

• Equations:

𝑞 𝑡 = 𝑎3𝑡
3 + 𝑎2𝑡

2 + 𝑎1𝑡 + 𝑎0

ሶ𝑞 𝑡 = 3𝑎3𝑡
2 + 2𝑎2𝑡 + 𝑎1

ሷ𝑞 𝑡 = 6𝑎3𝑡 + 2𝑎2

• when 𝑡 = 0

𝑎30
3 + 𝑎20

2 + 𝑎10 + 𝑎0 = 𝑞𝑖 ⇒ 𝑎0 = 𝑞𝑖

3𝑎30
2 + 2𝑎20 + 𝑎1 = ሶ𝑞𝑖 ⇒ 𝑎1 = ሶ𝑞𝑖

• when 𝑡 = 𝑡𝑓

𝑎3𝑡𝑓
3 + 𝑎2𝑡𝑓

2 + 𝑎1𝑡𝑓 + 𝑎0 = 𝑞𝑓

3𝑎3𝑡𝑓
2 + 2𝑎2𝑡𝑓 + 𝑎1 = ሶ𝑞𝑓

Solve the equation

𝑡

𝑞

𝑞𝑖

𝑞𝑓

53



𝑡

𝑞

𝑞𝑖

𝑞𝑓

ሶ𝑞 ሷ𝑞

𝑡 𝑡

ሶ𝑞𝑖 = ሶ𝑞𝑓 = 0

Point-to-Point Trajectory Generation with Cubic Polynomials

54Robotics: Modeling, Planning and Control. Siciliano  et al.



What if We Want to Impose 
Velocity/Acceleration Constraints?

𝑡

𝑞

𝑞𝑖

𝑞𝑓

𝑡

ሶ𝑞

𝑡

ሷ𝑞

? ? ?ሶ𝑞𝑚𝑎𝑥 ሷ𝑞𝑚𝑎𝑥

55Robotics: Modeling, Planning and Control. Siciliano  et al.



Point-to-Point Trajectory Generation with 
Trapezoidal Motion Profiles

56Robotics: Modeling, Planning and Control. Siciliano  et al.



Also known as Linear Segments with Parabolic Blends:
1. Fit with quadratic polynomials (linear ramp velocity)
2. At the blend time, switch to a linear function (constant velocity)

Point-to-Point Trajectory Generation with 
Trapezoidal Motion Profiles

57Robotics: Modeling, Planning and Control. Siciliano  et al.



• Average point: 𝑞𝑚 = Τ(𝑞𝑓+𝑞𝑖) 2 at 𝑡𝑚 = Τ𝑡𝑓 2

• Velocity:

ሷ𝑞𝑐𝑡𝑐 =
𝑞𝑚 − 𝑞𝑐
𝑡𝑚 − 𝑡𝑐

𝑞𝑐 = 𝑞𝑖 +
1

2
ሷ𝑞𝑐𝑡𝑐

2

ሷ𝑞𝑐𝑡𝑐
2 − ሷ𝑞𝑐𝑡𝑓𝑡𝑐 + 𝑞𝑓 − 𝑞𝑖 = 0

We can specify ሷ𝑞𝑐

Constraints

58Robotics: Modeling, Planning and Control. Siciliano  et al.



• Average point: 𝑞𝑚 = Τ(𝑞𝑓+𝑞𝑖) 2 at 𝑡𝑚 = Τ𝑡𝑓 2

• Velocity:

ሷ𝑞𝑐𝑡𝑐 =
𝑞𝑚 − 𝑞𝑐
𝑡𝑚 − 𝑡𝑐

𝑞𝑐 = 𝑞𝑖 +
1

2
ሷ𝑞𝑐𝑡𝑐

2

ሷ𝑞𝑐𝑡𝑐
2 − ሷ𝑞𝑐𝑡𝑓𝑡𝑐 + 𝑞𝑓 − 𝑞𝑖 = 0

We can specify ሶ𝑞𝑐

Constraints

59Robotics: Modeling, Planning and Control. Siciliano  et al.



Point-to-Point Trajectory Generation with 
Trapezoidal Motion Profiles

60Robotics: Modeling, Planning and Control. Siciliano  et al.



What if We Want to Generate Trajectory from 
Multiple Waypoints?

61Robotics: Modeling, Planning and Control. Siciliano  et al.



Can We Fit a High-Order Polynomials?

𝑞 𝑡 = 𝑎𝐾𝑡
𝐾 + 𝑎𝐾−1𝑡

𝐾−1 +⋯+ 𝑎1𝑡 + 𝑎0

Drawbacks:
• The polynomial function overfits, 

resulting in oscillatory curves
• The system of constraint 

equations is heavy to solve

62



ሶ𝑞

ሶ𝑞𝑐

𝑡

63

Can We Fit with Multiple Trapezoidal Motion Profiles?
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Can We Fit with Multiple Trapezoidal Motion Profiles?
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Can We Fit with Multiple Trapezoidal Motion Profiles?



The discrepancy to waypoints is 
determined by ∆𝑡2

′

See “Turning paths into Trajectories Using Parabolic 
Blends” by T. Kunz and M. Stilman for more details66

Can We Fit with Multiple Trapezoidal Motion Profiles?



1. Motion planning: compute a feasible path
• grid search / PRM / RRT …

2. Trajectory generalization: time-scale the path into a trajectory
3. Controller: predict a control to follow the path or minimize 

the ”tracking” error.

Sensor

State 
Estimation

Goal 
Prediction

Motion 
Planning

Actuator

Low-level 
Controller

Trajectory 
Generation

67

Basic Recipe of Planning and Control



Control Systems

1. Controller: predict a control to follow the path / desired behavior
• Feedback control
• Optimal control
• …

2. Control 𝑢(𝑡) can be velocity / torque inputs

Modern Robotics. K. Lynch and F. Park68



|𝑒 𝑡 |

𝑡

Feedback Controller: Continuously Adjust the 
Control Input to Minimize the Tracking Error

controller

dynamics of 

arm and 

environment

forces 

and 

torques

motions 

and 

forces

desired 

behavior

tracking 

error

𝑒 𝑡

69



An Overview of PID Controller

70

Image generated by Gemini

• Current temperature difference (immediate error)
• Future temperature difference (derivatives of errors)
• Accumulated temperature difference (accumulated 

error)



Linear Error Dynamics

• Let’s define 𝑞𝑒 𝑡 = 𝑞𝑑 𝑡 − 𝑞(𝑡) as the tracking error, where 
𝑞𝑑(𝑡) is the desired behavior and 𝑞(𝑡) is the current behavior

• The purpose of the feedback controller is to create an error 
dynamics such that 𝑞𝑒(𝑡) tends to a small value, as 𝑡 increases

71



• Linear error dynamics:

𝑎𝑝𝑞𝑒
𝑝 𝑡 + 𝑎𝑝−1𝑞𝑒

𝑝−1 𝑡 + ⋯+ 𝑎2 ሷ𝑞𝑒 𝑡 + 𝑎1 ሶ𝑞𝑒 𝑡 + 𝑎0𝑞𝑒 𝑡 = 𝑐

• An example of a 2nd-order error dynamics: the linear mass-spring-damper

𝑚 ሷ𝑞𝑒 𝑡 + 𝑏 ሶ𝑞𝑒 𝑡 + 𝑘𝑞𝑒 𝑡 = 𝑓

𝑞𝑒𝑘

𝑏

𝑚

Control signal

Linear Error Dynamics

72



• If 𝑐 = 0:

𝑎𝑝𝑞𝑒
𝑝 𝑡 + 𝑎𝑝−1𝑞𝑒

𝑝−1 𝑡 + ⋯+ 𝑎2 ሷ𝑞𝑒 𝑡 + 𝑎1 ሶ𝑞𝑒 𝑡 + 𝑎0𝑞𝑒 𝑡 = 0

⇒ 𝑞𝑒
𝑝 𝑡 = −

1

𝑎𝑝
𝑎𝑝−1𝑞𝑒

𝑝−1 𝑡 + ⋯+ 𝑎2 ሷ𝑞𝑒 𝑡 + 𝑎1 ሶ𝑞𝑒 𝑡 + 𝑎0𝑞𝑒 𝑡

⇒ 𝑞𝑒
𝑝 𝑡 = −𝑎𝑝−1

′𝑞𝑒
𝑝−1 𝑡 − ⋯− 𝑎2

′ ሷ𝑞𝑒 𝑡 − 𝑎1
′ ሶ𝑞𝑒 𝑡 − 𝑎0

′𝑞𝑒 𝑡

• Express a pth-order differential equation as p coupled 1st-order differential 
equations:

𝑥1 = 𝑞𝑒
𝑥2 = ሶ𝑥1 = ሶ𝑞𝑒

𝑥𝑝 = ሶ𝑥𝑝−1 = 𝑞𝑒
(𝑝−1)

…
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• If 𝑐 = 0:

𝑎𝑝𝑞𝑒
𝑝 𝑡 + 𝑎𝑝−1𝑞𝑒

𝑝−1 𝑡 + ⋯+ 𝑎2 ሷ𝑞𝑒 𝑡 + 𝑎1 ሶ𝑞𝑒 𝑡 + 𝑎0𝑞𝑒 𝑡 = 0

⇒ 𝑞𝑒
𝑝 𝑡 = −

1

𝑎𝑝
𝑎𝑝−1𝑞𝑒

𝑝−1 𝑡 + ⋯+ 𝑎2 ሷ𝑞𝑒 𝑡 + 𝑎1 ሶ𝑞𝑒 𝑡 + 𝑎0𝑞𝑒 𝑡

⇒ 𝑞𝑒
𝑝 𝑡 = −𝑎𝑝−1

′𝑞𝑒
𝑝−1 𝑡 − ⋯− 𝑎2

′ ሷ𝑞𝑒 𝑡 − 𝑎1
′ ሶ𝑞𝑒 𝑡 − 𝑎0

′𝑞𝑒 𝑡

• Express a pth-order differential equation as p coupled 1st-order differential 
equations:

…
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𝑥1 = 𝑞𝑒
𝑥2 = ሶ𝑥1 = ሶ𝑞𝑒

𝑥𝑝 = ሶ𝑥𝑝−1 = 𝑞𝑒
(𝑝−1)

ሶ𝑥𝑝 = −𝑎𝑝−1
′𝑥𝑝 −⋯− 𝑎2

′𝑥3 − 𝑎1
′𝑥2 − 𝑎0

′𝑥1



• If 𝑐 = 0:

𝑎𝑝𝑞𝑒
𝑝 𝑡 + 𝑎𝑝−1𝑞𝑒

𝑝−1 𝑡 + ⋯+ 𝑎2 ሷ𝑞𝑒 𝑡 + 𝑎1 ሶ𝑞𝑒 𝑡 + 𝑎0𝑞𝑒 𝑡 = 0

⇒ 𝑞𝑒
𝑝 𝑡 = −

1

𝑎𝑝
𝑎𝑝−1𝑞𝑒

𝑝−1 𝑡 + ⋯+ 𝑎2 ሷ𝑞𝑒 𝑡 + 𝑎1 ሶ𝑞𝑒 𝑡 + 𝑎0𝑞𝑒 𝑡

⇒ 𝑞𝑒
𝑝 𝑡 = −𝑎𝑝−1

′𝑞𝑒
𝑝−1 𝑡 − ⋯− 𝑎2

′ ሷ𝑞𝑒 𝑡 − 𝑎1
′ ሶ𝑞𝑒 𝑡 − 𝑎0

′𝑞𝑒 𝑡

• Express a pth-order differential equation as p coupled 1st-order differential 
equations:

…
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𝑥1 = 𝑞𝑒
𝑥2 = ሶ𝑥1 = ሶ𝑞𝑒

𝑥𝑝 = ሶ𝑥𝑝−1 = 𝑞𝑒
(𝑝−1)

ሶ𝑥𝑝 = −𝑎𝑝−1
′𝑥𝑝 −⋯− 𝑎2

′𝑥3 − 𝑎1
′𝑥2 − 𝑎0

′𝑥1

ሶ𝑥1 = 𝑥2
ሶ𝑥2 = 𝑥3

ሶ𝑥𝑝−1 = 𝑥𝑝

…



• If 𝑐 = 0:

𝑎𝑝𝑞𝑒
𝑝 𝑡 + 𝑎𝑝−1𝑞𝑒

𝑝−1 𝑡 + ⋯+ 𝑎2 ሷ𝑞𝑒 𝑡 + 𝑎1 ሶ𝑞𝑒 𝑡 + 𝑎0𝑞𝑒 𝑡 = 0

⇒ 𝑞𝑒
𝑝 𝑡 = −

1

𝑎𝑝
𝑎𝑝−1𝑞𝑒

𝑝−1 𝑡 + ⋯+ 𝑎2 ሷ𝑞𝑒 𝑡 + 𝑎1 ሶ𝑞𝑒 𝑡 + 𝑎0𝑞𝑒 𝑡

⇒ 𝑞𝑒
𝑝 𝑡 = −𝑎𝑝−1

′𝑞𝑒
𝑝−1 𝑡 − ⋯− 𝑎2

′ ሷ𝑞𝑒 𝑡 − 𝑎1
′ ሶ𝑞𝑒 𝑡 − 𝑎0

′𝑞𝑒 𝑡

• Express a pth-order differential equation as p coupled 1st-order differential 
equations:
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ሶ𝑥𝑝 = −𝑎𝑝−1

′𝑥𝑝 −⋯− 𝑎2
′𝑥3 − 𝑎1

′𝑥2 − 𝑎0
′𝑥1

ሶ𝑥1 = 𝑥2
ሶ𝑥2 = 𝑥3

ሶ𝑥𝑝−1 = 𝑥𝑝

ሶ𝑥1
ሶ𝑥2
⋮
ሶ𝑥𝑝

=

0 1 0
0 0 1

⋯ 0 0
⋯ 0 0

⋮ ⋮ ⋱
−𝑎0

′ −𝑎1
′ −𝑎2

′
⋱ ⋮ ⋮
⋯ −𝑎𝑝−2

′ −𝑎𝑝−1
′

𝑥1
𝑥2
⋮
𝑥𝑝

ሶ𝑥 𝐴 𝑥



• ሶ𝒙 𝑡 = 𝑨𝒙(𝑡) has solution 𝒙 𝑡 = 𝑒𝑨𝑡𝒙(0)

• Just like 𝑥 𝑡 = 𝑒𝑎𝑡𝑥(0) converge if 𝑎 < 0, 𝒙 𝑡 converge if 𝑨 is 
negative definite

• Matrix 𝑨 is negative definite iff all eigenvalues of 𝑨 (which maybe 
complex) have negative real components.  The eigenvalues 𝑠 of 𝐴
must satisfy:

det(𝑠𝐼 − 𝐴) = 𝑠𝑝 + 𝑎𝑝−1
′𝑠𝑝−1 +⋯+ 𝑎2

′𝑠2 − 𝑎1
′𝑠1 − 𝑎0

′ = 0

with necessary conditions:

1. 𝑎𝑖
′ > 0 ∀𝑖

2. …
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Linear Error Dynamics



• Take linear mass-spring-damper for example, let 𝑚 = 0 and 𝑓 = 0:

𝑏 ሶ𝑞𝑒 𝑡 + 𝑘𝑞𝑒 𝑡 = 0 ⇒ ሶ𝑞𝑒 𝑡 +
𝑘

𝑏
𝑞𝑒 𝑡 = 0

𝑞𝑒𝑘

𝑏

𝑚

Modern Robotics. K. Lynch and F. Park 78

1st-order Error Dynamics



• Take linear mass-spring-damper for example, let 𝑚 = 0 and 𝑓 = 0:

𝑏 ሶ𝑞𝑒 𝑡 + 𝑘𝑞𝑒 𝑡 = 0 ⇒ ሶ𝑞𝑒 𝑡 +
𝑘

𝑏
𝑞𝑒 𝑡 = 0

• We have solution 𝑞𝑒 𝑡 = 𝑒−
𝑘

𝑏
𝑡𝑞𝑒 0

𝑞𝑒𝑘

𝑏

𝑚

𝑘

𝑏
increasing

𝑞𝑒 𝑡

𝑞𝑒 0

Modern Robotics. K. Lynch and F. Park 79

1st-order Error Dynamics

The mass-spring stops 
due to damping 



𝜔𝑛 =
𝑘

𝑚
is known as the natural frequency

𝜉 =
𝑏

2 𝑘𝑚
is known as the damping ratio
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2nd-order Error Dynamics

• Take linear mass-spring-damper for example, let 𝑓 = 0:

𝑚 ሷ𝑞𝑒 𝑡 + 𝑏 ሶ𝑞𝑒 𝑡 + 𝑘𝑞𝑒 𝑡 = 0 ⇒ ሷ𝑞𝑒 𝑡 +
𝑏

𝑚
ሶ𝑞𝑒 𝑡 +

𝑘

𝑚
𝑞𝑒 𝑡 = 0

⇒ ሷ𝑞𝑒 𝑡 + 2𝜉𝜔𝑛 ሶ𝑞𝑒 𝑡 + 𝜔𝑛
2𝑞𝑒 𝑡 = 0

𝑞𝑒𝑘

𝑏

𝑚



• Take linear mass-spring-damper for example, let 𝑓 = 0:

𝑚 ሷ𝑞𝑒 𝑡 + 𝑏 ሶ𝑞𝑒 𝑡 + 𝑘𝑞𝑒 𝑡 = 0 ⇒ ሷ𝑞𝑒 𝑡 +
𝑏

𝑚
ሶ𝑞𝑒 𝑡 +

𝑘

𝑚
𝑞𝑒 𝑡 = 0

⇒ ሷ𝑞𝑒 𝑡 + 2𝜉𝜔𝑛 ሶ𝑞𝑒 𝑡 + 𝜔𝑛
2𝑞𝑒 𝑡 = 0

The characteristic polynomial:

Two roots:

Stable conditions:
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2nd-order Error Dynamics

𝑞𝑒𝑘

𝑏

𝑚



𝑞𝑒 𝑡
𝑞𝑒 0

𝜁 = 1

82

2nd-order Error Dynamics

Modern Robotics. K. Lynch and F. Park

The solution of ሷ𝑞𝑒 𝑡 + 2𝜉𝜔𝑛 ሶ𝑞𝑒 𝑡 + 𝜔𝑛
2𝑞𝑒 𝑡 = 0:

𝑞𝑒 𝑡 = 𝑐1 + 𝑐2𝑡 𝑒
−𝜔𝑛𝑡



𝑞𝑒 𝑡
𝑞𝑒 0

𝜁 = 1

𝜁 > 1
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2nd-order Error Dynamics

Modern Robotics. K. Lynch and F. Park

The solution of ሷ𝑞𝑒 𝑡 + 2𝜉𝜔𝑛 ሶ𝑞𝑒 𝑡 + 𝜔𝑛
2𝑞𝑒 𝑡 = 0:

𝑞𝑒 𝑡 = 𝑐1𝑒
𝑠1𝑡 + 𝑐2𝑒

𝑠2𝑡



𝑞𝑒 𝑡
𝑞𝑒 0

𝜁 < 1

𝜁 = 1

𝜁 > 1
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2nd-order Error Dynamics

Modern Robotics. K. Lynch and F. Park

The solution of ሷ𝑞𝑒 𝑡 + 2𝜉𝜔𝑛 ሶ𝑞𝑒 𝑡 + 𝜔𝑛
2𝑞𝑒 𝑡 = 0:

𝑞𝑒 𝑡 = 𝑐1 cos𝜔𝑛 1 − 𝜉2 𝑡 + 𝑐2 sin𝜔𝑛 1 − 𝜉2 𝑡 𝑒−𝜁𝜔𝑛𝑡



PID Feedback Controller

• PID feedback controller:
➢ 1st-order error (immediate error)
➢ Higher-order error (derivatives of errors)
➢ Historical error (accumulated error)

𝑢 𝑡 = 𝐾𝑝𝑞𝑒 𝑡 + 𝐾𝑑 ሶ𝑞𝑒 𝑡 + 𝐾𝑖න
0

𝑡

𝑞𝑒 𝑡 𝑑𝑡
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Feedback Systems: An Introduction for Scientists and Engineers.  K. J. Åström and R. M. Murray.

Present

Past Future

• PID feedback controller:
➢ 1st-order error (immediate error)
➢ Higher-order error (derivatives of errors)
➢ Historical error (accumulated error)

𝑢 𝑡 = 𝐾𝑝𝑞𝑒 𝑡 + 𝐾𝑑 ሶ𝑞𝑒 𝑡 + 𝐾𝑖න
0

𝑡

𝑞𝑒 𝑡 𝑑𝑡
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A Simplified Block Diagram of PID Controller

• Control 𝑢(𝑡) can be velocity / torque inputs

𝑢(𝑡)

𝑞(𝑡)

𝑞𝑑(𝑡) 𝑞𝑒(𝑡)
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desired 𝑞(𝑡)

𝑞𝑒𝑘

𝑏

𝑚

• Control with velocity inputs:

𝑢 𝑡 = ሶ𝑞 𝑡 = 𝐾𝑝 𝑞𝑑 𝑡 − 𝑞 𝑡 = 𝐾𝑝𝑞𝑒(𝑡)

• The constant control gain 𝐾𝑝 acts somewhat like a virtual spring
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• Control with velocity inputs:

𝑢 𝑡 = ሶ𝑞 𝑡 = 𝐾𝑝 𝑞𝑑 𝑡 − 𝑞 𝑡 = 𝐾𝑝𝑞𝑒(𝑡)

• Case 1: : if 𝑞𝑑(𝑡) is constant

ሶ𝑞𝑒 𝑡 = ሶ𝑞𝑑 𝑡 − ሶ𝑞 𝑡 ⇒ ሶ𝑞 𝑡 = − ሶ𝑞𝑒 𝑡

− ሶ𝑞𝑒 𝑡 = 𝐾𝑝𝑞𝑒 𝑡 ⇒ 𝑞𝑒 𝑡 = 𝑒−𝐾𝑝𝑡𝑞𝑒 0
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Proportional Controller: Minimize Immediate Error



• Control with velocity inputs:

𝑢 𝑡 = ሶ𝑞 𝑡 = 𝐾𝑝 𝑞𝑑 𝑡 − 𝑞 𝑡 = 𝐾𝑝𝑞𝑒(𝑡)

• Case 2: if 𝑞𝑑(𝑡) is not constant, but ሶ𝑞𝑑(𝑡) is constant

ሶ𝑞𝑑 𝑡 = 𝑐

ሶ𝑞𝑒 𝑡 = 𝑐 − ሶ𝑞 𝑡 = 𝑐 − 𝐾𝑝𝑞𝑒 𝑡 ⇒ 𝑞𝑒 𝑡 =
𝑐

𝐾𝑝
+ (𝑞𝑒 0 −

𝑐

𝐾𝑝
)𝑒−𝐾𝑝𝑡
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Proportional Controller: Minimize Immediate Error

• Control with velocity inputs:

𝑢 𝑡 = ሶ𝑞 𝑡 = 𝐾𝑝 𝑞𝑑 𝑡 − 𝑞 𝑡 = 𝐾𝑝𝑞𝑒(𝑡)

• Case 2: if 𝑞𝑑(𝑡) is not constant, but ሶ𝑞𝑑(𝑡) is constant

ሶ𝑞𝑑 𝑡 = 𝑐

ሶ𝑞𝑒 𝑡 = 𝑐 − ሶ𝑞 𝑡 = 𝑐 − 𝐾𝑝𝑞𝑒 𝑡 ⇒ 𝑞𝑒 𝑡 =
𝑐

𝐾𝑝
+ (𝑞𝑒 0 −

𝑐

𝐾𝑝
)𝑒−𝐾𝑝𝑡

Solution?
• Increase 𝐾𝑝.  What if 𝐾𝑝 is bounded?

• Minimize accumulated error
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Proportional Integral Controller: Minimize Historical Error

• Control with velocity inputs:

ሶ𝑞 𝑡 = 𝐾𝑝𝑞𝑒 𝑡 + 𝐾𝑖න
0

𝑡

𝑞𝑒 𝑡 𝑑𝑡

Present

Past
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• Control with velocity inputs:

𝑢 𝑡 = ሶ𝑞 𝑡 = 𝐾𝑝𝑞𝑒 𝑡 + 𝐾𝑖න
0

𝑡

𝑞𝑒 𝑡 𝑑𝑡

• If ሶ𝑞𝑑(𝑡) is constant

ሶ𝑞 𝑡 = ሶ𝑞𝑑 𝑡 − ሶ𝑞𝑒 𝑡 = 𝐾𝑝𝑞𝑒 𝑡 + 𝐾𝑖න
0

𝑡

𝑞𝑒 𝑡 𝑑𝑡

⟹ 𝑐 = ሶ𝑞𝑒 𝑡 + 𝐾𝑝𝑞𝑒 𝑡 + 𝐾𝑖න
0

𝑡

𝑞𝑒 𝑡 𝑑𝑡

(Take derivatives)                      ⟹ ሷ𝑞𝑒 𝑡 + 𝐾𝑝 ሶ𝑞𝑒 𝑡 + 𝐾𝑖𝑞𝑒 𝑡 = 0

second-order error dynamics

Proportional Integral Controller: Minimize Historical Error
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𝑞𝑒 𝑡
𝑞𝑒 0

𝜉 < 1

𝜉 = 1

𝜉 > 1

94

2nd-order Error Dynamics
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• Given the standard second-order form:

ሷ𝑞𝑒 𝑡 + 2𝜁𝜔𝑛 ሶ𝑞𝑒 𝑡 + 𝜔𝑛
2𝑞𝑒 𝑡 = 0

• Our PI controller:

ሷ𝑞𝑒 𝑡 + 𝐾𝑝 ሶ𝑞𝑒 𝑡 + 𝐾𝑖𝑞𝑒 𝑡 = 0

• We have 𝜔𝑛 = 𝐾𝑖 and 𝜁 =
𝐾𝑝

2 𝐾𝑖

• To achieve critically damped state,
we need 𝜁 = 1, 𝜁𝜔𝑛 > 0 and 𝜔𝑛

2 > 0

𝑞𝑒

Need to tune carefully!

𝑞𝑒 0
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2nd-order Error Dynamics

Modern Robotics. K. Lynch and F. Park



bias of 𝑞𝑒 𝑡 is removed! 

PI Controller vs. P Controller

𝑞𝑒 𝑡𝑞 𝑡
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• Velocity inputs are limited to applications with low/predictable force-
torque requirements.   Here, we consider control force inputs.

• Let’s take a single-joint robot for example

𝜏 = 𝑀 ሷ𝑞 𝑡 + 𝑚𝑔𝑟 cos 𝑞(𝑡) + 𝑏 ሶ𝑞(𝑡)

• PID controller:    𝜏 = 𝐾𝑝𝑞𝑒 𝑡 + 𝐾𝑑 ሶ𝑞𝑒 𝑡 + 𝐾𝑖 0׬
𝑡
𝑞𝑒 𝑡 𝑑𝑡

𝑞

Damping (e.g friction)

Image credit K. Lynch and F. Park

How About Force Inputs?
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• PD controller: 𝜏 = 𝐾𝑝𝑞𝑒 𝑡 + 𝐾𝑑 ሶ𝑞𝑒 𝑡

• Let’s consider the robot is placed on a plane (𝑔 = 0) 

𝑀 ሷ𝑞 𝑡 +𝑚𝑔𝑟 cos 𝑞(𝑡) + 𝑏 ሶ𝑞 𝑡 = 𝐾𝑝𝑞𝑒 𝑡 + 𝐾𝑑 ሶ𝑞𝑒 𝑡

⇒ 𝑀 ሷ𝑞 𝑡 + 𝑏 ሶ𝑞 𝑡 = 𝐾𝑝(𝑞𝑑 𝑡 − 𝑞 𝑡 ) + 𝐾𝑑( ሶ𝑞𝑑 𝑡 − ሶ𝑞 𝑡 )

Proportional Derivatives Controller
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• PD controller: 𝜏 = 𝐾𝑝𝑞𝑒 𝑡 + 𝐾𝑑 ሶ𝑞𝑒 𝑡

• Let’s consider the robot is placed on a plane (𝑔 = 0) 

𝑀 ሷ𝑞 𝑡 + 𝑏 ሶ𝑞 𝑡 = 𝐾𝑝(𝑞𝑑 𝑡 − 𝑞 𝑡 ) + 𝐾𝑑( ሶ𝑞𝑑 𝑡 − ሶ𝑞 𝑡 )

• Case 1: if 𝑞𝑑 𝑡 = 𝑐 is constant
➢ We have ሶ𝑞𝑑 = ሷ𝑞𝑑 = 0, 𝑞𝑒 = 𝑐 − 𝑞, ሶ𝑞 = − ሶ𝑞𝑒 , ሷ𝑞 = − ሷ𝑞𝑒
➢ Substituting 𝑞, ሶ𝑞, ሷ𝑞, we have

𝑀 ሷ𝑞𝑒 𝑡 + 𝑏 + 𝐾𝑑 ሶ𝑞𝑒 𝑡 + 𝐾𝑝𝑞𝑒 𝑡 = 0

Doesn’t this look familiar?

𝑞𝑒
𝑞𝑒 0

Proportional Derivatives Controller
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• Let’s consider the robot is placed vertically

𝑀 ሷ𝑞 𝑡 +𝑚𝑔𝑟 cos 𝑞(𝑡) + 𝑏 ሶ𝑞 𝑡 = 𝐾𝑝(𝑞𝑑 𝑡 − 𝑞 𝑡 ) + 𝐾𝑑( ሶ𝑞𝑑 𝑡 − ሶ𝑞 𝑡 )

• Case 1: if 𝑞𝑑 𝑡 = 𝑐 is constant

𝑀 ሷ𝑞𝑒 𝑡 + 𝑏 + 𝐾𝑑 ሶ𝑞𝑒 𝑡 + 𝐾𝑝𝑞𝑒 𝑡 = 𝑚𝑔𝑟 cos 𝑞(𝑡)

Very complex to get an explicit solution.  But let’s observe 
when the system is stable

Proportional Derivatives Controller
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• Let’s consider the robot is placed vertically

𝑀 ሷ𝑞 𝑡 +𝑚𝑔𝑟 cos 𝑞(𝑡) + 𝑏 ሶ𝑞 𝑡 = 𝐾𝑝(𝑞𝑑 𝑡 − 𝑞 𝑡 ) + 𝐾𝑑( ሶ𝑞𝑑 𝑡 − ሶ𝑞 𝑡 )

• Case 1: if 𝑞𝑑 𝑡 = 𝑐 is constant

𝑀 ሷ𝑞𝑒 𝑡 + 𝑏 + 𝐾𝑑 ሶ𝑞𝑒 𝑡 + 𝐾𝑝𝑞𝑒 𝑡 = 𝑚𝑔𝑟 cos 𝑞(𝑡)

when the joint comes to rest ( ሷ𝑞𝑒 𝑡 = 0 and ሶ𝑞𝑒 𝑡 = 0), 
the final error 𝑞𝑒 𝑡 ≠ 0:

𝐾𝑝𝑞𝑒 𝑡 = 𝑚𝑔𝑟 cos 𝑞(𝑡)

In other words, the robot has to provide a torque to hold 
the link at rest 𝜃 ≠ ±𝜋

2
, which happens when 𝑞𝑒 ≠ 0

Proportional Derivatives Controller
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• Let’s consider the robot is placed vertically and a PID controller is used:

𝑀 ሷ𝑞𝑒 𝑡 + 𝑏 + 𝐾𝑑 ሶ𝑞𝑒 𝑡 + 𝐾𝑝𝑞𝑒 𝑡 + 𝐾𝑖න
0

𝑡

𝑞𝑒 𝑡 𝑑𝑡 = 𝑚𝑔𝑟 cos 𝑞(𝑡)

• Still a complex equation…. Let’s envision what happens when the system is close to 
equilibrium 𝑞𝑒 = 0 (and thus ሶ𝑞 is also close to 0), since the desired 𝑞𝑑 𝑡 is constant :

(Take derivatives)
𝑀ഺ𝑞𝑒 𝑡 + 𝑏 + 𝐾𝑑 ሷ𝑞𝑒 𝑡 + 𝐾𝑝 ሶ𝑞𝑒 𝑡 + 𝐾𝑖𝑞𝑒 𝑡 = 0

Add Integral Controller to Reduce the Bias

Explain this better!
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𝑀ഺ𝑞𝑒 𝑡 + 𝑏 + 𝐾𝑑 ሷ𝑞𝑒 𝑡 + 𝐾𝑝 ሶ𝑞𝑒 𝑡 + 𝐾𝑖𝑞𝑒 𝑡 = 0

• The characteristic equation is

𝑠3 +
𝑏 + 𝐾𝑑
𝑀

𝑠2 +
𝐾𝑝
𝑀
𝑠 +

𝐾𝑖
𝑀

= 0

• The conditions for 𝑞𝑒 to converge to zero

Image credit K. Lynch and F. Park

Require parameter tuning!

PID Controller

𝑞𝑒 𝑡

𝑡

103



There are more optimal controllers than PID

https://youtu.be/onOd7xWbGAk?si=azyRe0Gz_yOe29nw 104



Summary

Obstacles 𝜒𝑜𝑏𝑠

Region of inevitable 
collision 𝜒𝑟𝑖𝑐

ሶ𝒒

𝒒

Motion Planning with Directional 
Constraints

Kinodynamic RRT

Trajectory Generation

controller

dynamics of 

arm and 

environment

forces 

and 

torques

motions 

and 

forces

desired 

behavior

tracking 

error

𝑒 𝑡

Feedback Controller
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