## Robot Perception and Learning

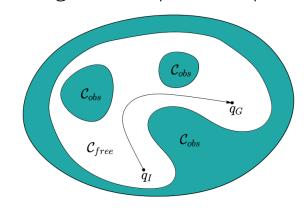
Kinodynamic Motion planning, Trajectory Generation, Feedback Control

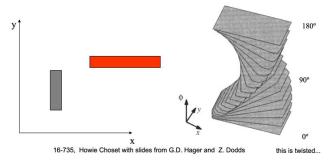
Tsung-Wei Ke Fall 2025



## Recap

#### Configuration Space (C-Space):

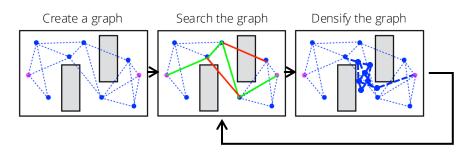




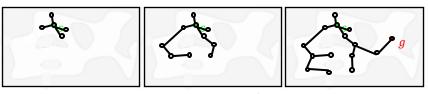
We can create and search the graph (e.g. grid search) in the C-space, however, the C-space is high-dimensional:

- 1. Computing the C-space obstacle is hard
- 2. Searching is computationally expensive

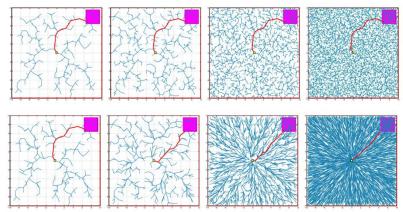
#### Motion Planning



#### Sampling-based Motion Planning



RRT vs. RRT\*



#### Task and Planning

#### SubTask 1: Grasp the Cheezit :

#### SubTask N: Grasp the mustard

- Subgoal configuration of the gripper pose
  - Motion planning for the trajectory

#### SubTask N+1: Lift up the mustard

- Subgoal configuration of the gripper pose
  - Motion planning for the trajectory

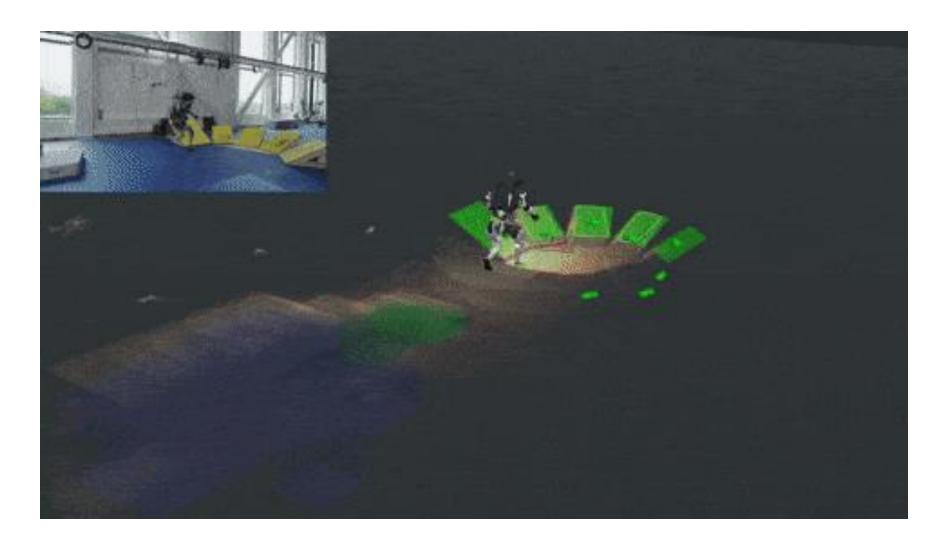
### SubTask N+2: Carry the mustard above the blue region

- Subgoal configuration of the gripper pose
  - Motion planning for the trajectory

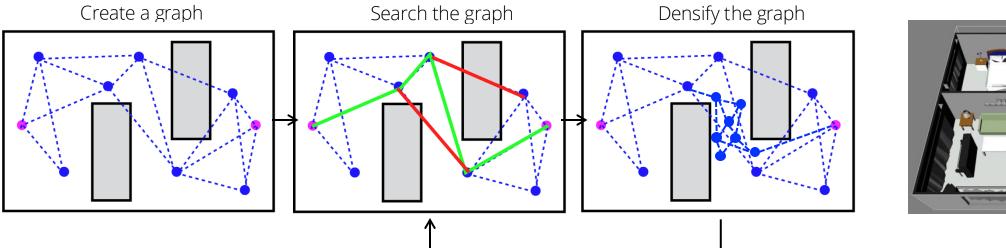
#### SubTask N+3: Put down the mustard

- Subgoal configuration of the gripper pose
  - Motion planning for the trajectory

### How to Control Robots to Follow Plans?



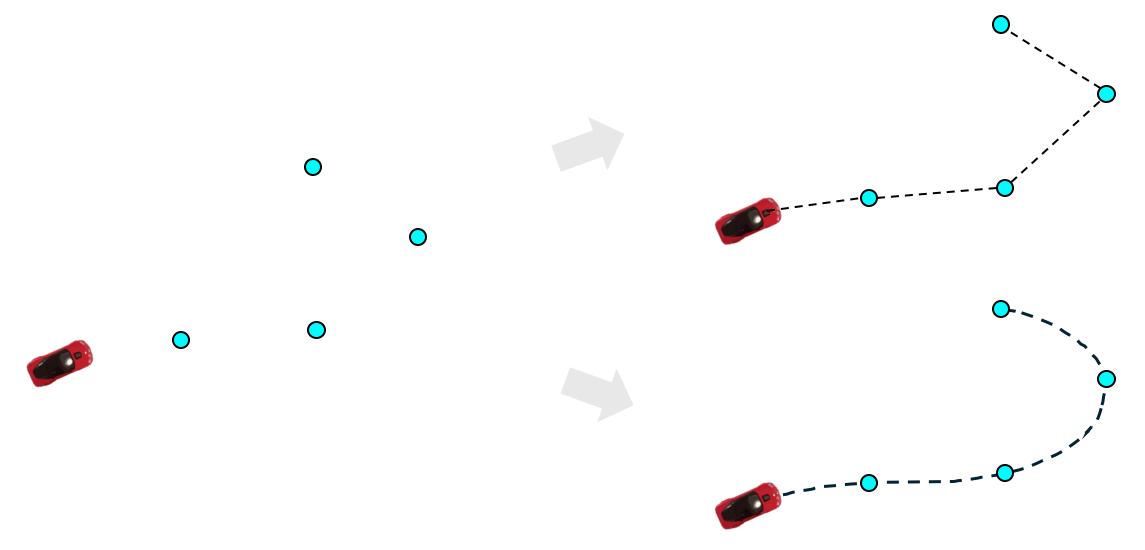
## What are Missing? We Ignore Motion Constraints





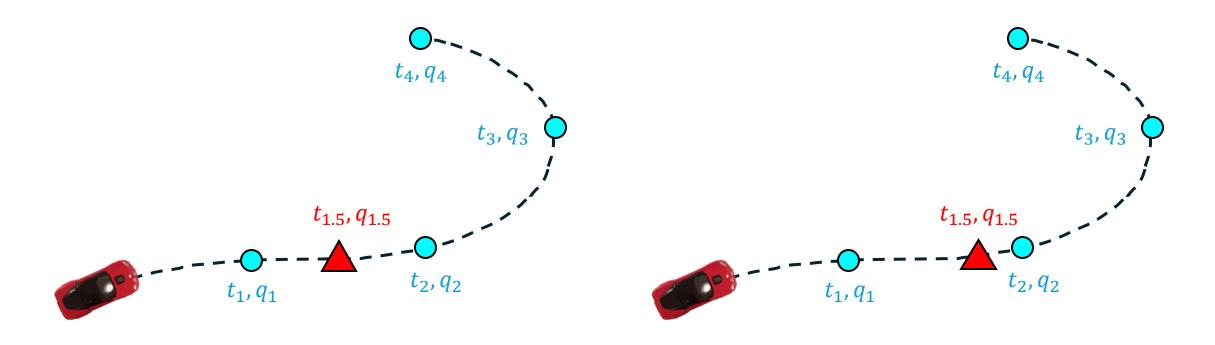
- We have only considered path and obstacle, but ignore:
  - > How to traverse from one node to another

## We Ignore How to Traverse the Planned Path

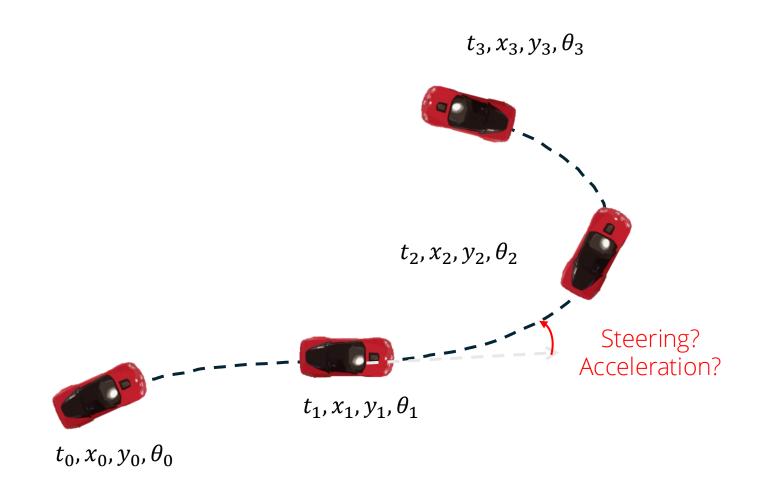


## We Ignore the Dimension of Time for the Path

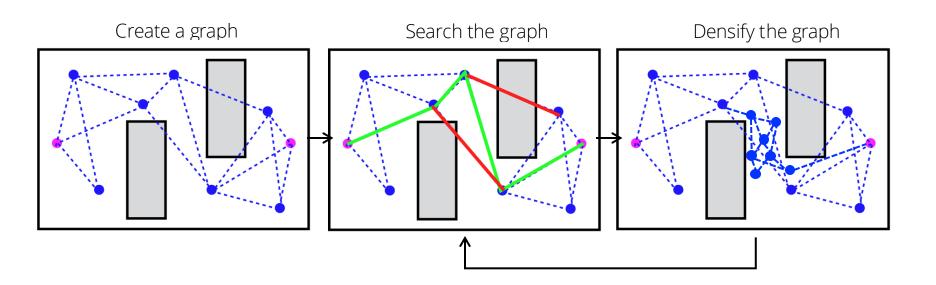
Trajectory: time-parameterized path  $q(t) \forall t \in [0, T]$ 



## We Ignore How to Control to Follow the Trajectory



## What are Missing? We Ignore Motion Constraints





- We have only considered **path** and **obstacle**, but ignore:
  - > How to traverse from one node to another
  - ➤ Motion (velocity/acceleration) constraints
  - > Safety constraints



## Control is Hard, as Robots may be Underactuated...

**Underactuated system**: a mechanical system that cannot be commanded to follow arbitrary trajectories in configuration space. Obvious cases are systems that have less actuators than degrees of freedom.

**Definition 1.1 (Underactuated Control Differential Equations)** A second-order control differential equation described by the equations

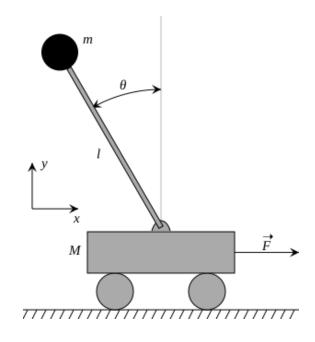
$$\ddot{\mathbf{q}} = \mathbf{f}(\mathbf{q}, \dot{\mathbf{q}}, \mathbf{u}, t) \tag{1}$$

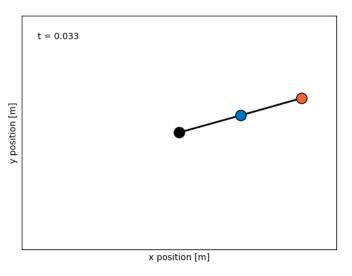
is *fully actuated* in state  $\mathbf{x} = (\mathbf{q}, \dot{\mathbf{q}})$  and time t if the resulting map  $\mathbf{f}$  is surjective: for every  $\ddot{\mathbf{q}}$  there exists a  $\mathbf{u}$  which produces the desired response. Otherwise it is *underactuated* (at state  $\mathbf{x}$  at time t).

q: a vector of robot configurations;  $\dot{q}$ : a vector of velocities

### Control is Hard, as Robots may be Underactuated...

**Underactuated system**: a mechanical system that cannot be commanded to follow arbitrary trajectories in configuration space. Obvious cases are systems that have less actuators than degrees of freedom.





Video credit W. Felix, K. Shivesh, S. Lasse J., V. Shubam and J. Ma.

## We Ignore the Dynamics...



https://www.youtube.com/watch?v=RqajKat0v-4



https://www.youtube.com/watch?v=-9EM5\_VFlt8&t=2s



https://www.youtube.com/watch?v=eFsT3Qglvol

## Control Systems that Cancel vs. Involve Dynamic

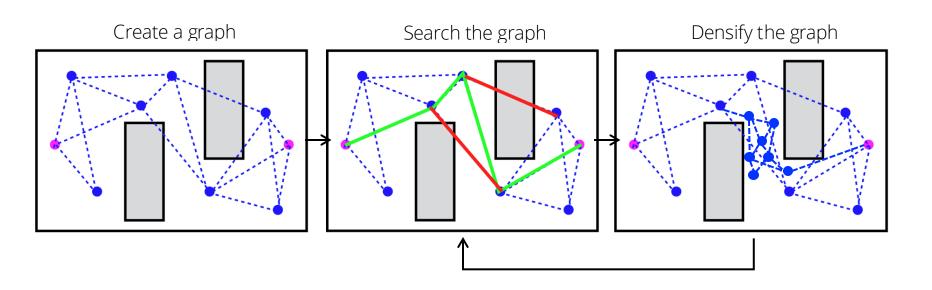


Honda Asimo: Video credit https://youtu.be/vA0xLVCb-OA?si=Z4MKkuM4Wr0H7NJw

Steven Collins. Video credit https://youtu.be/PK7cgLJD2nQ?si=5d-Ke74URVlejBpX

Which one looks more natural? Which one consumes less energy?

## Can We Extend the Motion Planning Framework?



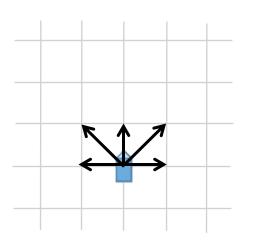


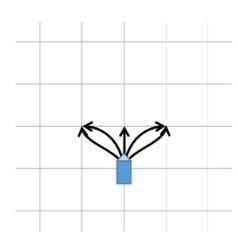
- Can we extend the motion planning framework to:
  - > Consider configuration constraints
  - > Consider motion (velocity/acceleration) constraints
  - ➤ Generate control trajectories
  - > Involve dynamic

## Can We Generate Paths that Respect Directional Constraints?

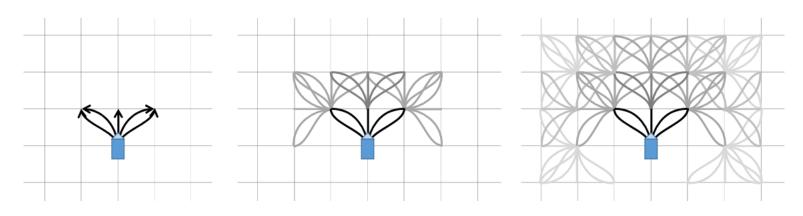
• Take car as an example. How can we reformulate the roadmap planners?

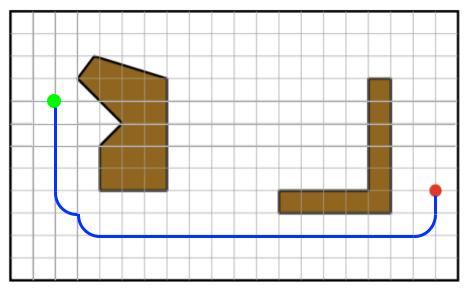






## Path Planning with Directional Constraints





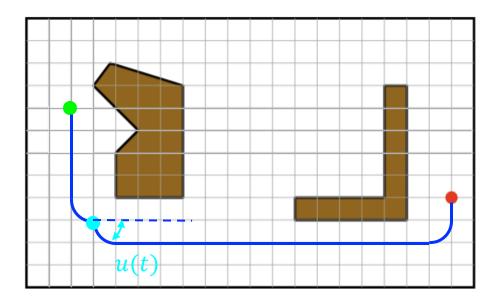
15

Image credit K. Hauser

## Can We Reformulate Path Planning Problems to Generate Control Trajectory?

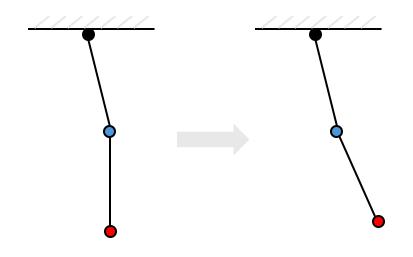
#### Control trajectory u(t):

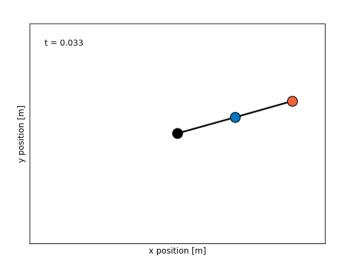
- Acceleration, determined by imposed force/torque, at time t
- Velocity at time *t* (e.g. stepper motors)



### Control is Hard, as Robots may be Underactuated...

- Underactuated system: a mechanical system that cannot be commanded to follow arbitrary trajectories in configuration space. Obvious cases are systems that have less actuators than degrees of freedom.
- The double pendulum with one missing actuator is underactuated. The neighboring configurations take more motions to achieve

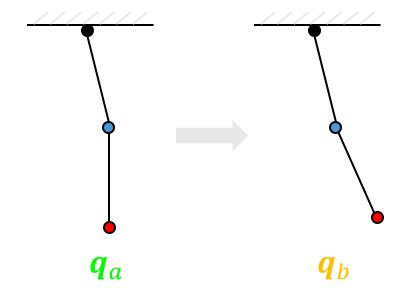


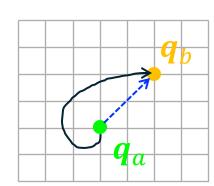


Video credit W. Felix, K. Shivesh, S. Lasse J., V. Shubam and J. Ma.

## Control is Hard, as Robots may be Underactuated...

- Underactuated system: a mechanical system that cannot be commanded to follow arbitrary trajectories in configuration space. Obvious cases are systems that have less actuators than degrees of freedom.
- The double pendulum with one missing actuator is underactuated. The neighboring configurations take more motions to achieve
- Idea: Building graph by sampling real/simulated interactions

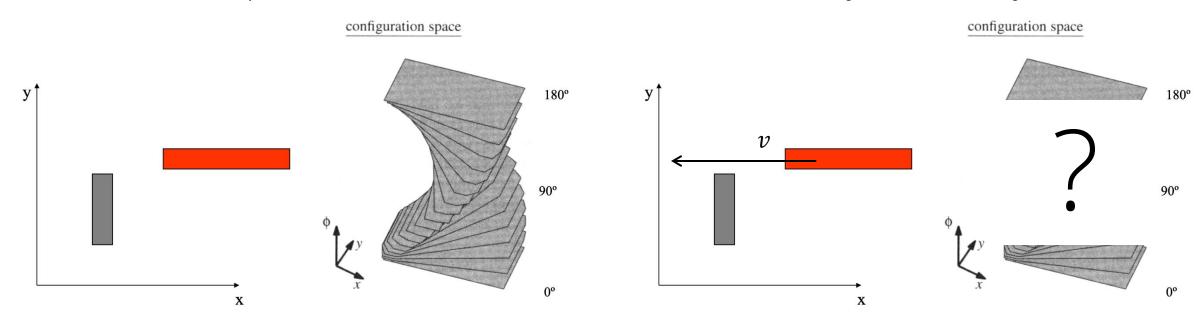




Actual trajectory depends on force constraints and velocity conditions

## Can We Generate Control Trajectories with Motion Planning Methods?

- To generate control trajectories, we need to take dynamic into consideration
- Previously, we only consider "configurations" (joint angles) of a robot. Such representations ignore "dynamics" of a robot.
  - $\triangleright$  Is the C-space obstacle fixed when the initial velocity v of an object varies?



## State-space Representations

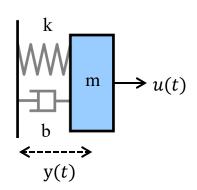
- Generalize the planning space from configurations (the configuration space  $\mathcal{C}$ ) to dynamics (the state space  $\mathcal{X}$ )
- **Definition**: a state vector  $x \in \mathcal{X}$  as  $x = \begin{bmatrix} q \\ \dot{q} \\ \vdots \end{bmatrix}$ , then we have  $\dot{x} = \begin{bmatrix} q \\ \ddot{q} \\ \vdots \end{bmatrix} = f(x, u, t)$ ,

where  $q \in \mathcal{C}$ , u denotes controls (e.g. torque) and function f describes how the motion changes conditioned on the state x, control u and time t

## State-space Representations

- Generalize the planning space from configurations (the configuration space  $\mathcal{C}$ ) to dynamics (the state space  $\mathcal{X}$ )
- **Definition**: a state vector  $x \in \mathcal{X}$  as  $x = \begin{bmatrix} q \\ \dot{q} \\ \vdots \end{bmatrix}$ , then we have  $\dot{x} = \begin{bmatrix} q \\ \ddot{q} \\ \vdots \end{bmatrix} = f(x, u, t)$ ,

where  $q \in C$ , u denotes controls (e.g. torque) and function f describes how the motion changes conditioned on the state x, control u and time t



A 2<sup>nd</sup>-order equation of motion:  

$$m\ddot{q}(t) = u(t) - b\dot{q}(t) - kq(t)$$

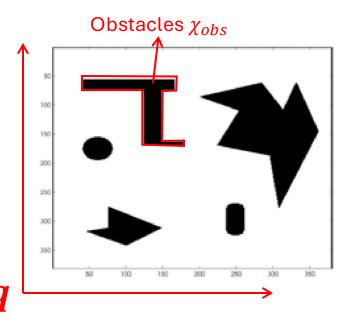
Rewrite the equation as:

$$\dot{x} = \begin{bmatrix} \dot{q}(t) \\ \ddot{q}(t) \end{bmatrix} = \begin{bmatrix} \dot{q}(t) \\ \frac{1}{m}u(t) - \frac{b}{m}\dot{q}(t) - \frac{k}{m}q(t) \end{bmatrix} = \begin{bmatrix} \int x(t) + \int u(t) \\ A \end{bmatrix} u(t)$$

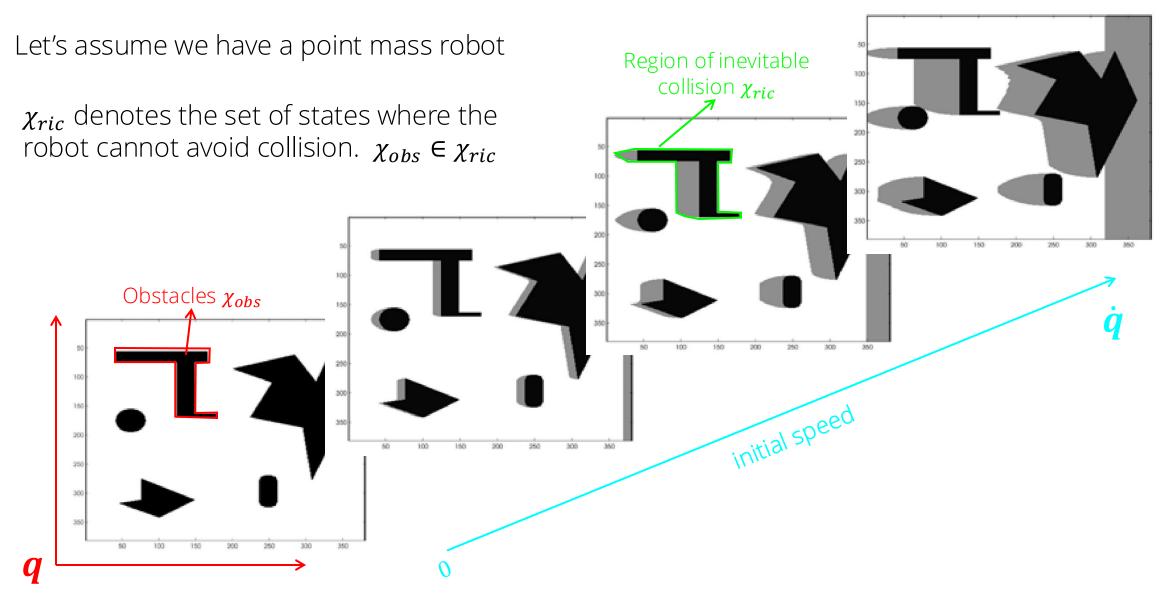
## Obstacles in the State Space

Let's assume we have a point mass robot

 $\chi_{ric}$  denotes the set of states where the robot cannot avoid collision.  $\chi_{obs} \in \chi_{ric}$ 



## Obstacles in the State Space



- <u>Kinematic RRT</u>: Grow a tree of **feasible configuration paths** from the start to the goal configuration
  - > Select a random / the goal configuration q, find the nearest configuration  $q_{near}$  to q, and greedily move from  $q_{near}$  to q.
- <u>Kinodynamic RRT</u>: Grow a tree of feasible **control trajectories**  $u(t), t \in \{0, ..., T\}$  from the start to the goal state
  - > Select a random / the goal configuration q, find the nearest configuration  $q_{near}$  to q, randomly select a control u, and execute u from  $q_{near}$ .

```
BUILD_RRT(x_{init})

1  \mathcal{T}.init(x_{init});

2  \mathbf{for} \ k = 1 \ \mathbf{to} \ K \ \mathbf{do}

3  x_{rand} \leftarrow \text{RANDOM\_STATE}();

4  \text{EXTEND}(\mathcal{T}, x_{rand});

5  \text{Return } \mathcal{T}
```

```
EXTEND(\mathcal{T}, x)

1  x_{near} \leftarrow \text{NEAREST\_NEIGHBOR}(x, \mathcal{T});

2  if NEW_STATE(x, x_{near}, x_{new}, u_{new}) then

3  \mathcal{T}.\text{add\_vertex}(x_{new});

4  \mathcal{T}.\text{add\_edge}(x_{near}, x_{new}, u_{new});

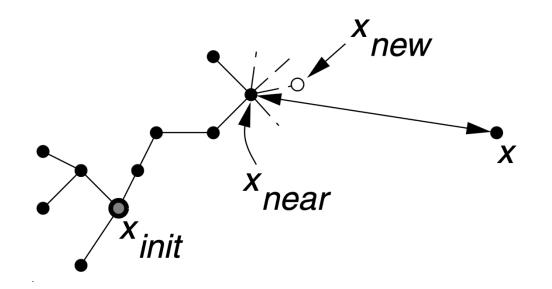
5  if x_{new} = x then

6  Return Reached; • Randomly sample u_{new}

7  else • Find u_{new} that yields x_{new} as

8  Return Advanced; close as possible to x

9  Return Trapped;
```



```
BUILD_RRT(x_{init})

1  \mathcal{T}.init(x_{init});

2  \mathbf{for} \ k = 1 \ \mathbf{to} \ K \ \mathbf{do}

3  x_{rand} \leftarrow \text{RANDOM\_STATE}();

4  EXTEND(\mathcal{T}, x_{rand});

5  Return \mathcal{T}
```

```
EXTEND(\mathcal{T}, x)

1  x_{near} \leftarrow \text{NEAREST\_NEIGHBOR}(x, \mathcal{T});

2  if \text{NEW\_STATE}(x, x_{near}, x_{new}, u_{new}) then

3  \mathcal{T}.\text{add\_vertex}(x_{new});

4  \mathcal{T}.\text{add\_edge}(x_{near}, x_{new}, u_{new});

5  if x_{new} = x then

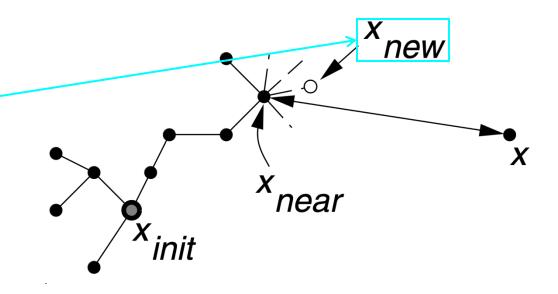
6  Return Reached;

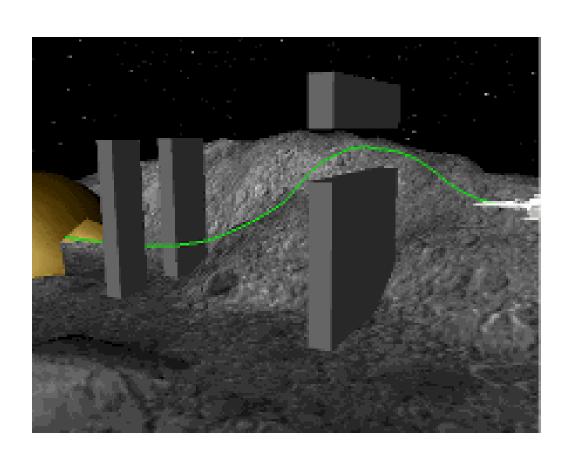
7  else

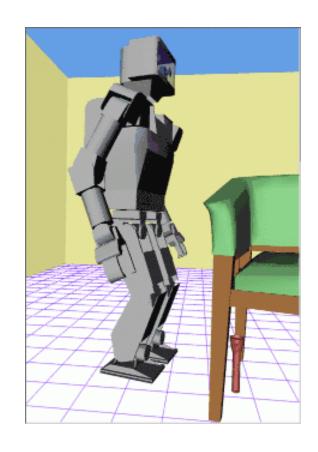
8  Return Advanced;

9  Return Trapped;
```

Execute  $u_{new}$  to obtain  $x_{new}$ . Also, do collision checking on  $x_{new}$ 



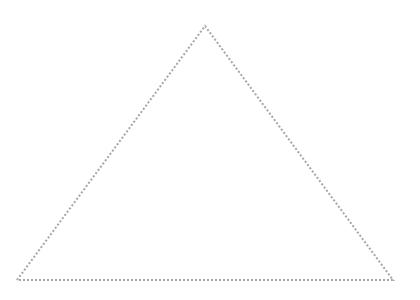




## Kinodynamic RRT Still Has Problems

- <u>Metric choice:</u> The Euclidean distance between two states often correspond poorly with the length of exact control trajectories
  - $\triangleright$  We need to decide  $x_{near}$
  - $\triangleright$  We need to decide if  $x_{new}$  is close enough to x
- Control choice: we need to sample a lot of  $u_{new}$ , which is sample inefficient
- <u>Open-loop control</u>: we decide the whole control trajectory from the initial state. We need to replan again the whole trajectory if something goes wrong...

# Open-loop Control: Plan and Execute the Whole Trajectory without Feedback

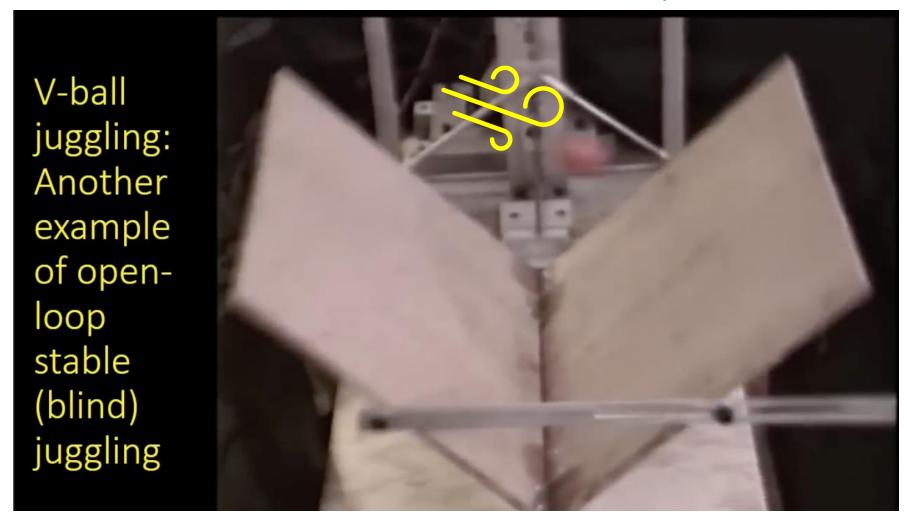


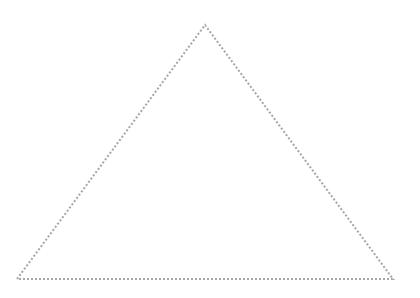
# Open-loop Control: Plan and Execute the Whole Trajectory without Feedback

## Open-loop Control for Robot Juggling

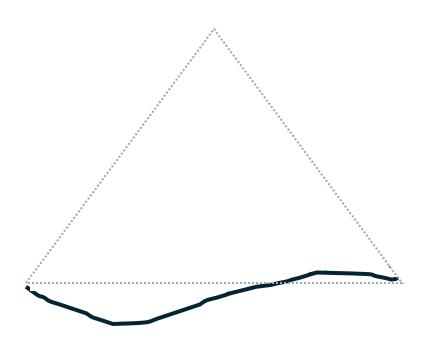


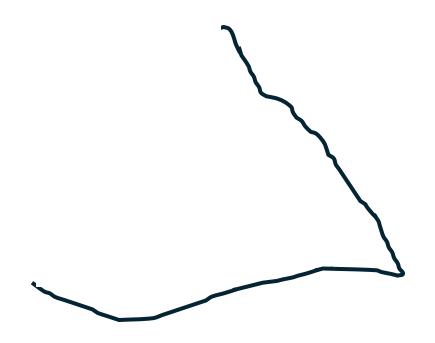
## What if the Ball is Disturbed? We need to Redecide the Control Inputs



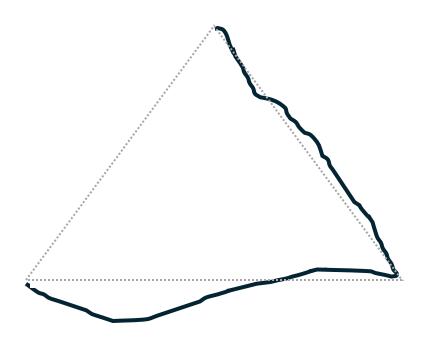




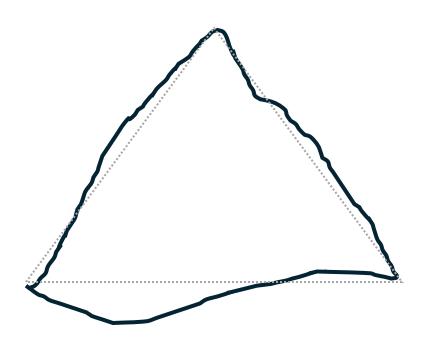




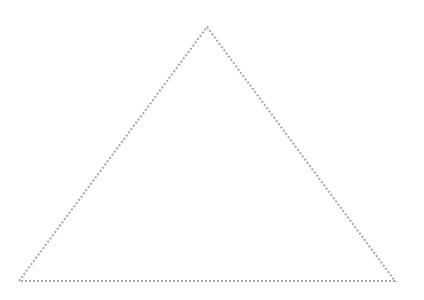
# Close-loop Control: Repeat Planning and Executing the Trajectory with Feedback



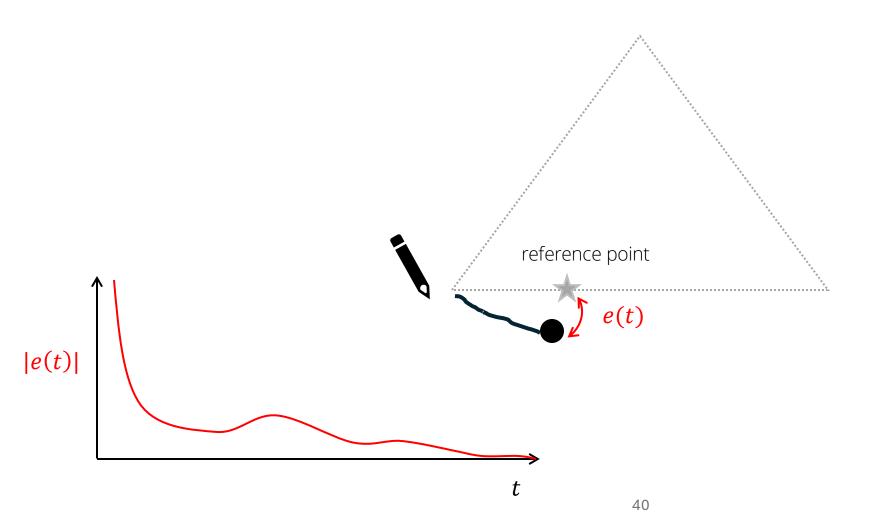
# Close-loop Control: Repeat Planning and Executing the Trajectory with Feedback



# Feedback Control: Track a reference trajectory



### Measure and Minimize Error to Reference Points

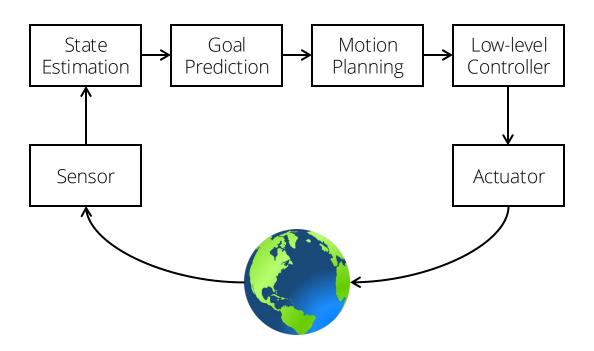


### Measure and Minimize Error to Reference Points

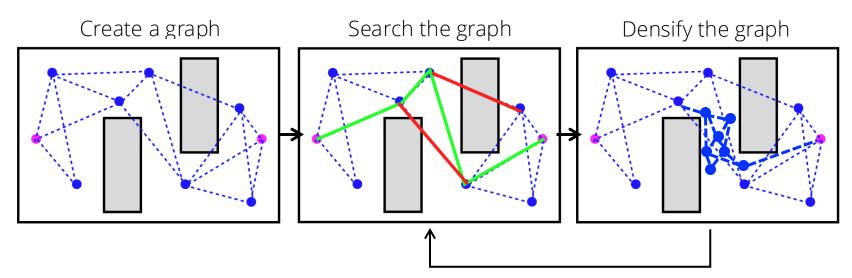


# Basic Recipe of Planning and Control

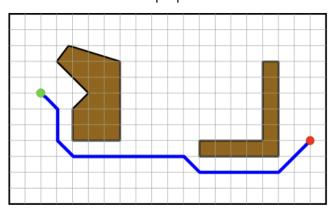
- 1. Motion planning: compute a feasible path
  - grid search / PRM / RRT ...
- 2. Controller: predict a control to follow the path or minimize the "tracking" error.



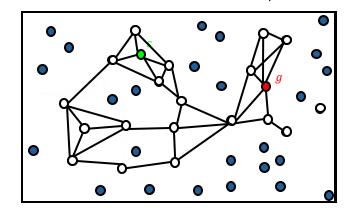
## Motion Planning Computes a Sparse Path



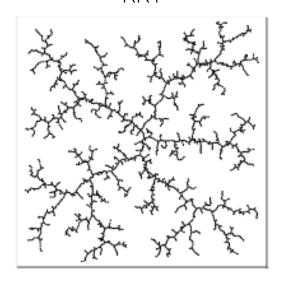
Roadmap planner



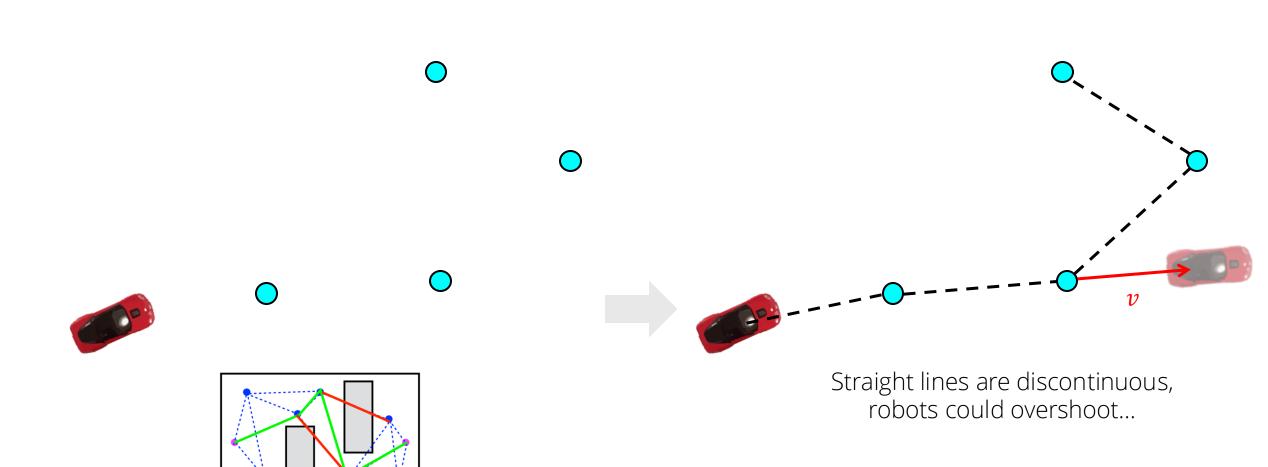
Probabilistic Roadmaps



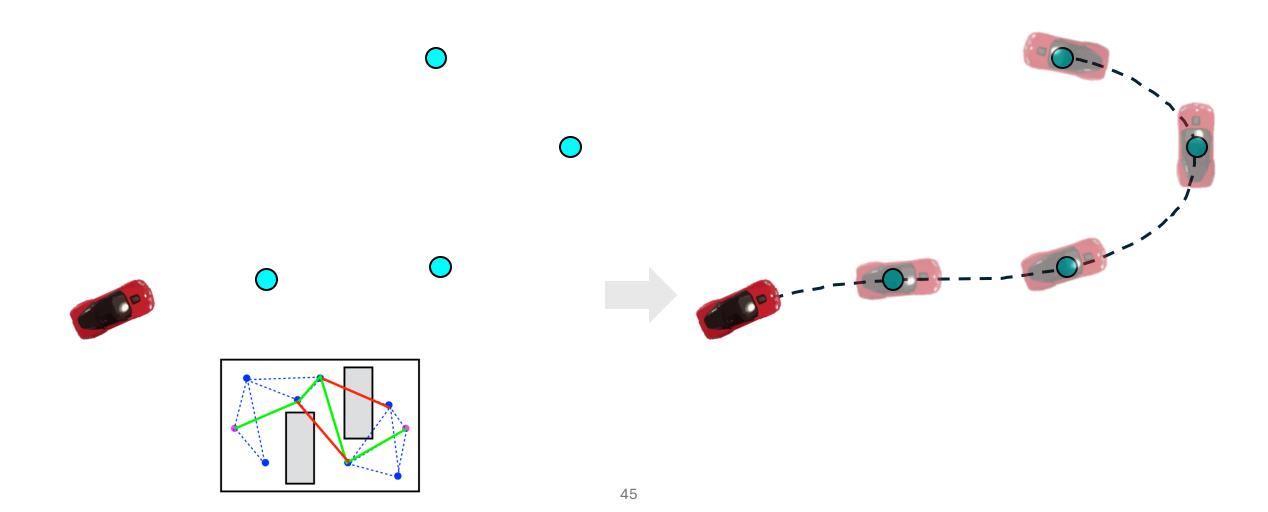
RRT



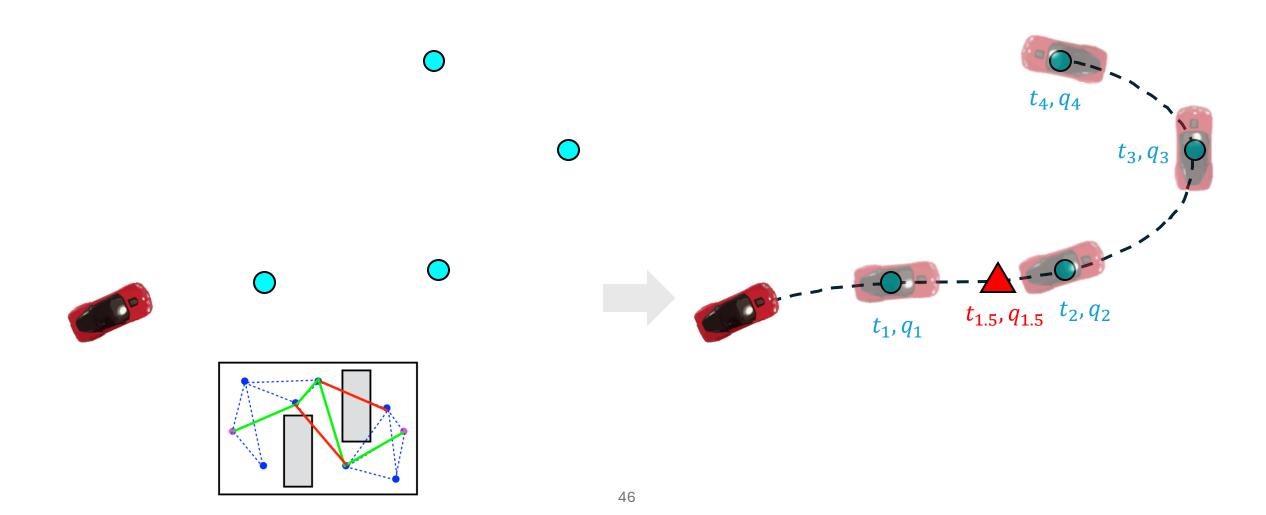
## Should We Traverse the Path in Straight Lines?



### Traverse in Smooth Curves



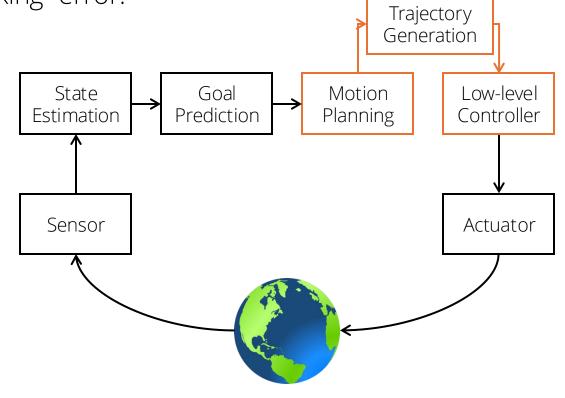
### Traverse in Smooth Trajectories



# Basic Recipe of Planning and Control

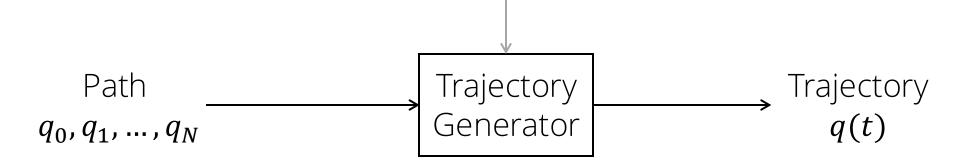
- 1. Motion planning: compute a feasible path
  - grid search / PRM / RRT ...
- 2. Trajectory generalization: time-scale the path into a trajectory

3. Controller: predict a control to follow the path or minimize the "tracking" error.

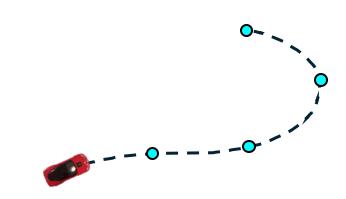


# Trajectory Generation

- Constraints as continuity, smoothness, velocity/acceleration limit, kinematic,
- optimality criteria (min transfer time / energy...)

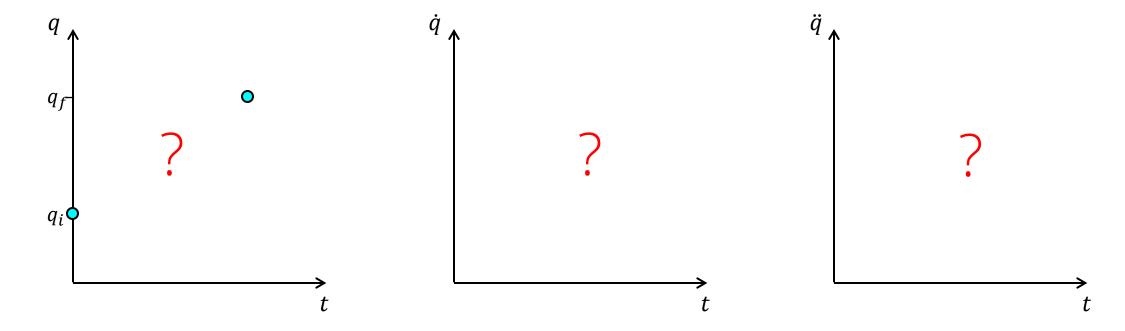


0



## Point-to-Point Trajectory Generation

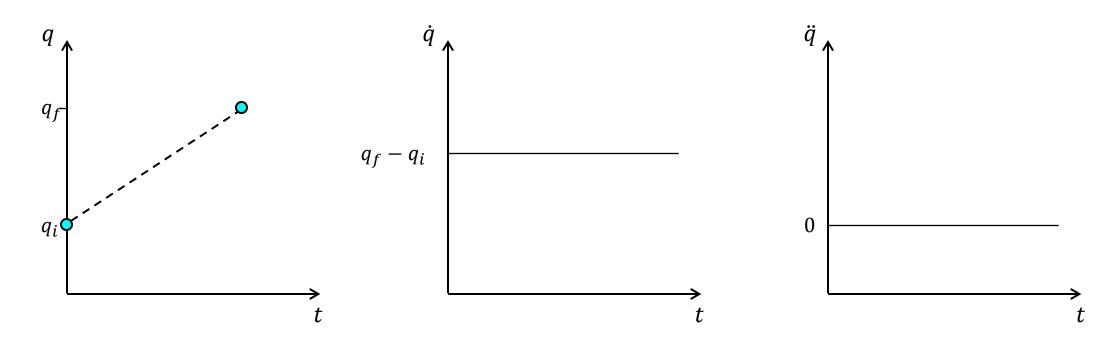
• Let's start with an easy example: point-to-point trajectory generation



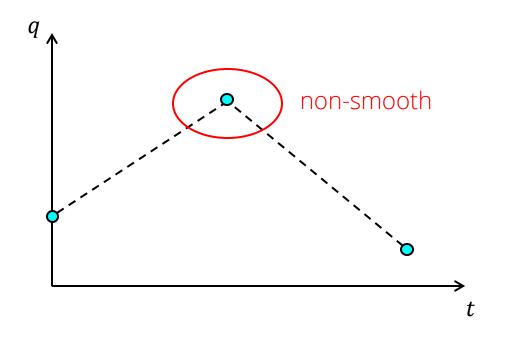
### Point-to-Point Trajectory Generation with Straight Lines

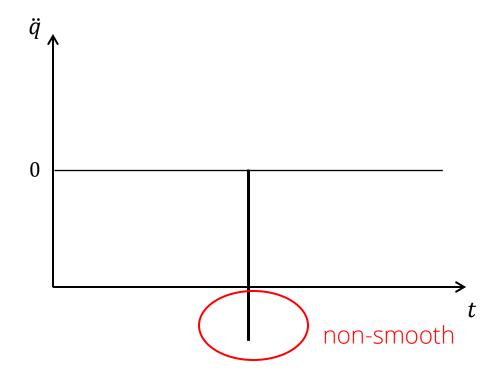
• Straight-line paths:

$$q(t) = q_i + t(q_f - q_i)$$
 
$$\dot{q}(t) = \frac{q_f - q_i}{t} \text{ and } \ddot{q}(t) = 0$$



### Point-to-Point Trajectory Generation with Straight Lines

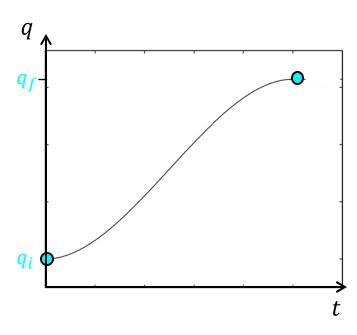




### Point-to-Point Trajectory Generation with Cubic Polynomials

#### Cubic polynomial paths:

$$q(t) = a_3t^3 + a_2t^2 + a_1t + a_0$$
$$\dot{q}(t) = 3a_3t^2 + 2a_2t + a_1$$
$$\ddot{q}(t) = 6a_3t + 2a_2$$

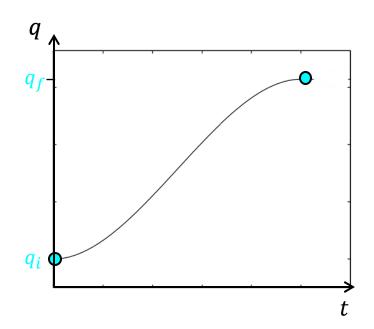


## Cubic Polynomial Paths

#### • Equations:

$$q(t) = a_3t^3 + a_2t^2 + a_1t + a_0$$
$$\dot{q}(t) = 3a_3t^2 + 2a_2t + a_1$$
$$\ddot{q}(t) = 6a_3t + 2a_2$$

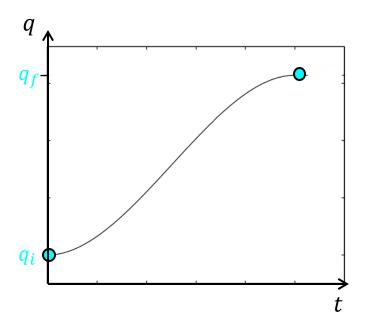
### Solve the equation

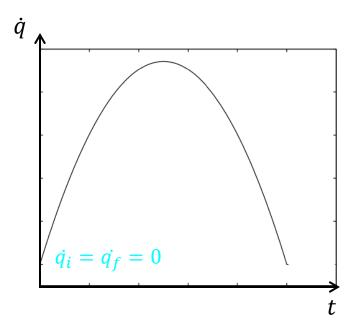


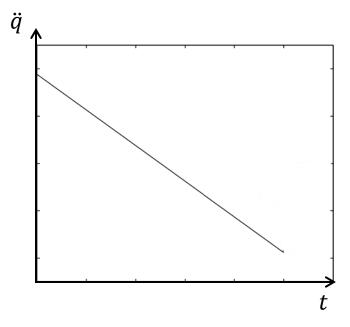
• when 
$$t=0$$
 
$$a_30^3+a_20^2+a_10+a_0=q_i\Rightarrow a_0=q_i$$
 
$$3a_30^2+2a_20+a_1=\dot{q}_i\Rightarrow a_1=\dot{q}_i$$

• when 
$$t=t_f$$
 
$$a_3t_f^{\ 3}+a_2t_f^{\ 2}+a_1t_f+a_0=q_f$$
 
$$3a_3t_f^{\ 2}+2a_2t_f+a_1=\dot{q}_f$$

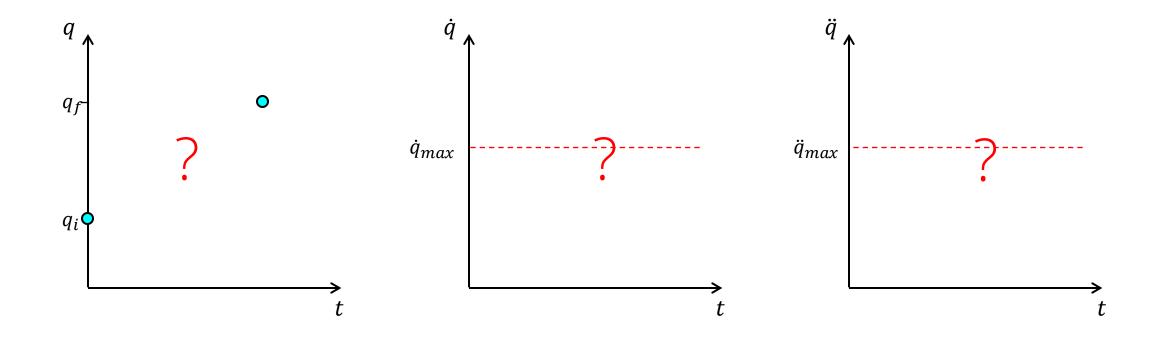
### Point-to-Point Trajectory Generation with Cubic Polynomials



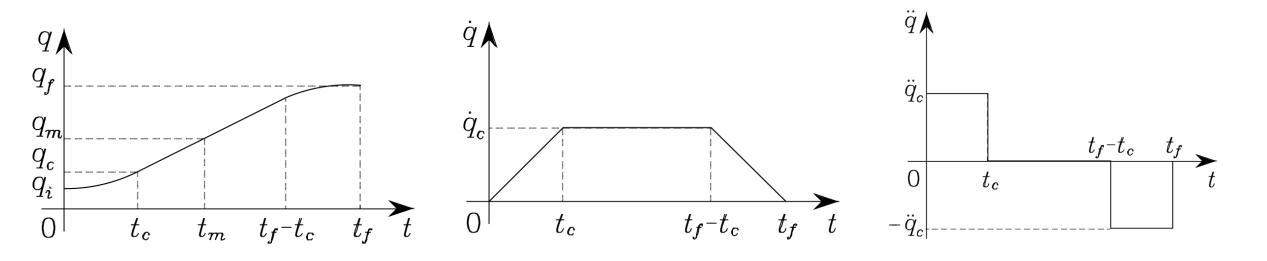




# What if We Want to Impose Velocity/Acceleration Constraints?



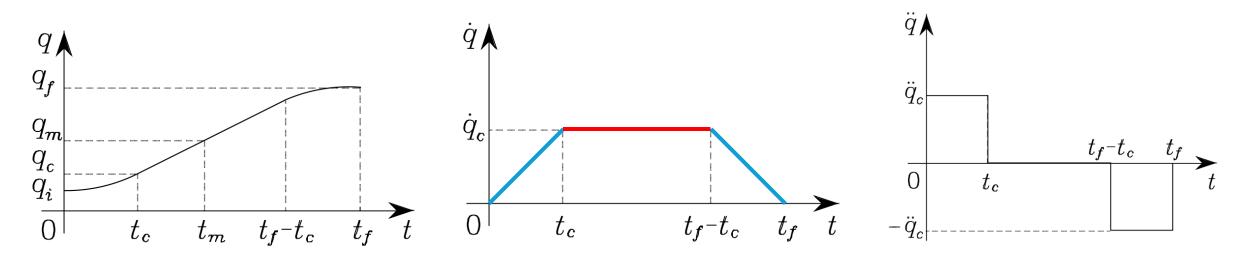
# Point-to-Point Trajectory Generation with Trapezoidal Motion Profiles

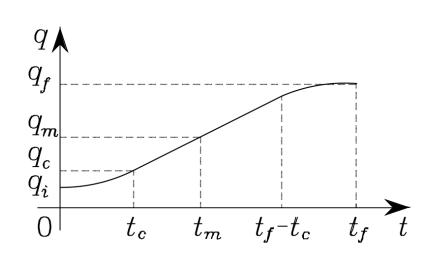


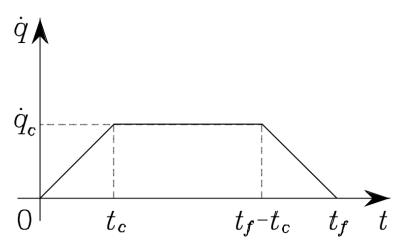
# Point-to-Point Trajectory Generation with Trapezoidal Motion Profiles

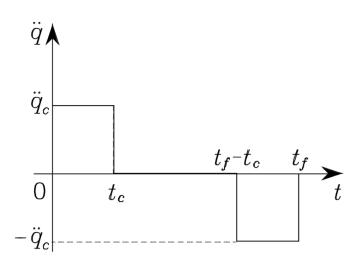
Also known as Linear Segments with Parabolic Blends:

- 1. Fit with quadratic polynomials (linear ramp velocity)
- 2. At the blend time, switch to a linear function (constant velocity)









- Average point:  $q_m = (q_f + q_i)/2$  at  $t_m = t_f/2$
- Velocity:

#### Constraints

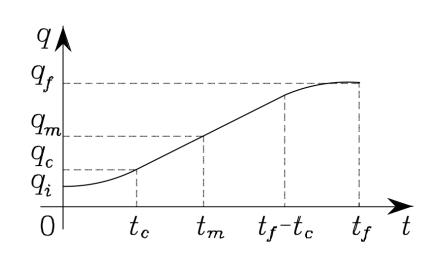
$$|\ddot{q}_c| \ge \frac{4|q_f - q_i|}{t_f^2}$$

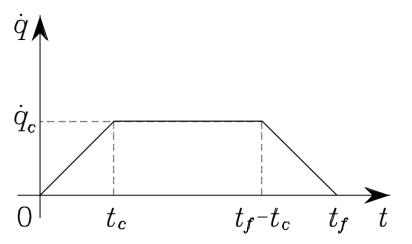
$$\ddot{q}_c t_c = \frac{q_m - q_c}{t_m - t_c}$$

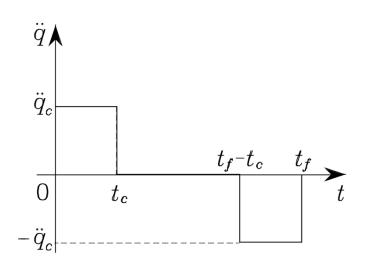
$$q_c = q_i + \frac{1}{2} \ddot{q}_c t_c^2$$

$$\Rightarrow \ddot{q}_c t_c^2 - \ddot{q}_c t_f t_c + q_f - q_i = 0$$
 $\downarrow$  We can specify  $\ddot{q}_c$ 

$$t_c = \frac{t_f}{2} - \frac{1}{2} \sqrt{\frac{t_f^2 \ddot{q}_c - 4(q_f - q_i)}{\ddot{q}_c}}.$$







- Average point:  $q_m = (q_f + q_i)/2$  at  $t_m = t_f/2$
- Velocity:

$$\ddot{q}_c t_c = \frac{q_m - q_c}{t_m - t_c}$$

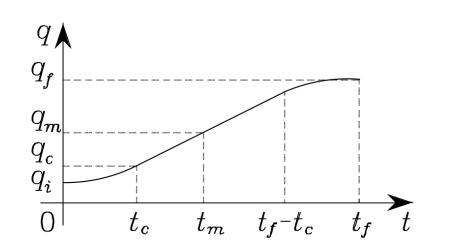
$$q_c = q_i + \frac{1}{2} \ddot{q}_c t_c^2$$

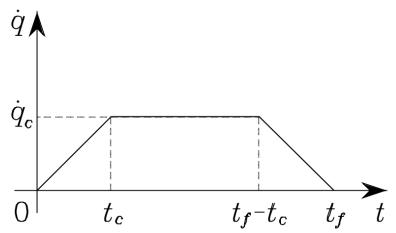
#### Constraints

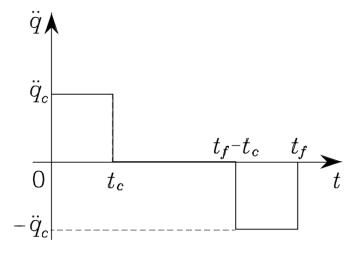
$$\frac{|q_f - q_i|}{t_f} < |\dot{q}_c| \le \frac{2|q_f - q_i|}{t_f}$$

$$t_c = \frac{q_i - q_f + \dot{q}_c t_f}{\dot{q}_c}$$

## Point-to-Point Trajectory Generation with Trapezoidal Motion Profiles

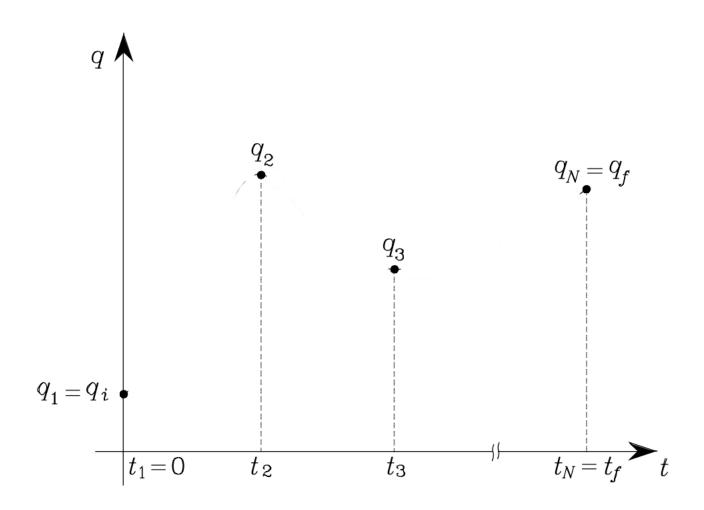






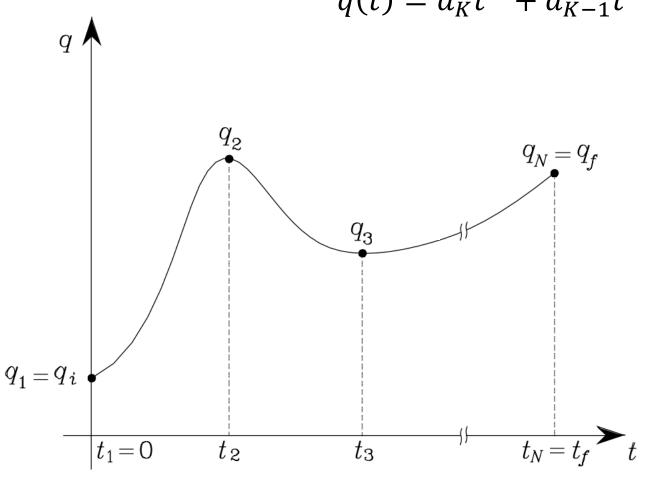
$$q(t) = \begin{cases} q_i + \frac{1}{2}\ddot{q}_c t^2 & 0 \le t \le t_c \\ q_i + \ddot{q}_c t_c (t - t_c/2) & t_c < t \le t_f - t_c \\ q_f - \frac{1}{2}\ddot{q}_c (t_f - t)^2 & t_f - t_c < t \le t_f. \end{cases}$$

# What if We Want to Generate Trajectory from Multiple Waypoints?



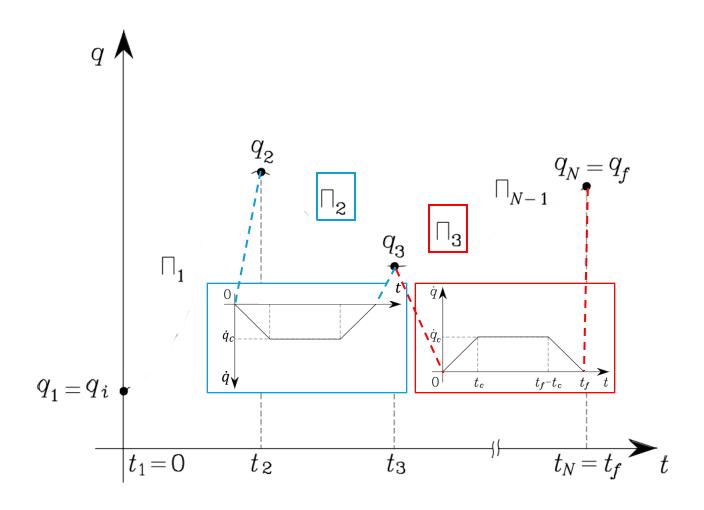
### Can We Fit a High-Order Polynomials?

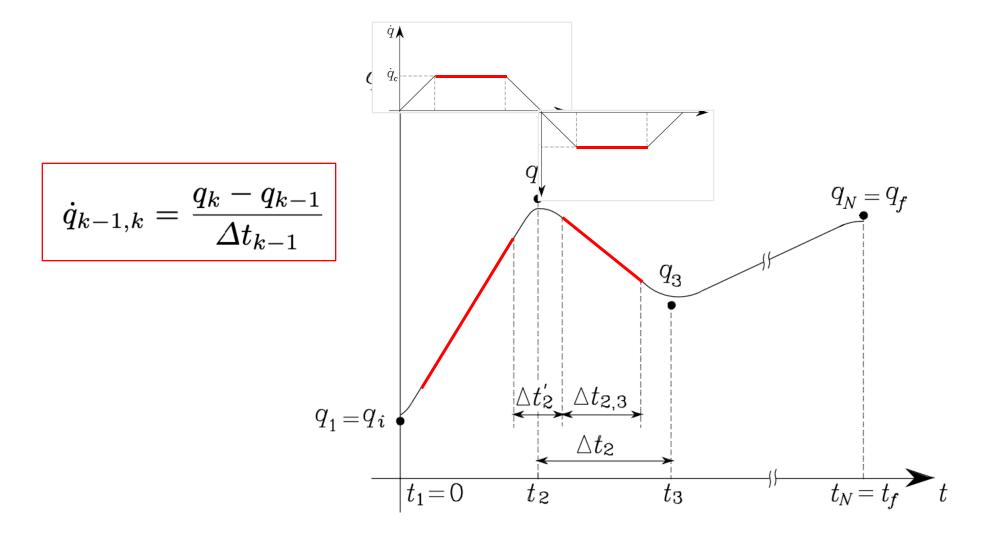
$$q(t) = a_K t^K + a_{K-1} t^{K-1} + \dots + a_1 t + a_0$$

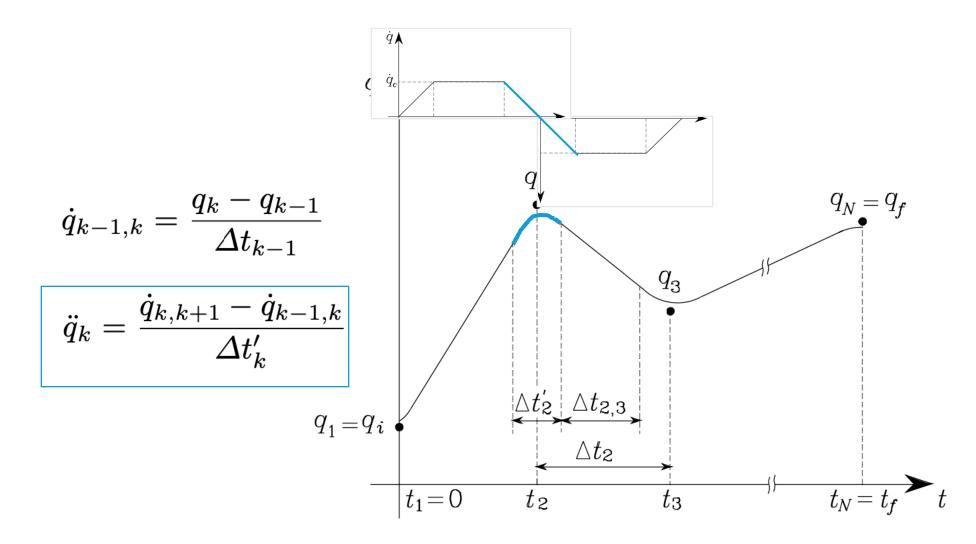


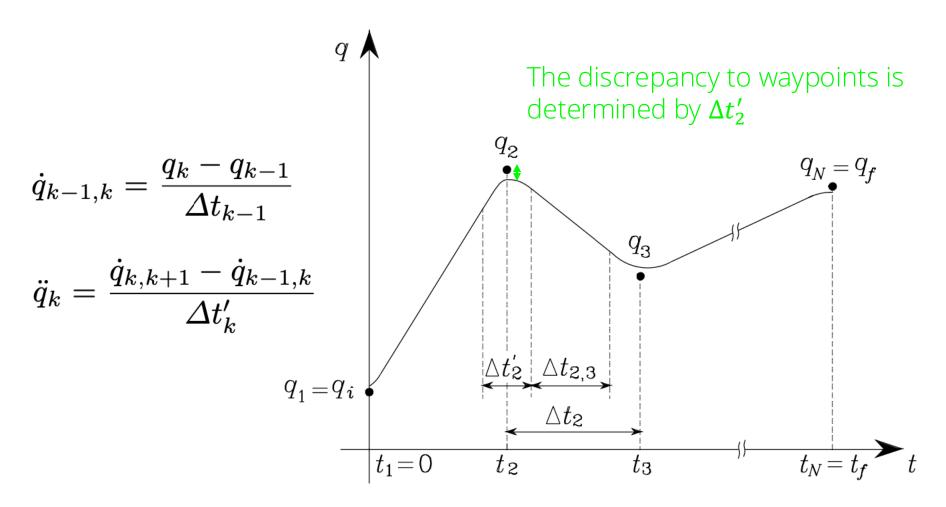
#### Drawbacks:

- The polynomial function overfits, resulting in oscillatory curves
- The system of constraint equations is heavy to solve





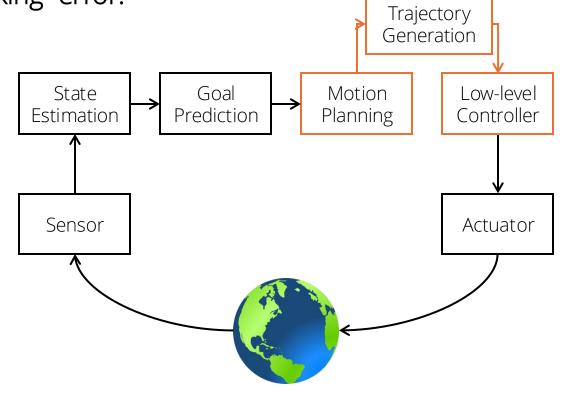




# Basic Recipe of Planning and Control

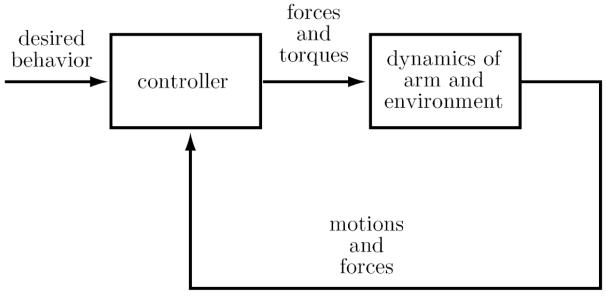
- 1. Motion planning: compute a feasible path
  - grid search / PRM / RRT ...
- 2. Trajectory generalization: time-scale the path into a trajectory

3. Controller: predict a control to follow the path or minimize the "tracking" error.



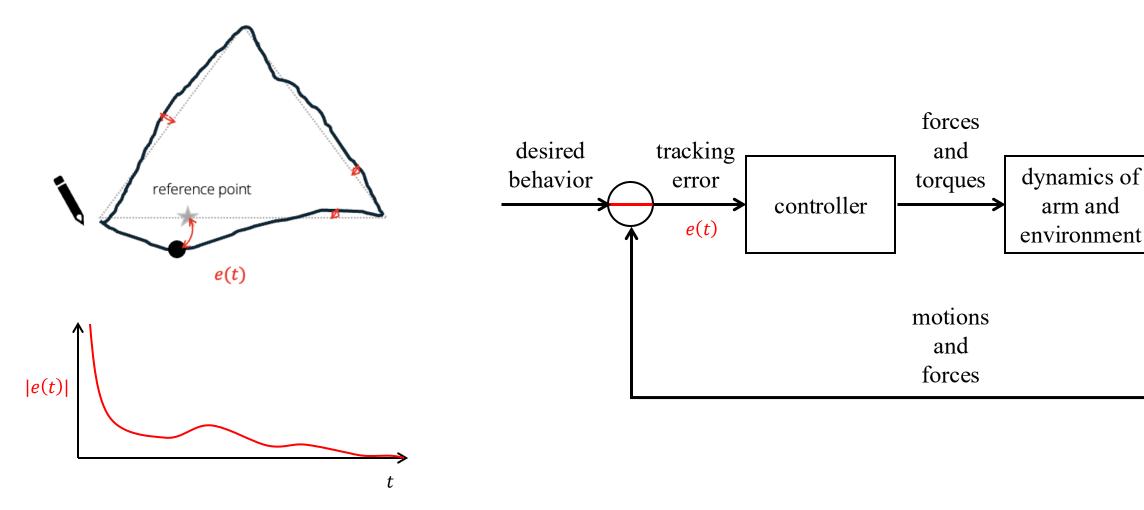
## Control Systems

- 1. Controller: predict a control to follow the path / desired behavior
  - Feedback control
  - Optimal control
  - •
- 2. Control u(t) can be velocity / torque inputs



# Feedback Controller: Continuously Adjust the Control Input to Minimize the Tracking Error

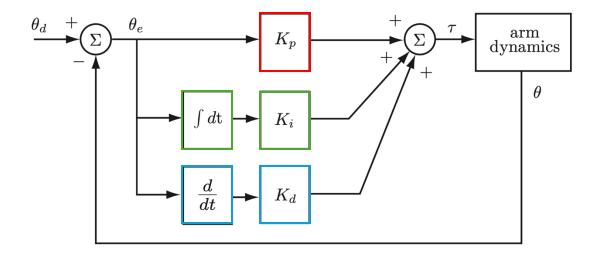
arm and



### An Overview of PID Controller



Image generated by Gemini



- Current temperature difference (immediate error)
- Future temperature difference (derivatives of errors)
- Accumulated temperature difference (accumulated error)

### Linear Error Dynamics

- Let's define  $q_e(t) = q_d(t) q(t)$  as the tracking error, where  $q_d(t)$  is the desired behavior and q(t) is the current behavior
- The purpose of the feedback controller is to create an error dynamics such that  $q_e(t)$  tends to a small value, as t increases

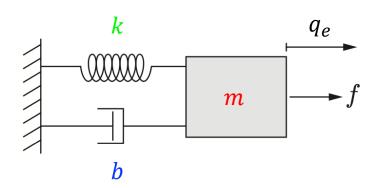
### Linear Error Dynamics

• Linear error dynamics:

Control signal

$$a_p q_e^{(p)}(t) + a_{p-1} q_e^{(p-1)}(t) + \dots + a_2 \ddot{q}_e(t) + a_1 \dot{q}_e(t) + a_0 q_e(t) = c$$

• An example of a 2<sup>nd</sup>-order error dynamics: the linear mass-spring-damper



$$m\ddot{q}_e(t) + b\dot{q}_e(t) + kq_e(t) = f$$

$$\begin{aligned} a_p q_e^{(p)}(t) + a_{p-1} q_e^{(p-1)}(t) + \cdots + a_2 \ddot{q}_e(t) + a_1 \dot{q}_e(t) + a_0 q_e(t) &= 0 \\ \Rightarrow q_e^{(p)}(t) = -\frac{1}{a_p} \left[ a_{p-1} q_e^{(p-1)}(t) + \cdots + a_2 \ddot{q}_e(t) + a_1 \dot{q}_e(t) + a_0 q_e(t) \right] \\ \Rightarrow q_e^{(p)}(t) = -a_{p-1}' q_e^{(p-1)}(t) - \cdots - a_2' \ddot{q}_e(t) - a_1' \dot{q}_e(t) - a_0' q_e(t) \end{aligned}$$

 Express a p<sup>th</sup>-order differential equation as p coupled 1<sup>st</sup>-order differential equations:

$$x_1 = q_e$$
$$x_2 = \dot{x}_1 = \dot{q}_e$$

:

$$x_p = \dot{x}_{p-1} = q_e^{(p-1)}$$

$$\begin{aligned} a_{p}q_{e}^{(p)}(t) + a_{p-1}q_{e}^{(p-1)}(t) + \cdots + a_{2}\ddot{q}_{e}(t) + a_{1}\dot{q}_{e}(t) + a_{0}q_{e}(t) &= 0 \\ \Rightarrow q_{e}^{(p)}(t) &= -\frac{1}{a_{p}} \left[ a_{p-1}q_{e}^{(p-1)}(t) + \cdots + a_{2}\ddot{q}_{e}(t) + a_{1}\dot{q}_{e}(t) + a_{0}q_{e}(t) \right] \\ \Rightarrow q_{e}^{(p)}(t) &= -a_{p-1}'q_{e}^{(p-1)}(t) - \cdots - a_{2}'\ddot{q}_{e}(t) - a_{1}'\dot{q}_{e}(t) - a_{0}'q_{e}(t) \end{aligned}$$

 Express a p<sup>th</sup>-order differential equation as p coupled 1<sup>st</sup>-order differential equations:

$$x_1 = q_e$$

$$x_2 = \dot{x}_1 = \dot{q}_e$$
:

$$x_p = \dot{x}_{p-1} = q_e^{(p-1)}$$

$$\dot{x}_p = -a_{p-1}'x_p - \dots - a_2'x_3 - a_1'x_2 - a_0'x_1$$

$$a_{p}q_{e}^{(p)}(t) + a_{p-1}q_{e}^{(p-1)}(t) + \dots + a_{2}\ddot{q}_{e}(t) + a_{1}\dot{q}_{e}(t) + a_{0}q_{e}(t) = 0$$

$$\Rightarrow q_{e}^{(p)}(t) = -\frac{1}{a_{p}} \left[ a_{p-1}q_{e}^{(p-1)}(t) + \dots + a_{2}\ddot{q}_{e}(t) + a_{1}\dot{q}_{e}(t) + a_{0}q_{e}(t) \right]$$

$$\Rightarrow q_{e}^{(p)}(t) = -a_{p-1}'q_{e}^{(p-1)}(t) - \dots - a_{2}'\ddot{q}_{e}(t) - a_{1}'\dot{q}_{e}(t) - a_{0}'q_{e}(t)$$

 Express a p<sup>th</sup>-order differential equation as p coupled 1<sup>st</sup>-order differential equations:

$$x_1 = q_e$$
 $x_2 = \dot{x}_1 = \dot{q}_e$ 
 $\vdots$ 
 $x_p = \dot{x}_{p-1} = q_e^{(p-1)}$ 
 $\dot{x}_1 = x_2$ 
 $\dot{x}_2 = x_3$ 
 $\vdots$ 
 $\dot{x}_{p-1} = x_p$ 

$$\dot{x}_p = -a_{p-1}'x_p - \dots - a_2'x_3 - a_1'x_2 - a_0'x_1$$

$$\begin{split} a_p q_e^{(p)}(t) + a_{p-1} q_e^{(p-1)}(t) + \cdots + a_2 \ddot{q}_e(t) + a_1 \dot{q}_e(t) + a_0 q_e(t) &= 0 \\ \Rightarrow q_e^{(p)}(t) = -\frac{1}{a_p} \left[ a_{p-1} q_e^{(p-1)}(t) + \cdots + a_2 \ddot{q}_e(t) + a_1 \dot{q}_e(t) + a_0 q_e(t) \right] \\ \Rightarrow q_e^{(p)}(t) = -a_{p-1}' q_e^{(p-1)}(t) - \cdots - a_2' \ddot{q}_e(t) - a_1' \dot{q}_e(t) - a_0' q_e(t) \end{split}$$

 Express a p<sup>th</sup>-order differential equation as p coupled 1<sup>st</sup>-order differential equations:

$$\begin{vmatrix}
\dot{x}_1 = x_2 \\
\dot{x}_2 = x_3
\end{vmatrix} \dot{x}_2 = x_3$$

$$\begin{vmatrix}
\dot{x}_1 \\
\dot{x}_2 \\
\vdots \\
\dot{x}_p
\end{vmatrix} = \begin{bmatrix}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
-a_0' & -a_1' & -a_2' & \cdots & -a_{p-2}' & -a_{p-1}'
\end{vmatrix} \begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_p
\end{bmatrix}$$

$$\dot{x}$$

$$\dot{x}_p = -a_{p-1}'x_p - \dots - a_2'x_3 - a_1'x_2 - a_0'x_1$$

## Linear Error Dynamics

- $\dot{x}(t) = Ax(t)$  has solution  $x(t) = e^{At}x(0)$
- Just like  $x(t) = e^{at}x(0)$  converge if a < 0, x(t) converge if A is negative definite
- Matrix A is negative definite iff all eigenvalues of A (which maybe complex) have negative real components. The eigenvalues s of A must satisfy:

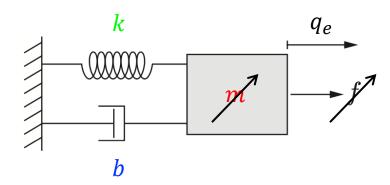
$$\det(sI - A) = s^p + a_{p-1}'s^{p-1} + \dots + a_2's^2 - a_1's^1 - a_0' = 0$$

with necessary conditions:

- 1.  $a_i' > 0 \ \forall i$
- 2. ...

• Take linear mass-spring-damper for example, let m=0 and f=0:

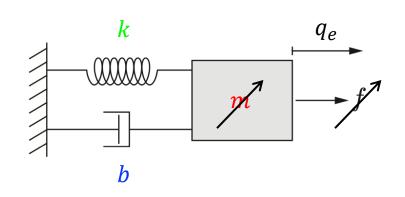
$$b\dot{q}_e(t) + kq_e(t) = 0 \Rightarrow \dot{q}_e(t) + \frac{k}{b}q_e(t) = 0$$

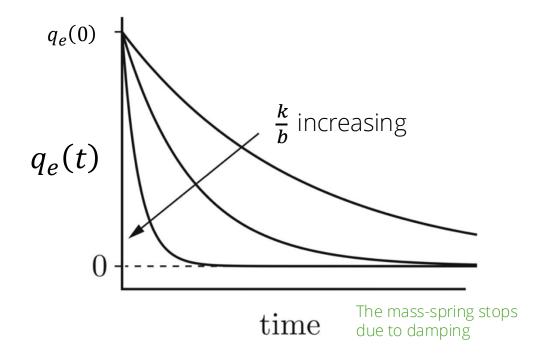


• Take linear mass-spring-damper for example, let m=0 and f=0:

$$b\dot{q}_e(t) + kq_e(t) = 0 \Rightarrow \dot{q}_e(t) + \frac{k}{b}q_e(t) = 0$$

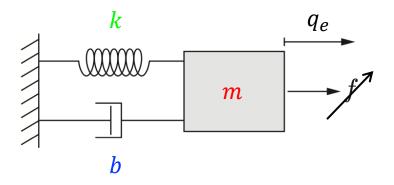
• We have solution  $q_e(t) = e^{-\frac{k}{b}t}q_e(0)$ 





• Take linear mass-spring-damper for example, let f = 0:

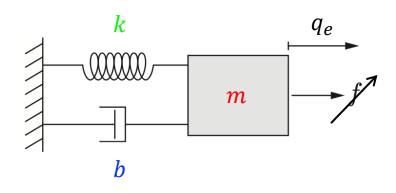
$$m\ddot{q}_e(t) + b\dot{q}_e(t) + kq_e(t) = 0 \Rightarrow \ddot{q}_e(t) + \frac{b}{m}\dot{q}_e(t) + \frac{k}{m}q_e(t) = 0$$
$$\Rightarrow \ddot{q}_e(t) + 2\xi\omega_n\dot{q}_e(t) + \omega_n^2q_e(t) = 0$$



$$\omega_n = \sqrt{\frac{k}{m}}$$
 is known as the natural frequency  $\xi = \frac{b}{2\sqrt{km}}$  is known as the damping ratio

• Take linear mass-spring-damper for example, let f = 0:

$$m\ddot{q}_e(t) + b\dot{q}_e(t) + kq_e(t) = 0 \Rightarrow \ddot{q}_e(t) + \frac{b}{m}\dot{q}_e(t) + \frac{k}{m}q_e(t) = 0$$
$$\Rightarrow \ddot{q}_e(t) + 2\xi\omega_n\dot{q}_e(t) + \omega_n^2q_e(t) = 0$$



The characteristic polynomial:

$$s^2 + 2\zeta\omega_n s + \omega_n^2 = 0$$

Two roots:

$$s_1 = -\zeta \omega_n + \omega_n \sqrt{\zeta^2 - 1}$$

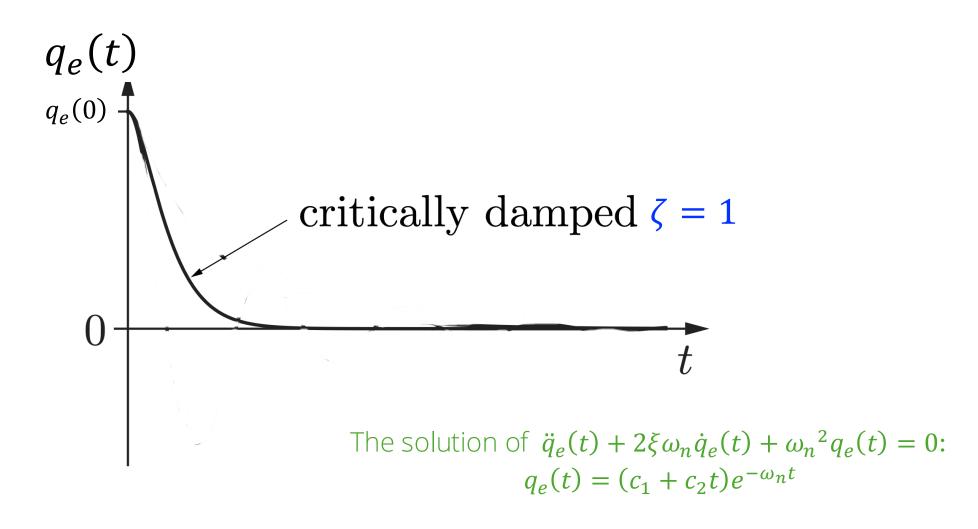
$$s_2 = -\zeta \omega_n - \omega_n \sqrt{\zeta^2 - 1}.$$

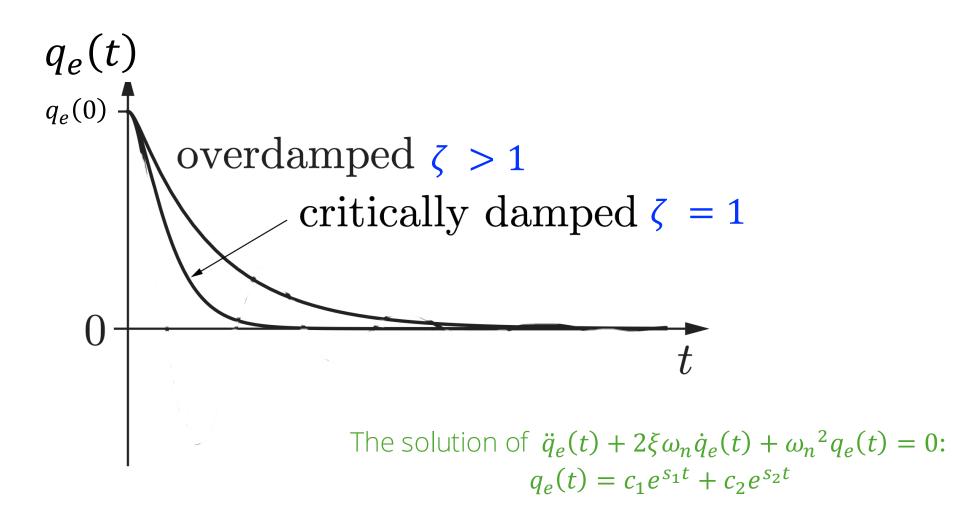
#### \_

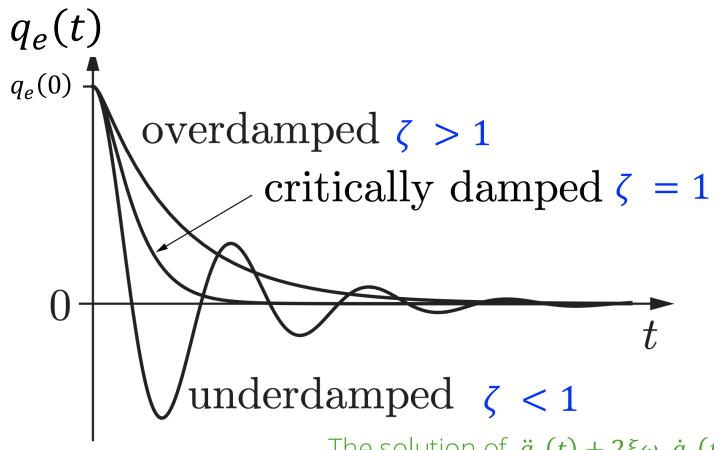
Stable conditions:

$$\zeta\omega_n > 0$$

$$\omega_n^2 > 0$$
.







The solution of 
$$\ddot{q}_e(t) + 2\xi \omega_n \dot{q}_e(t) + \omega_n^2 q_e(t) = 0$$
:
$$q_e(t) = \left(c_1 \cos \omega_n \sqrt{1 - \xi^2} t + c_2 \sin \omega_n \sqrt{1 - \xi^2} t\right) e^{-\zeta \omega_n t}$$

#### PID Feedback Controller

- PID feedback controller:
  - > 1st-order error (immediate error)
  - > Higher-order error (derivatives of errors)
  - > Historical error (accumulated error)

$$u(t) = K_p q_e(t) + K_d \dot{q}_e(t) + K_i \int_0^t q_e(t) dt$$

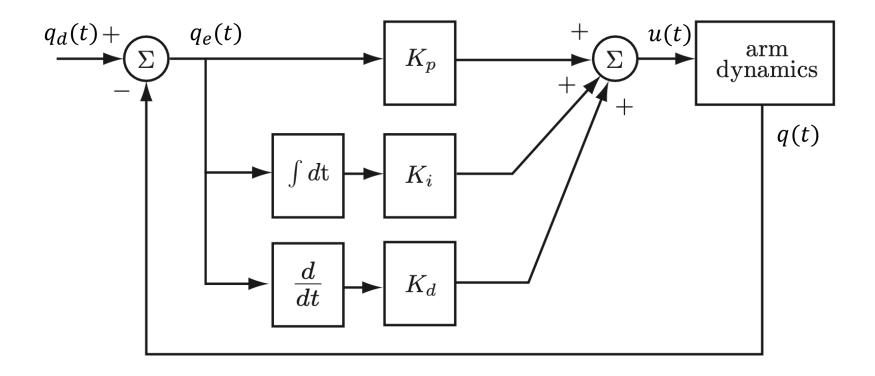
- PID feedback controller:
  - > 1st-order error (immediate error)
  - > Higher-order error (derivatives of errors)
  - > Historical error (accumulated error)

$$u(t) = K_p q_e(t) + K_d \dot{q}_e(t) + K_i \int_0^t q_e(t) dt$$



# A Simplified Block Diagram of PID Controller

• Control u(t) can be velocity / torque inputs

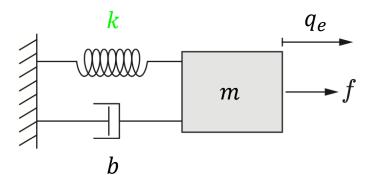


Control with velocity inputs:

$$u(t) = \dot{q}(t) = K_p(q_d(t) - q(t)) = K_pq_e(t)$$

$$desired q(t)$$

• The constant control gain  $\mathit{K}_p$  acts somewhat like a virtual spring

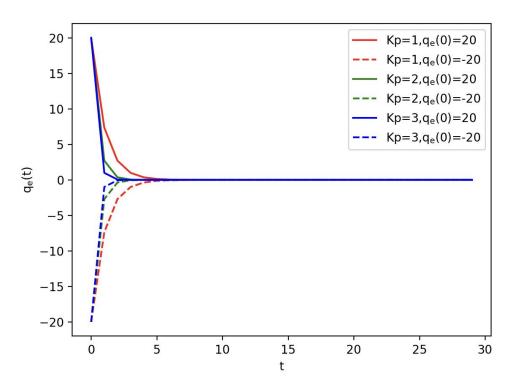


Control with velocity inputs:

$$u(t) = \dot{q}(t) = K_p(q_d(t) - q(t)) = K_pq_e(t)$$

• Case 1:: if  $q_d(t)$  is constant

$$\dot{q}_e(t) = \dot{q}_d(t) - \dot{q}(t) \Rightarrow \dot{q}(t) = -\dot{q}_e(t)$$
$$-\dot{q}_e(t) = K_p q_e(t) \Rightarrow q_e(t) = e^{-K_p t} q_e(0)$$



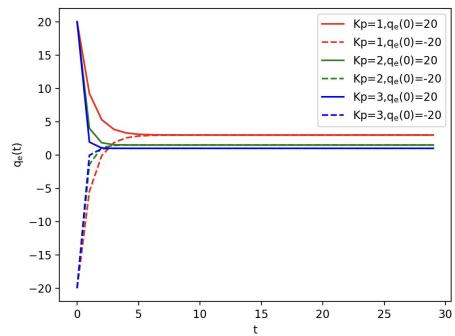
Control with velocity inputs:

$$u(t) = \dot{q}(t) = K_p(q_d(t) - q(t)) = K_pq_e(t)$$

• Case 2: if  $q_d(t)$  is not constant, but  $\dot{q_d}(t)$  is constant

$$\dot{q}_d(t) = c$$

$$\dot{q}_e(t) = c - \dot{q}(t) = c - K_p q_e(t) \Rightarrow q_e(t) = \frac{c}{K_p} + (q_e(0) - \frac{c}{K_p})e^{-K_p t}$$



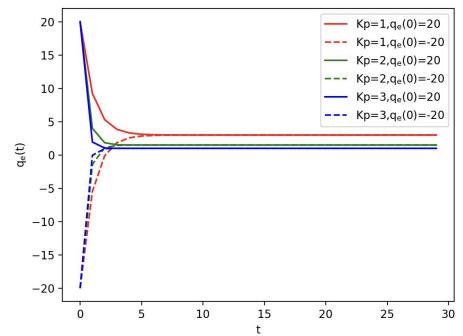
Control with velocity inputs:

$$u(t) = \dot{q}(t) = K_p(q_d(t) - q(t)) = K_pq_e(t)$$

• Case 2: if  $q_d(t)$  is not constant, but  $\dot{q_d}(t)$  is constant

$$\dot{q}_d(t) = c$$

$$\dot{q}_e(t) = c - \dot{q}(t) = c - K_p q_e(t) \Rightarrow q_e(t) = \frac{c}{K_p} + (q_e(0) - \frac{c}{K_p})e^{-K_p t}$$



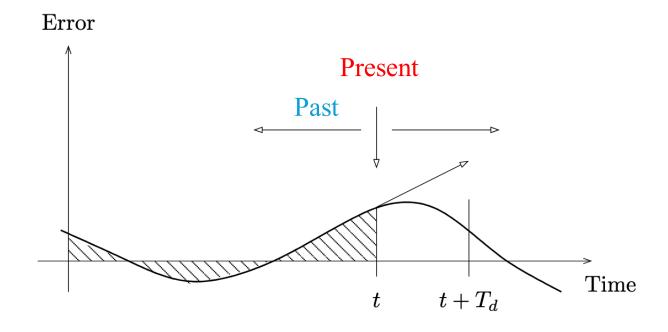
#### Solution?

- Increase  $K_p$ . What if  $K_p$  is bounded?
- Minimize accumulated error

#### Proportional Integral Controller: Minimize Historical Error

Control with <u>velocity inputs</u>:

$$\dot{q}(t) = K_p q_e(t) + K_i \int_0^t q_e(t) dt$$



#### Proportional Integral Controller: Minimize Historical Error

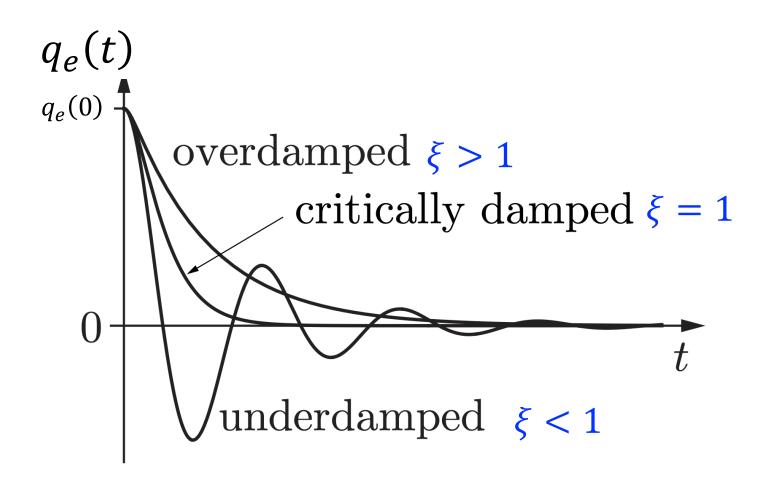
Control with velocity inputs:

$$u(t) = \dot{q}(t) = K_p q_e(t) + K_i \int_0^t q_e(t) dt$$

• If  $\dot{q_d}(t)$  is constant

$$\dot{q}(t) = \dot{q}_d(t) - \dot{q}_e(t) = K_p q_e(t) + K_i \int_0^t q_e(t) dt$$
 
$$\Rightarrow c = \dot{q}_e(t) + K_p q_e(t) + K_i \int_0^t q_e(t) dt$$
 (Take derivatives) 
$$\Rightarrow \ddot{q}_e(t) + K_p \dot{q}_e(t) + K_i q_e(t) = 0$$

second-order error dynamics



Given the standard second-order form:

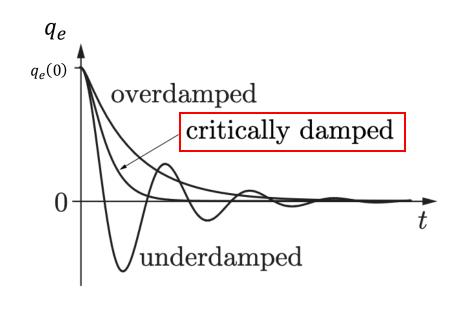
$$\ddot{q}_e(t) + 2\zeta\omega_n\dot{q}_e(t) + \omega_n^2 q_e(t) = 0$$

Our PI controller:

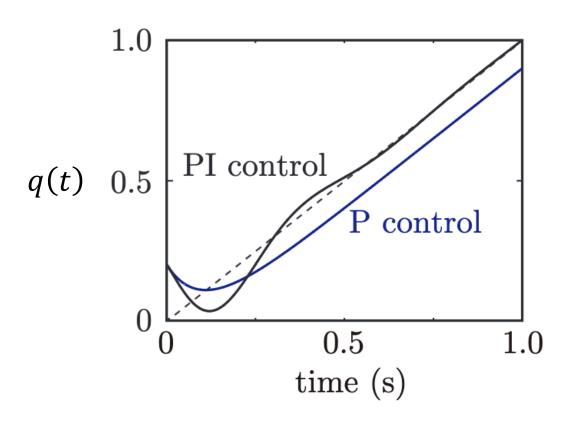
$$\ddot{q}_e(t) + K_p \dot{q}_e(t) + K_i q_e(t) = 0$$

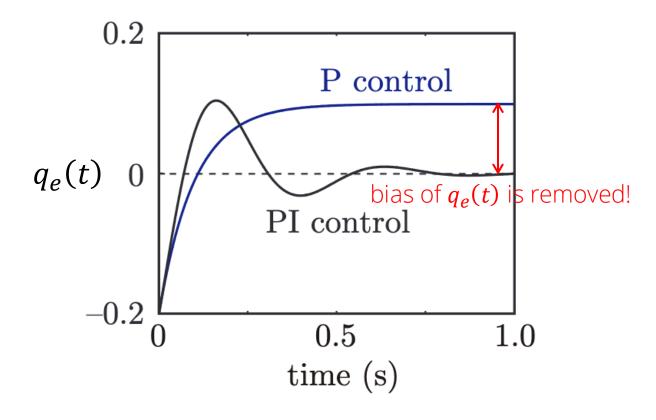
- We have  $\omega_n = \sqrt{K_i}$  and  $\zeta = \frac{K_p}{2\sqrt{K_i}}$
- To achieve critically damped state, we need  $\zeta=1$ ,  $\zeta\omega_n>0$  and  ${\omega_n}^2>0$

Need to tune carefully!



#### PI Controller vs. P Controller





## How About Force Inputs?

- Velocity inputs are limited to applications with low/predictable forcetorque requirements. Here, we consider control force inputs.
- Let's take a single-joint robot for example

$$\tau = M\ddot{q}(t) + mgr \cos q(t) + b\dot{q}(t)$$
Damping (e.g friction)

• PID controller:  $\tau = K_p q_e(t) + K_d \dot{q}_e(t) + K_i \int_0^t q_e(t) dt$ 

- PD controller:  $\tau = K_p q_e(t) + K_d \dot{q}_e(t)$
- Let's consider the robot is placed on a plane (g = 0)

$$M\ddot{q}(t) + mgr\cos q(t) + b\dot{q}(t) = K_p q_e(t) + K_d \dot{q}_e(t)$$

$$\Rightarrow M\ddot{q}(t) + b\dot{q}(t) = K_p(q_d(t) - q(t)) + K_d(\dot{q}_d(t) - \dot{q}(t))$$

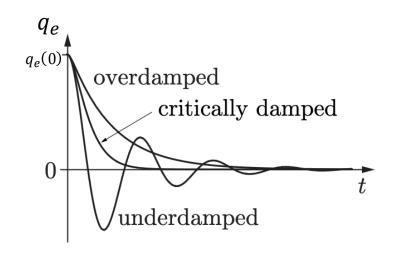
- PD controller:  $\tau = K_p q_e(t) + K_d \dot{q}_e(t)$
- Let's consider the robot is placed on a plane (g = 0)

$$M\ddot{q}(t) + b\dot{q}(t) = K_p(q_d(t) - q(t)) + K_d(\dot{q}_d(t) - \dot{q}(t))$$

- Case 1: if  $q_d(t) = c$  is constant
  - $\blacktriangleright$  We have  $\dot{q}_d=\ddot{q}_d=0$ ,  $q_e=c-q$ ,  $\dot{q}=-\dot{q}_e$ ,  $\ddot{q}=-\ddot{q}_e$
  - ightharpoonup Substituting  $q, \dot{q}, \ddot{q}$ , we have

$$M\ddot{q}_e(t) + (b+K_d)\dot{q}_e(t) + K_pq_e(t) = 0$$

Doesn't this look familiar?



Let's consider the robot is placed vertically

$$M\ddot{q}(t) + mgr\cos q(t) + b\dot{q}(t) = K_p(q_d(t) - q(t)) + K_d(\dot{q}_d(t) - \dot{q}(t))$$

• Case 1: if  $q_d(t) = c$  is constant

$$M\ddot{q}_e(t) + (b + K_d)\dot{q}_e(t) + K_p q_e(t) = mgr\cos q(t)$$

Very complex to get an explicit solution. But let's observe when the system is stable

Let's consider the robot is placed vertically

$$M\ddot{q}(t) + mgr\cos q(t) + b\dot{q}(t) = K_p(q_d(t) - q(t)) + K_d(\dot{q}_d(t) - \dot{q}(t))$$

• Case 1: if  $q_d(t) = c$  is constant

$$M\ddot{q}_e(t) + (b + K_d)\dot{q}_e(t) + K_p q_e(t) = mgr\cos q(t)$$

when the joint comes to rest  $(\ddot{q}_e(t) = 0)$  and  $\dot{q}_e(t) = 0$ , the final error  $q_e(t) \neq 0$ :

$$K_p q_e(t) = mgr \cos q(t)$$

In other words, the robot has to provide a torque to hold the link at rest  $\theta \neq \pm \frac{\pi}{2}$ , which happens when  $q_e \neq 0$ 

## Add Integral Controller to Reduce the Bias

Let's consider the robot is placed vertically and a PID controller is used:

$$-----M\ddot{q}_{e}(t) + (b + K_{d})\dot{q}_{e}(t) + K_{p}q_{e}(t) + K_{i}\int_{0}^{t}q_{e}(t) dt = mgr\cos q(t)$$

• Still a complex equation.... Let's envision what happens when the system is close to equilibrium  $q_e=0$  (and thus  $\dot{q}$  is also close to 0), since the desired  $q_d(t)$  is constant :

Explain this better!

(Take derivatives)

$$M\ddot{q}_{e}(t) + (b + K_{d})\ddot{q}_{e}(t) + K_{p}\dot{q}_{e}(t) + K_{i}q_{e}(t) = 0$$

#### PID Controller

$$\label{eq:mass_eq} M\ddot{q}_e(t) + (b+K_d)\ddot{q}_e(t) + K_p\dot{q}_e(t) + K_iq_e(t) = 0$$

The characteristic equation is

$$s^{3} + \frac{b + K_{d}}{M}s^{2} + \frac{K_{p}}{M}s + \frac{K_{i}}{M} = 0$$

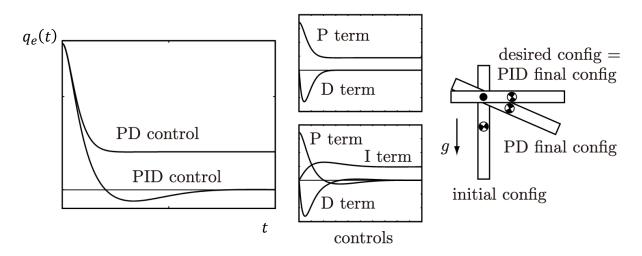
• The conditions for  $q_e$  to converge to zero

$$K_d > -b$$

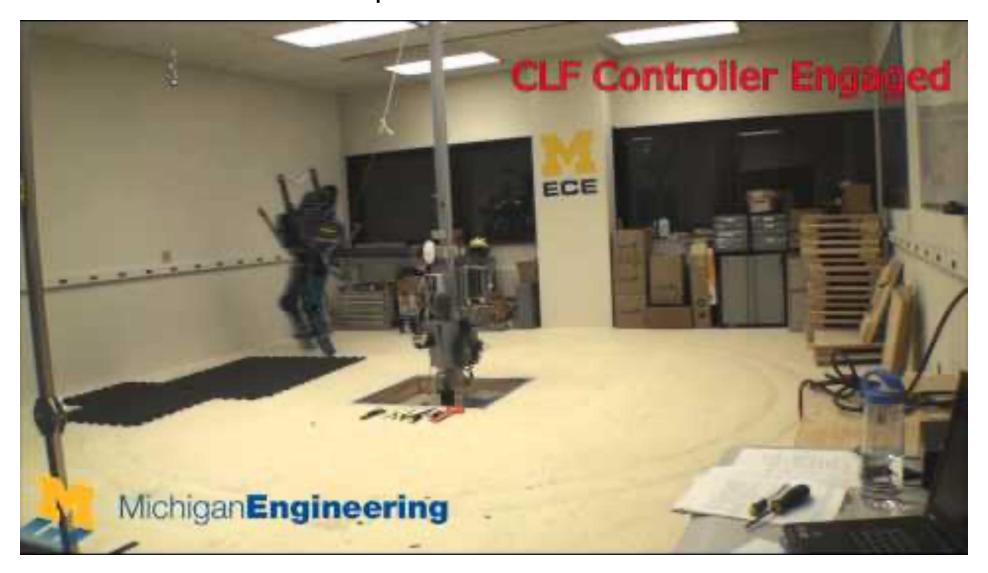
$$K_p > 0$$

$$\frac{(b+K_d)K_p}{M} > K_i > 0.$$

Require parameter tuning!

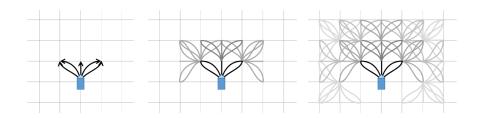


## There are more optimal controllers than PID

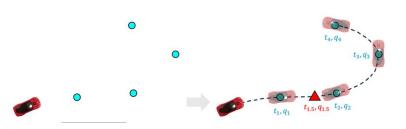


# Summary

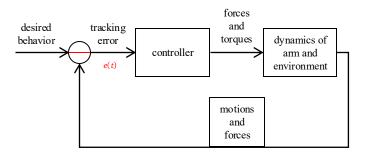
#### Motion Planning with Directional Constraints

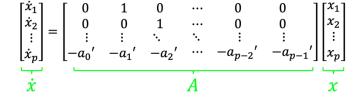


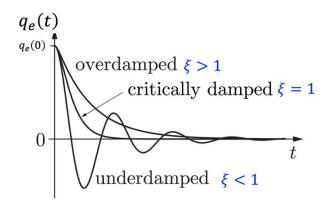
#### Trajectory Generation



#### Feedback Controller







#### Kinodynamic RRT

