RODOt

Perception and Learning

Kinodynamic Motion planning, Trajectory Generation,

Feedback Control

Tsung-Wei Ke
Fall 2025

Configuration Space (C-Space):

16-735, Howie Choset with slides from G.D. Hager and Z. Dodds this is twisted...

Recap

Motion Planning

Create a graph Search the graph Densify the graph

S g

RRT vs. RRT*

We can create and search the graph (e.g.

grid search) in the C-space, however, the C-

1.
2.

space is high-dimensional:
Computing the C-space obstacle is hard

Searching is computationally expensive

Task and Planning

SubTask 1: Grasp the Cheezit

SubTask N: Grasp theomustard
» Subgoal configuration of the

gripper pose
» Motion planning for the
trajectory

SubTask N+1: Lift up the mustard
* Subgoal configuration of the
gripper pose
» Motion planning for the
trajectory
SubTask N+2: Carry the mustard above the
blue region
* Subgoal configuration of the
gripper pose
» Motion planning for the
trajectory
SubTask N+3: Put down the mustard
* Subgoal configuration of the

gripper pose
» Motion planning for the
trajectory

How to Control Robots to Follow Plans?

What are Missing? We Ignore Motion Constraints

Create a graph Search the graph Densify the graph
@ .. ® AN SR
- 9 |) t*‘_". ("9
‘ul ‘n. "' .I.‘\‘ 1\ 1’ "‘ ‘ll‘\‘
. .l ’ % c “ 4" l‘ 0 -7 . 1‘ Atl " f‘.’-g’
". .'l' ““‘ '.I :: ‘ N‘é“'af ‘f‘ “l .::
. vl ‘ L ‘ . vl ‘

« We have only considered path and obstacle, but ignore:
» How to traverse from one node to another

We lgnore How to Traverse the Planned Path

o._
o
O .
______ o------9
o ‘
O~ _
O O \\
\
O
]
]
//,
f—_—o _____ 0

We Ignore the Dimension of Time for the Path

Trajectory: time-parameterized path q(t) vt € [0, T]

We Ignore How to Control to Follow the Trajectory

t3, X3, Y3, 03

Steering?
Acceleration?

What are Missing? We Ignore Motion Constraints

Create a graph Search the graph Densify the graph
@ .. ® AN SR
- 9 |) “**_". ("9
‘.l “I "' ..I“\ 1 1’ "‘ “l“\
. .l ’ % c “ 4" l‘ 0 -7 . 1‘ Atl " f‘.’-g’
". :: ““‘ '.I :: ‘ N‘é“'af ‘f‘ “l .::
. vl ‘ L ‘ . vl ‘

« We have only considered path and obstacle, but ignore:
» How to traverse from one node to another
» Motion (velocity/acceleration) constraints
» Safety constraints

——

Control is Hard, as Robots may be Underactuated...

Underactuated system: a mechanical system that cannot be commanded to
follow arbitrary trajectories in configuration space. Obvious cases are
systems that have less actuators than degrees of freedom.

[N
Definition 1.1 (Underactuated Control Differential Equations) A second-order
control differential equation described by the equations

q= f(qs éls u, t) (1)

is fully actuated in state x = (q, q) and time ¢ if the resulting map f is surjective: for every g
there exists a u which produces the desired response. Otherwise it is underactuated (at state x
Kat time t).

/

q: a vector of robot configurations; : a vector of velocities

Control is Hard, as Robots may be Underactuated...

Underactuated system: a mechanical system that cannot be commanded to
follow arbitrary trajectories in configuration space. Obvious cases are
systems that have less actuators than degrees of freedom.

=

NNy

10

We |gnore the Dynamics...

11

Control Systems that Cancel vs. Involve Dynamic

Which one looks more natural? Which one consumes less energy?

12

Can We Extend the Motion Planning Framework?

Create a graph Search the graph Densify the graph
@ oomnes Y @ AN R
<. o e ":1.".,’ Te
K4 ..“‘ N 1\ K
¢ : 5 [F¢ e TTe: X L
“‘.‘ o .'.": ,’.-‘ é '2:5:‘—:,“_,-
. vl i o | | W ‘ . vl i

« (Can we extend the motion planning framework to:
» Consider configuration constraints
» Consider motion (velocity/acceleration) constraints
» Generate control trajectories
> Involve dynamic

13

Can We Generate Paths that Respect
Directional Constraints?

« Take car as an example. How can we reformulate the roadmap planners?

A ¥

14

Path Planning with Directional Constraints

v oYY

Can We Reformu

ate Path Plan

Genera

ning Problems to

Control trajectory u(t):
« Acceleration, determined by imposed force/torque, at time t

« Velocity at time ¢t (

e.g. stepper motors)

e Control Tra

ectory?

16

Control is Hard, as Robots may be Underactuated...

 Underactuated system: a mechanical system that cannot be commanded to
follow arbitrary trajectories in configuration space. Obvious cases are

systems that have less actuators than degrees of freedom.
« The double pendulum with one missing actuator is underactuated. The

neighboring configurations take more motions to achieve

17

Control is Hard, as Robots may be Underactuated...

 Underactuated system: a mechanical system that cannot be commanded to
follow arbitrary trajectories in configuration space. Obvious cases are
systems that have less actuators than degrees of freedom.

« The double pendulum with one missing actuator is underactuated. The
neighboring configurations take more motions to achieve

* |dea: Building graph by sampling real/simulated interactions

C’)
n3

’

’

’

Actual trajectory depends on force
constraints and velocity conditions

18

Can We Generate Control Trajectories with Motion
Planning Methods?

« To generate control trajectories, we need to take dynamic into consideration
 Previously, we only consider “configurations” (joint angles) of a robot. Such
representations ignore “dynamics” of a robot.
> |s the C-space obstacle fixed when the initial velocity v of an object varies?

configuration space configuration space

S A 180°

90°

19

State-space Representations

« Generalize the planning space from configurations (the configuration space C) to
dynamics (the state space X)

q q
 Definition: a state vector x € X as x = |q|, then we have x = q] = f(x,u,t),
where g € C, u denotes controls (e.g. torque) and function f describes how the

motion changes conditioned on the state x, control u and time ¢t

20

State-space Representations

« Generalize the planning space from configurations (the configuration space C) to
dynamics (the state space X)
q] q
 Definition: a state vector x € X as x = lq then we have x =] f(x,u,t),
where g € C, u denotes controls (e.g. torque) and function f describes how the
motion changes conditioned on the state x, control u and time t

A 2nd-order equation of motion:

'WW mq(t) = u(t) — bq(t) — kq(t)
> u(t) . .
— Rewrite the equation as:
b
T q(t) [q(t) B
"o #= a0l = [1uco - mw—%«o‘iﬁJ“”+LfV“)

A B
21

Obstacles in the State Space

Let's assume we have a point mass robot

Xric denotes the set of states where the
robot cannot avoid collision. Y,ps € Xric

Obstacles y,ps
A

|

®
» §

q IA->

22

Obstacles in the State Space

|

0
30 - -
30
L () 1% AT P ¥n

Let's assume we have a point mass robot

Region of inevitable
collision xpic

Xric denotes the set of states where the
robot cannot avoid collision. x,ps € Xric

Obstacl
\ T - [
1 @ t

>

. i,

23

Kinodynamic Planning with RRT

 Kinematic RRT: Grow a tree of feasible configuration paths from the
start to the goal configuration
» Select a random / the goal configuration g, find the nearest
configuration gpeqr t0 g, and greedily move from geqr 10 q.

 Kinodynamic RRT: Grow a tree of feasible control trajectories u(t),t €
{0, ..., T} from the start to the goal state
» Select a random / the goal configuration g, find the nearest
configuration g,eqr t0 q, randomly select a control u, and execute
u from greqr.

24

Kinodynamic Planning with RRT

BUILD RRT(x;niz)

1 Tinit(x;niz);

2 fork =1to K do

3 Xrand < RANDOM_STATE();
4 EXTEND(T, x;4n4);

5 Return 7

EXTEND(T7; x)

1 Xpear < NEAREST_NEIGHBOR(x, 7);

2 if NEW_STATE(x, Xnear, Xnew | Unew] then

3 T.add_vertex(x,eyw);

4 T.add_edge(xnear» Xnews

5 if x,,.,, = x then

6 Return Reached; ° Randomly sample uy,,,

7 else * Find uy,,, that yields xyey, as
8 Return Advanced, close as possible to x

9

Return Trapped,

25

Kinodynamic Planning with RRT

BUILD RRT(x;niz)

1 Tinit(x;niz);

2 fork=1to K do

3 Xrand < RANDOM_STATE();
4 EXTEND(T, x;4n4);

5 Return 7

Execute u,,,, to obtain x,,,,. Also,
do collision checking on x,,.,y

EXTEND(T7; x)

1 Xnear < NEAREST_NEIGHBOR(x, 7);
2 if NEW_STATE(x, Xnear, Xnew, Unew) then
3 T.add_vertex(x,0u);

4 T.add_edge(Xnear» Xnew, Unew);

5 if x,,.,, = x then

6 Return Reached,

7 else

8 Return Advanced,

9

Return Trapped,

“new
. Vs

26

Kinodynamic Planning with RRT

Kinodynamic RRT Still Has Problems

« Metric choice: The Euclidean distance between two states often
correspond poorly with the length of exact control trajectories
» We need to decide x,0q4r
» We need to decide if x,0, IS ClOSe enough to x

 Control choice: we need to sample a lot of uy,,,, which is sample
inefficient

« Open-loop control: we decide the whole control trajectory from the
initial state. We need to replan again the whole trajectory if
something goes wrong...

28

Open-loop Control: Plan and Execute the
Whole Trajectory without Feedback

Open-loop Control: Plan and Execute the
Whole Trajectory without Feedback

Open-loop Control for Robot Juggling

Two forms of SHapRoen juggling.

https://youtu.be/2ZfaADDIHAW?si=ilw)vLjgGYoZufP 18t=856 31

What it the Ball is Disturbed? We need to Re-
decide the Control Inputs

i

V-ball

juggling:
Another
example

of open-

[o]e]¢

stable
(blind)
juggling

Close-loop Con

rol: Repeat

Planning ano

Executing the

rajectory wi

'h Feedback

Close-loop Con

rol: Repeat

Planning ano

Executing the

rajectory wi

'h Feedback

Close-loop Con

rol: Repeat

Planning ano

Executing the

rajectory wi

'h Feedback

Close-loop Con

rol: Repeat

Planning ano

Executing the

rajectory wi

'h Feedback

Close-loop Con

rol: Repeat

Planning ano

Executing the

rajectory wi

'h Feedback

Close-loop Con

rol: Repeat

Planning ano

Executing the

rajectory wi

'h Feedback

Feedback Control: Track a reference trajectory

Measure and Minimize Error to Reference Points

o

\ reference point
\‘) e(t)

le(t)]

40

Measure and Minimize Error to Reference Points

reference point

le(t)] e(t)

41

Basic Recipe of Planning and Control

1. Motion planning: compute a feasible path
« grid search/PRM /RRT ...

2. Controller: predict a control to follow the path or
minimize the "tracking” error.

State S Goal 4| Motion 4| Low-level
Estimation Prediction Planning Controller
N
Y
Sensor Actuator

3/

42

Motion Planning Computes a Sparse Path

Create a graph Search the graph Densify the graph
®.-omomeeee . @ g N SR S
\ "'-._‘ ’o’ ‘.‘ ".._'..'
e o ad ~e ,.-—’w*;’ o
\ N) -" "
¢ 5 o I ¢ \ ' ” > ¢ %5!"‘ ”,
° o ° A ° '
_____ ‘ ‘-.._‘ '“-..‘

RRT
Roadmap planner

d

Should We Traverse the Path in Straight Lines?

. Straight lines are discontinuous,
S\ TN robots could overshoot...

44

Traverse in Smooth Curves

45

Traverse in Smooth Trajectories

46

Basic Recipe of Planning and Control

1. Motion planning: compute a feasible path
« grid search/PRM /RRT ...
2. Trajectory generalization: time-scale the path into a trajectory
3. Controller: predict a control to follow the path or minimize
the "tracking” error.

Trajectory
F Generation

State - Goal -l Motion Low-level
Estimation | “| Prediction [~| Planning Controller
N
\ 4
sSensor Actuator

7

47

Trajectory Generation

« (Constraints as continuity, smoothness,
velocity/acceleration limit, kinematic,
« optimality criteria (min transfer time / energy...)

Path Trajectory _ Trajectory
qo,q1, > qN Generator q(t)

Y

o © _
&

48

Point-to-Point Trajectory Generation

 Let's start with an easy example: point-to-point trajectory generation

qr o

49

Point-to-Point Trajectory Generation with Straight Lines

e Straight-line paths:

q®) = q; + t(qr — q;)
dr—di

a(®) = % and §(6) = 0
q/\ q/\ q/\
qr /,Q
qdr — qi
qi()'/, 0

~ V
~ V
-V

50

Point-to-Point Trajectory Generation with Straight Lines

q, a,
NoN-smMooth
// S
-, N
P N
AN 0
o .
N
Qo)

v

~
7

t t
non-smooth

51

Point-to-Point Trajectory Generation with Cubic Polynomials

 Cubic polynomial paths:
q(t) = azt3 + a,t? + a;t + aq
g(t) = 3ast? + 2a,t + a4
G(t) = 6ast + 2a,

52

Equations:

Cubic Polynomial Paths

q(t) = azt3 + a,t? + a;t + aq
q(t) — 3a3t2 + Zazt + a1
q(t) — 6a3t + Zaz

Solve the equation

« whent=0
as03 + a,02 + 4,0+ a, =q; 2 a, = q;
3a50° + 2a,0+a, =q¢; = a; = q;
* whent =t

aste® + ate® + agty + ag = qr

t 3a3tf2+2a2tf+a1 =q]f-'

53

Point-to-Point Trajectory Generation with Cubic Polynomials

W
+
\\"4

54

What it We Want to Impose
Velocity/Acceleration Constraints?

q q
qr o

? Amax
ql()

qmax

Point-to-Point Trajec

ory Generation with

Trapezoidal Motion Profiles

gA qA
q,
qc - tf _to tf _
0 t {
t 0 ¢ AR

56

Point-to-Point Trajectory Generation with
Trapezoidal Motion Profiles

Also known as Linear Segments with Parabolic Blends:
1. Fit with quadratic polynomials (linear ramp velocity)
2. At the blend time, switch to a linear function (constant velocity)

~+Y

57

_ q
qc - t
fle Lo
0 te t
t 0 le —g,l

* Average point: g, = (qr+q;)/2 at t, = t¢/2

« Velocity:
_9m — ¢
CtC -
tm — tc
él.ctc2 — éI.ctftc +qr—q; = 0
. = q; +léictc2 l We can specity g,
Constraints 2
o dlar — gl ty 1 [tpde —4as —)
|qc| > 2 te =+ — = - .

58

| d.
qc - t
fle by o
0 le ¢
> |
t 0 le —g,l

* Average point: g, = (qr+q;)/2 at t, = t¢/2

« Velocity:
. dm — qc
Gclc = —
tm — t¢ . Lo .
qcte” —qctete Y qr —q; = 0
. = q; +léictc2 l We can specify g,
Constraints 2 .

| | 2 | ; Qi — g5 +qcty

—_. . c = _
Qf q’b < |qC| S qf Q’L qc

Ly Ly

59

Point-to-Point Trajectory Generation with
Trapezoidal Motion Profiles

0<t<t,
e <t <ty—1t.
by —te <t < ty.

What it We Want to Generate Trajectory from
Multiple Waypoints?

g A
95
I R
0y
Q1 =qq
L=0 iz I3 e

Can We Fit a High-Order Polynomials?

CI(t) —_ aKtK ~+ aK_ltK_l + .-+ alt + aO

Drawbacks:

« The polynomial function overfits,
resulting in oscillatory curves

« The system of constraint
equations is heavy to solve

Q1: i

=0 ta ts T =t

62

Can We Fit with Multiple Trapezoidal Motion Profiles?

g A
q
'S Iy =4y
do N, -1 1
' q, |3 |
'y , |
0, A !
=
Q1ZQ'E e q | ol ¢ trte ;j}%
ti=0 to ts ’ tN_tf>t

Can We Fit with Multiple Trapezoidal Motion Profiles?

:
g _ 9k — k-1 Ay =4y
k—1,k = ’
’ Atp_q |
9, =9 ¢ -
RAYZ- I
| ! (
L=0 2 3 =t

64

Can We Fit with Multiple Trapezoidal Motion Profiles?

¢

b1 p = k. — dk—1 v =9,
k—1k = .
’ Atg_1
G, = Qk,k+1 — Qk—1k
k — /
7= ¢

=1, t

65

Can We Fit with Multiple Trapezoidal Motion Profiles?

q A

The discrepancy to waypoints is
determined by At,

dk — qk—1

qN — th'
Atp_q

dk—1k =

kel — Qk—1,k
At

dk

=1, t

See “Turning paths into Trajectories Using Parabolic
ss Blends” by T. Kunz and M. Stilman for more details

Basic Recipe of Planning and Control

1. Motion planning: compute a feasible path

« grid search/PRM /RRT ...
2. Trajectory generalization: time-scale the path into a trajectory

3. Controller: predict a control to follow the path or minimize

the "tracking” error. ,
Trajectory
F Generation

State - Goal -l Motion Low-level
Estimation | “| Prediction [~| Planning Controller
N
\ 4
sSensor Actuator

7

67

Control Systems

1. Controller: predict a control to follow the path / desired behavior

e Feedback control
« Optimal control

2. Control u(t) can be velocity / torque inputs

desired
behavior
ﬁ

68

controller

forces
and
torques

ﬁ-

dynamics of
arm and
environment

motions

and

forces

Feedback Controller: Continuously Adjust the
Control Input to Minimize the Tracking Error

desired

forces
tracking and
eIror torques
> controller >

behavior)Q

e(t)

dynamics of
arm and
environment

motions
and
forces

69

An Overview of PID Controller

Image generated by Gemini

arm.
dynamics

6

Current temperature difference (immediate error)
Future temperature difference (derivatives of errors)
Accumulated temperature difference (accumulated
error)

70

Linear Error Dynamics

o Let'sdefine g.(t) = q4(t) — q(t) as the tracking error, where
q,(t) is the desired behavior and q(t) is the current behavior

« The purpose of the feedback controller is to create an error
dynamics such that g, (t) tends to a small value, as t increases

71

Linear Error Dynamics

« Linear error dynamics:

Control signal

a,qe P (t) + ap_1qe PV + - + azde(t) + a1Ge(t) + apqe(t) =

« An example of a 2"d-order error dynamics: the linear mass-spring-damper

de

N

O —

AN

m —f mq.e(t) +bq.e(t) + :f

> =

72

* Ifc=0:

apqeP () + ap_1qe PV () + -+ + 4z (t) + a1 (8) + agqe(t) =0

1 . .
= q,P(t) = —— |a,-1qeP D) + - + a2G.(£) + a14.() + agqe(0)]
p

= q, P (t) = —ap—1’CIe(p_1)(t) — = ay e (t) —ay'qe(t) —apy'qe(t)

« Express a pth-order differential equation as p coupled 1%t-order differential
equations:

X1 = (e
X2 = X1 = (e

xp =).Cp_l = qe(p_l)

73

fc=0:

apqeP () + ap_1qe PV () + -+ + 4z (t) + a1 (8) + agqe(t) =0

1 . . :
= q. P (t) = —— la,1qe PP (@) + - + a2G.(£) + a14.() + apqe(t)
D

=|q. P (t) = —ap—1’CIe(p_1)(t) — = ay e (t) —ay'qe(t) —apy'qe(t)

Express a pt-order differential equation asp.coupled 1st-order differential
equations:

X1 = (e

X2 = X1 = (e

xp = _).Cp_l = qe(p_l)

74

* Ifc=0:

apqeP () + ap_1qe PV () + -+ + 4z (t) + a1 (8) + agqe(t) =0
1 . . :
= g, P (t) = —— |ap-1q.P7V (@) + -+ + a2 () + a14.(0) + agqe(t)

p

=|q. P (t) = _ap—1,CIe(p_1)(t) — = ay e (t) —ay'qe(t) —apy'qe(t)

« Express a pth-order differential equation as p.coupled 1%-order differential
equations:

X1 = (e X1 = Xy

X2 = X1 = (e Xy = X3

— — -1 y
Xp = Xp-1 = Qe(p) Xp—-1 = Xp

75

* Ifc=0:

apqeP () + ap_1qe PV () + -+ + 4z (t) + a1 (8) + agqe(t) =0

1 . .
= q,P(t) = —— |a,-1qeP D) + - + a2G.(£) + a14.() + agqe(0)]
p

= q, P (t) = —ap—1’CIe(p_1)(t) — = ay e (t) —ay'qe(t) —apy'qe(t)

« Express a pth-order differential equation as p coupled 1%t-order differential
equations:

X1 = Xy x1 0 1 0 0 0 11%17
T

Xp —ay," —a;' —a;’ _ap—Zl ap—ll_ Xp
Xp-1 = Xp

y - I/ !/ !/ !/
xp — _ap_l xp - ”’_az X3 _a1 X2 _ao x1

76

Linear Error Dynamics

e x(t) = Ax(t) has solution x(t) = e”tx(0)

o Just like x(t) = e**x(0) converge if a < 0, x(t) converge if A is
negative definite

« Matrix 4 is negative definite iff all eigenvalues of 4 (which maybe
complex) have negative real components. The eigenvalues s of A
must satisty:

det(s] —A) =sP +a,_4'sP"' + -+ a,'s* —a;'s' —ay =0
with necessary conditions:

1. Cli, >0 Vi
2. ..

77

Tst-order Error Dynamics

« Take linear mass-spring-damper for example, letm = 0 and f = 0:

k
bqe(t) + kq.(t) = 0= g.(t) +qu(t) =0

de

NN

> =

78

Tst-order Error Dynamics

« Take linear mass-spring-damper for example, letm = 0 and f = 0:

« We have solution g,(t) = e

k
bqe(t) + kq.(t) = 0= g.(t) +qu(t) =0

de

P

NN

/}ﬂﬂ

7

> =

k
——t

>"qe(0) q.(0)

k . ,
3 INcreasing

qe(t)

The mass-spring stops

time quew damping

79

2"d-order Error Dynamics

« Take linear mass-spring-damper for example, let f = 0:

b k
méie(t) + bc?e(t) + kqe(t) =0= éI.e(t) +n_1C.Ie(t) +n_1Qe(t) =0

de

>

NN

> =

7

= §o () + 28w qe(t) + w,%qe(t) =0

80

,k .
w, = [— isknown as the natural frequency
m

&= Zﬁ(—m is known as the damping ratio

2"d-order Error Dynamics

« Take linear mass-spring-damper for example, let f = 0:

b k
méie(t) + bc?e(t) + er(t) =0= éI.e(t) +n_1C.Ie(t) +n_1Qe(t) =0

NN

> =

de

= §o () + 28w qe(t) + w,%qe(t) =0

The characteristic polynomial:

Stable conditions:

s* + 2(wps + w2 =0
Cwn, > 0

TwoO roots: %27, > 0.

s1 = —Cwp +wp V(% —1
So = —Cwy, — wp/ (% — 1.

81

2"d-order Error Dynamics

e (t)

q.(0)

' / critically damped ¢ =1

0 I
t

The solution of §,(t) + 2éw,q,.(t) + w,*q.(t) = 0:
qe(t) = (c1 + ¢ t)e™@nt

82

2"d-order Error Dynamics

e (t)

q.(0)

\ overdamped ¢ > 1
critically damped ¢ =1

The solution of §,(t) + 2éw,q,.(t) + w,*q.(t) = 0:
q.(t) = c ettt + c,e52t

83

2"d-order Error Dynamics

e (t)

q.(0)

overdamped ¢ > 1
critically damped ¢ =1

0
t
Umderdamped { <1

The solution of §,(t) + 2éw,q,.(t) + w,*q.(t) = 0:

qe(t) = (Cl cosw,\/1—E&%t+c,sinw,/1— &2 t) p—Swnt

84

PID Feedback Controller

« PID feedback controller:
> 1st-order error (immediate error)
» Higher-order error (derivatives of errors)

> Historical error (accumulated error)
t

w(®) = K,q0(6) + Kado () + K, j 00(D) dt
0

85

PID feedback controller:
> 1st-order error (immediate error)
» Higher-order error (derivatives of errors)

> Historical error (accumulated error)
t

w(®) = K,q0(6) + Ko (6) + K, j 00 (0) dt
0

Error

Present

<

>

Past l Future

TN | | \ Time
t t+Tqg

86 Feedback Systems: An Introduction for Scientists and Engineers. K.]. Astrém and R. M. Murray.

A Simplitied Block Diagram of PID Controller

« Control u(t) can be velocity / torque inputs

t)+ e(t +
qa(t) @ qe(?) - K, ~ u(t) arm
4+

dynamics

|

q(t)

— [dt | K;

87

Proportional Controller: Minimize Immediate Error

« Control with velocity inputs:

u(t) = q(t) = (Qd(t)\ —q(t)) = K,qe(t)

desired q(t)

- The constant control gain K, acts somewhat like a virtual spring

de

P

—f

AN
=

> =

88

Proportional Controller: Minimize Immediate Error

« Control with velocity inputs:
u(®) = q(t) = K,(qq(®) — q(t)) = K,q.(t)
« Case 1::if g4(t) is constant
Ge(®) = 4o — (1) = 4(6) = =4, (t)
—.(t) = Kpq.(t) = q.(t) = e *r'q,(0)

20 - —— Kp=1,q.(0)=20
——- Kp=1,0.(0)=-20
15 - —— Kp=2,0.(0)=20
5 ——- Kp=2,9.(0)=-20
—— Kp=3,9.(0)=20
e ——- Kp=3,9.(0)=-20
O— -
1.0
Iy
LN
1/
]
iod &
]
]
[]
[]

T © T T O ©
L I [[I |

de(t)

89

Proportional Controller: Minimize Immediate Error

« Control with velocity inputs:

u(t) = q(0) = K,(qq(t) — q(8)) = K,q(t)

« (Case 2:if g4(t) is not constant, but g, (t) is constant

ga(t) =c
.) C cC_
Qe(t) = C— CI(t) = C— Kp‘]e(t) = qe(t) — K_ + (qe(o) _K_)e Kt
p p
201 —— Kp=1,q¢(0)=20
~=- Kp=1,0¢(0)=-20
151 — Kp=2,9.(0)=20
XD
5 -==- Kp=3,0.(0)=-20
=
=
-104{ &
~15 - i
-204 !
(I) é 1I0 115 2IO 2I5 3IO

t 90

Proportional Controller: Minimize Immediate Error

« Control with velocity inputs:

u(t) = q(0) = K,(qq(t) — q(8)) = K,q(t)

« (Case 2:if g4(t) is not constant, but g, (t) is constant

qqa(t) =c
: : C cC_
Qe(t) = C— CI(t) = C— que(t) = qe(t) — K_ + (Qe(o) _K_)e Kt
p p
201 — Kp=1,0(0)=20
——- Kp=1,0e(0)=-20
151 — Kp=2,9.(0)=20
o ——- Kp=2,0e(0)=-20
— Kp=3,9¢(0)=20
51 el Solution?

* Increase K. What if K, is bounded?
« Minimize accumulated error

t 91

Proportional Integral Controller: Minimize Historical Error

« Control with velocity inputs:

t

§(0) = K,q0(6) + K, f 0.(8) dt

0

Error

Present
Past J?
NN A
TN | "N Time

Proportional Integral Controller: Minimize Historical Error

« Control with velocity inputs:

t
u(®) = 40 = Koo (©) + K; | ac(0) de
0
« It g4(t)is constant
t

q(t) = qq(t) — 4.(t) = Kpq.(t) + K; j qe(t) dt
0

= ¢ = @ (t) + K,q.(t) + Kl-f qe(t) dt
0

= qe(t) + Kp‘?e(t) + Kiqe(t) =0
\ J

|
second-order error dynamics

93

2"d-order Error Dynamics

e (t)

q.(0)

overdamped & > 1
critically damped ¢ =1

0
t
Umderdamped E<1

94

2"d-order Error Dynamics

Given the standard second-order form:
éie(t) + Z(wnC.Ie(t) + wnZCIe(t) =0
Our Pl controller:
Ge(t) + Kpqe(t) + K;qe(t) =0
Kp
2\/?1' de \

To achieve critically damped state,]
we need{ =1, {w, > 0and w,? >0

We have w, = /K; and { =

overdamped

critically damped

S ¢

underdamped

Need to tune carefully!

95

1.0

q(t) 0.5

P| Controller vs. P Controller

| PI control

P control

0 0.5

time (s)

1.0

96

0.2

P control

™|

PI control

-b-ia-a;, of g.(t) i removed!

0.5
time (s)

1.0

How About Force Inputs?

 Velocity inputs are limited to applications with low/predictable force-
torque requirements. Here, we consider control force inputs.
« Let's take a single-joint robot for example

T =M{G(t) + mgr cosq(t) + bq(t)
—
Damping (e.g friction)

+ PID controller: 7= K,q.(t) + Kgqo(t) + K; [, q.(t) dt

97

Proportional Derivatives Controller

« PD controller: T = K,q.(t) + K;3q.(¢t)
« Let's consider the robot is placed on a plane (g = 0)

M(t) + mgreos q(t) + bq(t) = Kpq.(t) + K4G.(t)

= MG(t) + bq(t) = K,(qq(t) — q(®)) + K;(q4(t) — q(0))

98

Proportional Derivatives Controller

« PD controller: T = K,q.(t) + K;3q.(¢t)
« Let's consider the robot is placed on a plane (g = 0)

Mq(t) + bq(t) = K, (qa(t) — q(0)) + K4(4a(t) — q(0))

o (Case 1:if g4(t) = cis constant
> We have Qd — q.d — Orqe =C —Cl,q — _Qerq. — _Qe
» Substituting q, g, g, we have
e
M. (t) + (b + K4)q.(t) + que(t) =0 9¢(0)]

overdamped

Doesn't this look familiar? critically damped

underdamped

99

Proportional Derivatives Controller

« Let's consider the robot is placed vertically
Mq(t) + mgr cos q(t) + bq(t) = K, (qa(t) — q(t)) + Ka(4a(t) — q(t))
« Case 1:if q4(t) = cis constant

M. (t) + (b + Kq)q.(t) + K,q.(t) = mgr cos q(t)
\ J
|
Very complex to get an explicit solution. But let's observe
when the system is stable

100

Proportional Derivatives Controller

« Let's consider the robot is placed vertically
Mq(t) + mgr cos q(t) + bq(t) = K, (qa(t) — q(t)) + Ka(4a(t) — q(t))
« Case 1:if q4(t) = cis constant

Mg, (t) + (b + K3)q.(t) + K,q.(t) = mgr cos q(t)

\ J
|

when the joint comes to rest (g.(t) = 0 and g.(t) = 0),
the final error g, (t) # 0:

Kpq.(t) = mgr cos q(t)

In other words, the robot has to provide a torque to hold
the link at rest & # +£7, which happens when g, # 0

101

Add Integral Controller to Reduce the Bias

« Let's consider the robot is placed vertically and a PID controller is used:
t

Mijo(©) + (b + K do(D) + K, (©) + K, f 0. (0) dt = mgr cos q(¢)

 Still a complex equation.... Let's envision what happens when the system is close to
equilibrium g, = 0 (and thus q is also close to 0), since the desired q4(t) is constant :

Explain this better!

Mg, (t) + (b + Kz)G.(t) + K, 4. () + K;q.(t) =0

102

PID Controller

M.q.e(t) + (b + Kd)éie(t) + KpéIe(t) + KiQe(t) =0

« The characteristic equation is

s3 +

b+Ky
M

« The conditions for g, to converge to zero

(b+ Ka)Kp

M

Kd > —b
K, > 0
> K; > 0.

ge(t)

K, K

S+ —Ss+— =

M M

0

PD control

PID control

Require parameter tuning!

___/

103

controls

g

desired config =

[\I_ PID final config

initial config

[e
l ‘ PD final config

There are more optimal controllers than PID
g i

b | | n;
B LW

— E—

-

5

MichicanEngineering

it

https://youtu.be/onOd7xWbGAk?si=azyRe0Gz_yOe29nw 104

Summary

Motion Planning with Directional Trajectory Generation Feedback Controller
Constraints forces
desired tracking and
behavior) error contraller torques\ dy;;nnifls of B
(0] ("?\ - () troll - environni:nt

\\D
(@] t3,q3 ?
V 4 motions
2 and
° ® .-G - A

forces
t, 4 tis qus b2

9:51 0 1 0 0 0 X1
Kinodynamic RRT 7 A H = l /A G S]H
Xp —ay —ay —ay’ v —apy —apy *p
4y — 3, X A X
qe(tR
qe(o) n

overdamped ¢ > 1

¢, =9 critically damped ¢ =1

07 S
underdamped ¢ <1

S |

105

	Slide 1: Robot Perception and Learning
	Slide 2: Recap
	Slide 3: How to Control Robots to Follow Plans?
	Slide 4: What are Missing? We Ignore Motion Constraints
	Slide 5: We Ignore How to Traverse the Planned Path
	Slide 6
	Slide 7: We Ignore How to Control to Follow the Trajectory
	Slide 8: What are Missing? We Ignore Motion Constraints
	Slide 9: Control is Hard, as Robots may be Underactuated…
	Slide 10: Control is Hard, as Robots may be Underactuated…
	Slide 11: We Ignore the Dynamics…
	Slide 12: Control Systems that Cancel vs. Involve Dynamic
	Slide 13: Can We Extend the Motion Planning Framework?
	Slide 14: Can We Generate Paths that Respect Directional Constraints?
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Can We Generate Control Trajectories with Motion Planning Methods?
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44: Should We Traverse the Path in Straight Lines?
	Slide 45: Traverse in Smooth Curves
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105

