RODOt

Perception and Learning

Task planning and Motion planning

Tsung-Wei Ke
Fall 2025

Recap: Robotic Kinematics

But We want a Robot that can See and Act

Action Requires Deciding a Goal, Planning to Achieve the
Goal, and Controlling Motion to Follow the Plan

State .| Goal J Motion | 1| Low-level
Estimation | | 1| Prediction Planning Controller
N
Perception Motion Control
\ 4
Sensor Actuator

4

How to Define Goals?

Goal

Language instruction

Stack the blocks on the empty bowl. ®

Object configuration

L/

Robot pose

/

A Robot's E
Re

User

Nnd-Effector Poses are Common
oresentations of Goals

Stack the blocks on the empty bowl. @

Vision

ﬁ:’ g (

Model

Large

Open the top drawer.
Please also watch
out for that vase!

Neural Descriptor Fields: SE(3)-Equivariant Object
Representations for Manipulation. Simeonov et al.

- Language

- Language —>

v

N
.

def affordance_map():
msize = (100,100,100)
map = np.zeros(msize)
A handles = detect("handle')
- k = lambda x: x.pos[2]
handles. sort(key=k)
top_handle = handles[-1]
X,y,z = top_handle.pos
map[x,y,z] = 1
return smooth(map)
def constraint_map():
~ msize = (100,100,100)
i’ map = np.zer‘osEmsize)
vases = detect('vase')
vase = vases[0]
Xyz = vase.occupancy_grid >
map[xyz] = -1

Pl
View #1

Affordance Maps

Ad1104 1000y

A : -

.

Model return smooth(map) H
5 R View #1 View#2 Depth Languzge Denoising
(a) 3D Value Map Composition Constraint Maps ——
“Sweep the
VoxPoser: Composable 3D Value Maps for Robotic dust into a
Manipulation with Language Models. Huang et al dustpan

3D Diffuser Actor: Policy Diffusion with 3D Scene
Representations. Ke et al.

Motion Planning

_| Motion | /7 o
Planning £~/
NI
Task: Find a feasible (and optimal) path/motion from the current
configuration/pose of the robot to the goal configuration/pose
Feasibility: The proposed plan should follow the given constraints
> Environmental constraints (obstacles)
» Efficiency constraints (dynamics/kinematics)

Completeness: Report whether or not a feasible path exist in finite time

Optimality: Return the best solution in finite time that minimizes the
cost: time, energy, risk ...

Motion Planning: Piano Mover's Problem

Toy Example: 2D Path Planning with Point Robot

The robot is a point, that can only translate in 2D without rotation.
How can it reach for the red location from the green location?

start
&
goal
@
obstacle

10

Solution 1: Roadmap Planner Algorithm

« Discretize the 2D space into grids.

« Robot can only travel to neighboring grids
» cost=1 to horizontal/vertical neighbors
> cost=v2 to diagonal neighbors
» Cost=oo0 to neighbors including obstacles

11

%
N
L]

Solution 1: Roadmap Planner Algorithm

« Discretize the 2D space into grids.
« Robot can only travel to neighboring grids
» cost=1 to horizontal/vertical neighbors

> cost=v2 to diagonal neighbors

» Cost=co to neighbors including obstacles
« Search the best path (e.g. Dijkstra's algorithm)

12

Roadmap Planner Algorithm Has Resolution Problems

Coarse-resolution grids:
« Computationally efficient
« May not be optimal

13

Roadmap Planner Algorithm Has Resolution Problems

Coarse-resolution grids: Fine-resolution grids:
« Computationally efficient « Computationally inefficient
- May not be optimal « More likely to be optimal

illll
x4 NEiEEE

R cam |
gfsaia

14

Solution 2: Visibility Graph Algorithm

We don't need grids, but vertices of the start location, goal location and obstacle corners

Let V be the union of the start, the goal and all obstacle vertices.
E<{}
for all pairs of distinct vertices u, v eV
if uv is an obstacle edge
Add (u,v) tO E
else if uv is collision free
Add (u,v) to E
Search &=(V,£), with Cartesian distance as the edge cost, to connect the start and goal
return the path if one is found.

N BN JUN YRS

15

Solution 3: Cell Decomposition Algorithm

Connect neighboring free-space cells

Segment the free space into cells by vertices Search a path that traverses from the start cell
to the goal cell

Image Credit S. M. LaValle 16

A General Framework for Motion/Path Planning

Create a graph

Search the graph

Density the graph

-
'f

17

But Planning is Hard...

 Previously, we only consider 2D point robots. What if the robot shape is

triangle that can both translate and rotate in 2D?
« What if the robot is a car which cannot make pure left/right movement?

« What if the robot is a 2-joint planar arm?

.

Triangle Racecar 2-joint planar arm

18

But Planning is Hard...

 Previously, we only consider 2D point robots. What if the robot shape is

triangle that can both translate and rotate in 2D?
« What if the robot is a car which cannot make pure left/right movement?

« What if the robot is a 2-joint planar arm?

19

But Planning is Hard...

« Previously, we only consider 2D point robots. What if the robot shape is
triangle that can both translate and rotate in 2D?

« What if the robot is a car which cannot make pure left/right movement?

« What if the robot is a 2-joint planar arm?

« What if the robot is a 7-joint planar arm?

« What if the robot works in 3D?

What is the unified planning formulation for robots with different mechanisms?

%o

Triangle Racecar 2-joint planar arm Manipulator

20

The Configuration Space

The configuration of of a robot is a complete specification of the position of every
point of the robot
Configuration space (C-space) is the n-dimensional space containing all possible

configurations of the robot. In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

]RZ

~Translating Triangle

21

The Configuration Space

The configuration of of a robot is a complete specification of the position of every
point of the robot
Configuration space (C-space) is the n-dimensional space containing all possible

configurations of the robot. In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

IRZ T C-space

~Translating Triangle

22

The Configuration Space

The configuration of of a robot is a complete specification of the position of every
point of the robot
Configuration space (C-space) is the n-dimensional space containing all possible

configurations of the robot. In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

The configuration that
the robot can reach

A
RZ T C-space workspace

~Translating Triangle

23

The Configuration Space

The configuration of of a robot is a complete specification of the position of every
point of the robot
Configuration space (C-space) is the n-dimensional space containing all possible

configurations of the robot. In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

The configuration that
the robot can reach

A
RZ T C-space workspace

~Translating Triangle

24

The Configuration Space

The configuration of of a robot is a complete specification of the position of every
point of the robot

Configuration space (C-space) is the n-dimensional space containing all possible
configurations of the robot. In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

R?% xSt

N
Triangle

25

The Configuration Space

The configuration of of a robot is a complete specification of the position of every
point of the robot

Configuration space (C-space) is the n-dimensional space containing all possible
configurations of the robot. In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

| 5 C-space

IRZXSl l

N
Triangle

26

The Configuration Space

The configuration of of a robot is a complete specification of the position of every
point of the robot

Configuration space (C-space) is the n-dimensional space containing all possible
configurations of the robot. In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

| >
IRZXSl l

C-space workspace

/

y

b
'
/
X
Triangle / >
6

27

e
)
W
/

The Configuration Space

The configuration of of a robot is a complete specification of the position of every
point of the robot

Configuration space (C-space) is the n-dimensional space containing all possible
configurations of the robot. In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

| >
IRZXSl l

C-space workspace

f

/

. {
X

/

. 5y
[
X
Triangle /
0

28

The Configuration Space

The configuration of of a robot is a complete specification of the position of every
point of the robot

Configuration space (C-space) is the n-dimensional space containing all possible
configurations of the robot. In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

| ” C-space workspace
R? X S* | ey
=)

NS

X
Triangle / /}

29 0

The Configuration Space

The configuration of of a robot is a complete specification of the position of every
point of the robot

Configuration space (C-space) is the n-dimensional space containing all possible
configurations of the robot. In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

| > We can represent it with coordinates x, y
1
RZ x S1 R*XS)

We can represent it with angle 6

N
Triangle

Racecar

30

The Configuration Space

The configuration of of a robot is a complete specification of the position of every
point of the robot

Configuration space (C-space) is the n-dimensional space containing all possible
configurations of the robot. In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

We can represent it with angle 84, 6

T

RZ x St R?Z x St

NS

Triangle Racecar 2-joint planar arm

31

The Configuration Space

The configuration of of a robot is a complete specification of the position of every
point of the robot

Configuration space (C-space) is the n-dimensional space containing all possible
configurations of the robot. In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

We can represent it with angle 64, 8,, ...6,, <—

RZxS1 Rz xSt

— St x - X §

n joints

NS

Triangle Racecar 2-joint planar arm Manipulator

32

How to Specify Obstacles in the Configuration Space?

Robot operates in a 2D / 3D workspace V) = Rz or R?)

Subset of this space is obstacles OcCw

semi-algebraic models (polygons, polyhedra)

Geometric shape of the robot A () cW
(set of points occupied by robot at a config) q

Cobs ={q € C | A(q) N O # 0}
Cffree =C \ Cobs

33

C-space obstacle region

Example: Rotational Motion
I oo

Obstacle O qQ:A(@Q) N0+ @

Cobstacle

34

Example: Rotational Motion

Robot
Obstacle 0

35

What would the configuration space of a
rectangular robot (red) in this world look like?

(The obstacle is blue.) configuration space

180°

90°

> X
00
X

16-735, Howie Choset with slides from G.D. Hager and Z. Dodds this is twisted...

36

Example: 2-Link Planar Arm

360

270 +

[]
® -

Image credit T. Bhattacharya 37

Motion Planning is Hard....

Geometric Path Planning Problem

Also known as
Piano Mover’s Problem (Reif 79)

Given:
1. A workspace W, where either W = R? or W = R3.
2. An obstacle region O C W.

3. A robot defined in W. Either a rigid body A or a
collection of m links: Ay, As, ..., An.

4. The configuration space C (Cops and Cfree are then
defined).

5. An nitial configuration qr € Cyree.

6. A goal configuration qg € Cfree- The initial and
goal configuration are often called a query (qr,9¢).

Compute a (continuous) path, 7 : [0,1] — Cppee, such
that 7(0) = gy and 7(1) = q¢-

Also may want to minimize cost

c(7)

39

Geometric Path Planning Problem

We can apply previous techniques (e.g. grid-search,

visibility graph, cell decomposition) here!

Image credit S. LaValle

40

Also known as
Piano Mover’s Problem (Reif 79)

Given:
1. A workspace W, where either W = R? or W = R3.
2. An obstacle region O C W.

3. A robot defined in W. Either a rigid body A or a
collection of m links: A, As,..., Apn.

4. The configuration space C (Cyps and Cyre. are then
defined).

5. An initial configuration qr € Cfree.

6. A goal configuration g € Cfree. The initial and
goal configuration are often called a query (qr,qq)-

Compute a (continuous) path, 7 : [0,1] — Cpree, such
that 7(0) = qr and 7(1) = q¢.

Also may want to minimize cost

e(7)

Motion Planning is Hard....

10 vertices per dim

Dimension d # vertices
2 wo e N-joint robot has n-dim C-space
: " e Assume we have M vertices per dim. The n-dim C-
6 1,000,000 h Mn rt| C e S
8 100,000,000 S pa Ce aS ve et
10 10,000,000,000 e In h|gh dimensions:
16 1,000,000,000,000,000 » Computing the C-space obstacle is hard

20 100,000,000,000,000,000,000

» Planning is hard

41

Motion Planning is Hard....

10 vertices per dim

Dimension d # vertices

2 100
3 1,000
6 1,000,000
8 100,000,000
10 10,000,000,000

15 1,000,000,000,000,000

20 100,000,000,000,000,000,000

n-joint robot has n-dim C-space
Assume we have M vertices per dim. The n-dim C-
space has M™ vertices...
In high dimensions:
» Computing the C-space obstacle is hard
Solution: Don't compute C, s explicitly, instead we
query a collision detector
» Planning is hard
Solution: Don't search a path from all vertices, but
sampled vertices

|[dea: Don't compute until being queried!

42

Implicit C-Obstacle Representations

« Feasibility query:

, 1, If qisinthe free space
Feasible(q) = {0, Lf qisinthe obstacle space

43

Implicit C-Obstacle Representations

« Feasibility query:

, 1, If qisinthe free space
Feasible(q) = {0, Lf qisinthe obstacle space

Visibility query:

.. i1, If q1q, is completly inthe free space
Visible(qs,q2) = { 0, 1fq,q, intersects the obstacle space

71921
o ——H—+—+—F—F+—F—1+—@

Chunk segmentq;q; into parts, check feasibility of each part

44

Probabilistic Roadmaps (PRM)

We don't’ have an explicit feasibility
map. Just for reference...

RPM Algorithm:

Probabilistic Roadmaps (PRM)

®o ° e o, 4
° 0 ol = o .o
(]
o ©°% o o o o RPM Algorithm:
) °. ° > 1. Sample random N configurations from
© o O © e° the C-space and query their feasibilities
© o o ©° o g

Feasible(q)

46

We don't’ have an explicit feasibility

map. Just for reference...

)
% ° o . ° 0
° o
0.0 o| og
° . =
o o o
o o ° o
°
°® o° o

Probabilistic Roadmaps (PRM)

RPM Algorithm:

47

1.

2.

Sample random N configurations from
the C-space and query their feasibilities
Add milestones (all feasible, the start
and the goal configurations).

Probabilistic Roadmaps (PRM)

We don't’ have an explicit feasibility
map. Just for reference...

0. o ®eo o o o 04
° 0 o o o .o- °© %o o
° o o) o e .
o © ° Yo o °o o ° o o ©| REM Algorithm:
D ‘o’ Y A e 1. Sample random N configurations from
© o ©O © e° © o © the C-space and query their feasibilities
© o o 0% ° 4 2. Add milestones (all feasible, the start
and the goal configurations).
o o, 3. Connect pairs of neighboring
? °oo °o | milestones if they are visible
()
o \ /-0 o Oo o o
o 4 ©

Visible(q, p)

48

Probabilistic Roadmaps (PRM)

We don't’ have an explicit feasibility
map. Just for reference...

®e ° ®e o, P ° °o
° 0 S\® J ° .o- ° °o° o.g
o % o o o °o o ° o o ©| REM Algorithm:
D ‘o’ Y A e 1. Sample random N configurations from
© o ©O © e° © o © the C-space and query their feasibilities
© o o 0% ° 4 2. Add milestones (all feasible, the start
and the goal configurations).
o o, 3. Connect pairs of neighboring
? %o o milestones if they are visible
o OMeo o’ 4 y 4 y o| 4 Searchforapathfrom the startto the
Z SRR goal
o 4 ©

49

Probabilistic Roadmaps (PRM)

Algorithm Basic-PRM(s,g,N)

1.V « {s,g}.

2. F « {}.

3.fori=1,..., Ndo

4. q « Sample()

5. if not Feasible(q) then return to Line 3.

6. AddgtoV (add g as a new milestone)

7. forall p € near(q,V)

8 if Visible(p, g) then

Q. Add (p, q) to E.
10. Search G = (V, E), with Cartesian distance as the edge cost, to connect s and g.
11. return the path if one is found.

50

s Unitormly Randomly Sampling Good Enough?

The narrow passage: We need more samples here

isolated clumps

51

s Unitormly Randomly Sampling Good Enough?

The narrow passage: We need more samples here

isolated clumps

Solutions:

1. Sample near obstacle surface

2. Add samples that are in between two
obstacles

3. Train a learner to detect the narrow passages

52

We don't’ have an explicit feasibility
map. Just for reference...

Quick summary of PRM

o ‘. ° 5 o ° 5
o
o o o o ol ° o
.O o X
o (o] o
o O o °0_0O5 o o o
o) (<)
o © o° o

Q
(o] oo
? %o o
o]
‘\/o Y g g
(o] 7=
_ o O (o] o
(o]

53

PRM randomly samples configurations to
build a roadmap, hoping to cover the free
space

PRM is great when we want to reuse the
graph. For example, plan many times
with different start/goal pairs

What if we just need to plan once? For
example, a robot only needs to pick up
the object once

Rapidly Exploring Random Trees (RRTs)

" C‘w& é%{\/

Grow a tree of feasible paths from the to the goal
configuration, instead of building a graph.

54

Rapidly Exploring Random Trees (RRTs)

BUILD _RRT(gins:)
1 7 .init(ginit);

2 fork=1to K do : : : "
3 drana | RANDOM_CONFIG(); _ Sample random configuration with probability
4

9

EXTEND(7, ¢rana): . p, and the goal with probability 1 — p
Return 7

55

Rapidly Exploring Random Trees (RRTs)

BUILD_RRT(g;nit)

1 7 .init(ginat); How to expand the tree? Expand from the
2 fork=1to K do node that is the closest to the configured g
3 Grand — RANDOM_CONFIG();

4 EXTEND(T, grand):

5 Return T

EXTEND(7,q)

1l Gnear — NEAREST NEIGHBOR(q, 7T);

2 if NEW_CONFIG(q, gnear; @new) then . \

3 T .add_vertex(gnew); \

1 7T .add_edge(gnear, Inew); Anear
3 if ¢,0.y = q then o

6 Return Reached,; Qinit

7 else

8 Return Advanced,

9 Return Trapped;

56

Rapidly Exploring Random Trees (RRTs)

BUILD_RRT(g;nit)
1 T.init(qi;m-f);

2 fork=1to K do

3 drana RANDOM_CONFIG(): Move by at most e from

4 EXTEND(T: QT‘and)§ Qnear to CI

5 Return T
I| € | q
'IH'I/ new

EXTEND(T,q) F.I _

1 ¢near — NEAREST _NEIGHBOR(q,7); SRRRETTTURY

2 if NEW_CONFIG(q, gnear, new then . ’/,/ \

3 T .add_vertex(gnew); :

1 7T .add_edge(gnear, Inew); Anear

5 if ¢,0.y = q then o

6 Return Reached,; Qinit

T else

8 Return Advanced,

9 Return Trapped;

57

Expansion Strategy

BUILD _RRT(g;nst)

1
2
3
4
5

T.iﬂit(qinﬁ) ;
for k =1 to K do

- Sample random configuration with probability

Granda —|RANDOM_CONFIG();
EXTEND(7, grand);
Return 7

Randomly uniformly sampling

i p, and the goal with probability 1 — p

Biased sampling toward

unexplored regions

58

Voronol Diagram

Voronoi Bias Strategy

s 4

g\

"

Wk .

: ARl N

;
- ALt i
e -‘.’r'-‘ A

T L
g, o
-t S
e Rk T .‘,

.

LT S A ..-,=..I.
(), Thr
vz

RRT-Connect: An Efficient Approach to Single-Query Path
Planning. J. Kuffner and S. LaValle.

60

Sample random configuration with

probability p, which is proportional to

the volume of its Voronoi cell.

« Bias sampling toward unexplored
areas.

Voronoi diagram: nearest-
neighbor segmentation

RRT-Connect: Bi-direction RRTs

CONNECT(T, q) :
1 repeat
2 S «— EXTEND(7,q); >
3 until not (S = Advanced) 9o
4 Return S;

RRT_CONNECT_PLANNER(qinit; 9goat)
1 ’It'z-init((i’in’it); %*init(qlqoai);
2 fork=1to K do
Grand — RANDOM_CONFIG();
if not (EXTEND(7,, ¢rand) =Trapped) then

if (CONNECT(7y, gnew) =Reached) then Grow two trees, one from the start

3

4

5

6 Return PATH(7,,7;); and another from the goal
7 SWAP(7,,Ts); :

8

Return Failure

Greedily move from gneqr 10 Qrana

61

Single Tree vs. Double Trees

= Volume swept out by unidirectional RRT: = Volume swept out by bi-directional RRT:

/// \\ — P——
s - h o i
/ X e ™ e ~
j}: \ Ve \
/ N\ ;'/ \\ ,/

A
\

':I ﬁflll I'|
|

| I\.. X 5 ® .'I'." . JIII

\ Xs® P Xg \ \\ <

~_ 7 new

(Xnew)

—
X
Xrand “near

near X
goa

X

init
= Difference more and more pronounced as dimensionality increases

62

RRT Still Has Problems...

The “bugtrap” problem: due to the Voronoi bias, RRT frequently attempts infeasible
extensions

To escape the mouth of a bugtrap, we need to sample a very carefully chosen
sequence of milstones within the general area that it has already explored
A tradeoff between exploring new regions and refine the roadmap of explored areas

63

RRT Still Has Problems...

= RRT guarantees probabilistic completeness but not optimality
(shortest path)

= In practice leads to paths that are very roundabout and non-direct ->
not shortest paths

=25 -5) 5 10

64

RRT*: RRT + Re-Wiring

Better
path

(a) ' (b) ' (c)

« Canwe find more optimal path passing through g, ew ?
« Canwe find more optimal path to gew ?

65

RRT*: RRT + Re-Wiring

Algorithm RRT*

1.T « {s}..
2.fori=1,..., N do
3. Qrand < SﬂmPJEU
ge. <—Extend-Tree(T', grand, 0)
if g. # nil then Rewire(T, g., |T'|)
if d(g., g) < 6 and Visible(g., g)then
Addedgeg, — gto T
c(g) = cost of optimal path from s to g, if g is connected, and co otherwise

4
5
6.
7.
8
9. return "no path”

66

RRT*: RRT + Re-Wiring

Algorithm Rewire(T', e, 1)

1. Neighbors < Set of k* (n)-nearest neighbors in T', or points in R* (n)-neighborhood.
2. for g €Neighbors sorted by increasing c(q) do
3. ifc(guew) + d(Guew,q) < c(q) then (optimal path to g passes through g,,.,,,)
c(q) < c(gnew) + d(Gnew q)
Update costs of descendants of g.
if c(q) + d(q, gnew) < ¢(qnew) then (optimal path to g,.,, passes through g)
c(Gnew) < c(q) + d(q, Gnew)
Set parent of guew 10 g.
Revise costs and parents of descendants of ¢y, .

© o N A

67

RRT vs. RRT*

R

Gy

-
A

N

R

-1

Sampling-based Algorithms for Optimal Motion Planning. S.

Karaman and E. Frazzoli.

68

RRT vs. RRT*

) T g iy e Tia S S A

EATN TN

3 -;\;\\\ i
o) ". |

ik

ﬁ'.,'; g
Nl

e

|

| I

\
AN 5

S ———

ﬁ% 7Y, VI AT e
_"-. e A - . e A‘& [o 10 = e 4. \ d
0 2 4 6 8 10 -10 -8 -6 -4 -2 0 2 4 6 8 10

i L ep GGyl e L J
-2

3 O - ';\7 —
\ y o S
DA NS

Sampling-based Algorithms for Optimal Motion Planning. S.
Karaman and E. Frazzoli. 69

RRT*

Image credit T. Chinenov 70

Virtual Potential Fielas

« From physics we know that a potential field P(q) defined over € induces a force
F = —g—’; that drives an object from high to low potential.

* Inrobotics, we can define a potential field and derive the corresponding force, with
which we drive the configuration g from high to low potential.

« The potential field of reaching a goal:

1 oP oal
7Dgt:)a.l(q) — i(q — ngal)TK(q — ngal)a Fgoal(Q) - = 8gq - K(ngal — Q):
« The potential field induced by a C-obstacle g
i oPs k ad

Pel) = 2 B) F5l0) = =5, = B(4,B) 0¢

71

Pushing configuration
to regions with low

potential

72

Non-Linear Optimization

We can consider path planning as an optimization problem

find u(t),q(t), T
minimizing J(u(t),¢(t),T)
subject to z(t) = f(a(t),u(t)),
u(t) e U,
q(t) € Ciree;
£(0) = Tstart,

.CE(T) = :Egoa,l-

We can parametrize control u(t) and path q(t) with the coefficients of (1) a

Vt €
Vt €
Vt €

0,7
0,T
0,T

(10.6)
(10.7)
(10.8)
(10.9)

(10.10)

(10.11)

(10.12)

polynomial, (2) a truncated Fourier series, (3) spline, (4) wavelet, or (5)piecewise
constant acceleration segments in time.

73

P
u,,(t) = Z a,jtj.
7=0

For more on Motion Planning, check
"Planning Algorithms” by Steven M. LaValle

Action Requires Deciding a Goal, Planning to Achieve the
Goal, and Controlling Motion to Follow the Plan

Trajectory
Generation
State || Goal | Motion Low-level
Estimation | | | Prediction | | Planning Controller
N
Perception Motion Control
Sensor Actuator
A /

3/

75

Decision Making is in fact Hierarchical

/A

Final goal

goal 1

goal 2

T~

Subgoal 1.a ==~
i
1
1
1

State Goal Motion Low-level State
Estimation Prediction Planning Controller Estimation
N N

\ 4
Sensor Actuator Sensor

&@/

Oversimplified!

Subgoal T.n ==

Motion Low-level
Planning Controller
N
1
\ 4
Actuator

\3 I

76

Decision Making is in fact Hierarchical

/A

State Goal Motion Low-level State
Estimation Prediction Planning Controller Estimation
N N

\ 4
Sensor Actuator Sensor

&@/

Oversimplified!

Find egg

Final goal

goal 1

Cook Egg

goal 2

T~

Subgoal 1.a ==~

1
Goto fridge E
1
1

at X

Motion Low-level
subgoal 1.n == Planning Controller
Grasp egg =
_______ fromY o
\ 4
Actuator

\@/

77

Decision Making Should be Adaptive w.r.t the Kinematic
and Geometric Feasibility

Acting
x4

https://youtu.be/tNHjpXP8RFo?si=Sokgfvgef0T18Tuy /8

Decision Making Should be Adaptive w.r.t the Kinematic
and Geometric Feasibility

Box Re-Orientation: Place on Side 1

Both arms have to work
together to solve the task

Handover solution found

https://youtu.be/VndjjtzI7ho?si=Uqc5rLSI2ZrPLbMle 79

We Need to Decide What are the Tasks, the Order of the Tasks,
the Goal per Task, the Motion/Path to Achieve the Goal

Task: Put the mustard in the blue region

SubTask1: Grasp the mustard
« Subgoal configuration of the gripper pose
» Motion planning for the trajectory
SubTask2: Lift up the mustard
« Subgoal configuration of the gripper pose
» Motion planning for the trajectory
SubTask3: Carry the mustard above the blue region
« Subgoal configuration of the gripper pose
» Motion planning for the trajectory
SubTask4: Put down the mustard
« Subgoal configuration of the gripper pose
» Motion planning for the trajectory

80

We Need to Decide What are the Tasks, the Order of the Tasks,
the Goal per Task, the Motion/Path to Achieve the Goal

Task: Put the mustard in the blue region

The plan is not feasible, since the robot can't
reach the occluded mustard

SubTask1: Grasp the mustard
« Subgoal configuration of the gripper pose
» Motion planning for the trajectory

SubTask2: Lift up the mustard
« Subgoal configuration of the gripper pose
» Motion planning for the trajectory
SubTask3: Carry the mustard above the blue region
« Subgoal configuration of the gripper pose
» Motion planning for the trajectory
SubTask4: Put down the mustard
« Subgoal configuration of the gripper pose
» Motion planning for the trajectory

81

We Need to Replan Based on Kinematic and
Geometric Feasibility

Task: Put the mustard in the blue region

SubTask 1: Grasp the Cheezit

SubTask N: Grasp the mustard
« Subgoal configuration of the gripper pose
» Motion planning for the trajectory
SubTask N+1: Lift up the mustard
« Subgoal configuration of the gripper pose
» Motion planning for the trajectory
SubTask N+2: Carry the mustard above the blue region
« Subgoal configuration of the gripper pose
» Motion planning for the trajectory
SubTask N+3: Put down the mustard
« Subgoal configuration of the gripper pose
» Motion planning for the trajectory

82

Classical Task Planning: Decide Which Tasks
and the Ordering of the Tasks

SubTask 1: Grasp the Cheezit

Task: Put the mustard in the blue region

SubTask N: Grasp the mustard
« Precondition
« Effect
SubTask N+1: Lift up the mustard
« Precondition
« Effect
SubTask N+2: Carry the mustard above the blue regior
« Precondition
« Effect
SubTask N+3: Put down the mustard
« Precondition
« Effect « leads to the final goal (mustard in the
blue region)

83

State Representations of Objects

- :

C B
C

Initial State Goal State

B

« Theworld is abstracted into a discrete space with many variables (e.g. A, B, C, D, E)

84

State Representations of Objects

- :

C B
C

Initial State Goal State

B

« Theworld is abstracted into a discrete space with many variables (e.g. A, B, C, D, E)

« State representations of objects:
» Predicate: Boolean function (On ?bl ?b2)=True/False
» Facts (literals): instantiated predicates (On D C)
» States: set of facts {=(On A B), (On D C), ..}

85

Actions Lead to Transitions between States

L

(:action stack
:parameters (?bl ?b2)

(and
(Holding ?bl) (Clear ?b2))
(and
(ArmEmpty)

(On ?bl ?b2) (Clear ?bl)
(not (Holding 7?bl))

(not (Clear ?b2))))

86

C

Action:

» Preconditions test feasibility of the
action

» FEffects describe changes to a set of
states

> Parameters show the set of states
involved in the action

'ask Planning: Search a sequence of actions
that convert the initial states to the goal states

(On D Q)
Stack (E 2)F°| (on E A)

(On D Q)
(On A B)

Stack (A B)

rLj Unstack (D C) : Stack (D B)~\\\>

(On D B)

87

Forward Best-First Search

For a state s
Path cost: g(s)

Heuristic estimate: 1, ()« How close to the goal
Open list sorted by priority f(s)

Weighted A*: f(s) = g(s) + wh(s)
Uniform cost search: w=0= f(s)=g
A* search: w=1= f(s)=g
Greedy best-first search: w =00 = f(s) = h(s)
How do we estimate h(sR
No obvious metric (no metric-space embedding)

88

fla)=1.5 + 4
fid)=2 + 4.5

Classical Task Planning
— :

C B
C

Initial State Goal State

B

« |nitial states: (On D C)
« (Goalstates: { (On E C), (On C A), (On B D)}
« Actions:
1. Unstack (D, C)
. Stack (D, B)
. Stack(C, A)
. Stack(E, C)
. Unstack (D, B)
. Stack (B, D)

oY U x W N

89

However, Discretized States and Actions Oversimplify the
World and Robot-Object Interaction

Continuous object

Abstract states . .
configurations

B| | C (On D B) (on D B, p,=0.0, p,=1.0)

B CL (On D B) (On D B, p,=0.2, p,=1.0)

90

However, Discretized States and Actions Oversimplify the
World and Robot-Object Interaction

————————

Continuous object

Abstract action | _
configurations

Unstack (D B)
pgripper:<o .0, 1.0, 0°>
trajectory=t

Unstack (D B)

Unstack (D B)
pgripper:<o .2, 1.0, 30°>
trajectory=t

Unstack (D B)

91

Parameterize States with Continuous Variables

(:derived (On ?bl ?b2)
(exists (?pl) (?p2) (and (Above ?p2 ?pl)
(AtPose ?bl 7?pl)
(AtPose ?b2 ?p2))))

Parameters:

?b: block
?p: 6DOF object pose

Static Predicates:

AtPose: isblock ?b at pose ?p
Above: iSpOSe ?pl above pose ?p2

92

Parameterize States with Continuous Variables

(:action pick

:parameters (?b ?p ?g ?Qq)
:precondition (and (Kin ?b ?p ?2g ?2Q)
(AtPose ?b ?p)
(Empty)
(AtConf ?q))

:effect (and (Holding ?b ?qg)
(not (AtPose ?b ?p)

(not (Empty))))

Parameters: Static Predicates:

?b: block

Kin: Are agrasp ?g and robot configuration 2q valid

?p: 6DOF object pose
?g: 6DOoF robot's end-effector pose
?g: Robot's configuration

when block ?b is at pose ?p

AtPose: isblock ?b at pose ?p

Empty: isthe robot's end-effector is empty
Holding: is block ?b hold by a grasp ?g
AtConf: isthe robot at configuration 2g

93

Task and Motion Planning: Plan a sequence of
Actions and their Continuous Parameters

Static initial facts - value is constant over time
Task: Put block A in the red region

o |

Robot Vacuum Gripper . . Fluent initial facts - value changes over time
- (AtConf, [-7.5 5.]), (HandEmpty),
N — (AtPose, A, [0. 0.]), (AtPose, B, [7.5 0.])

Placement Regions

(Block, A), (Block, B), (Region, red), (Region, grey),

Goal formula: (exists (?p) (and (Contained A ?p red)
(AtPose A ?p)))

94

Task and Motion Planning: Plan a sequence of
Actions and their Continuous Parameters

We need to decide the discrete action class and its
|
(AtConf, [0. 2.5])

Task: Put block A in the red region (AtPose, A, [0. 0.])
(AtPose, B, [7.5 0.])
move][-7.5 5.], 7, [0. 2.5]) (HandEmpty) fpick, A}[[0. 0], [0. -2.5], [0. 2.5])
QI Movable Blocks / \
Initial (AtConf, [-7.5 5.]) (AtConf, [0. 2.5])
I (AtPose, A, [0. 0.]) (AtGrasp, A, [0. -2.5]) ===l 0 @ @
Robot Vacuum Gripper n State (AtPose, B, [7.5 0.]) (AtPose, B, [7.5 0.])
FeneEmen)
Y [-5. 5.], T3, [0. 2.5])
Placement Regions movej|[-7.5 5.], 12, [-5. 5.]] (AtConf, [-5. 5.])

(AtPose, A, [0. 0.])
(AtPose, B, [7.5 0.]) ——————————- ® © ©

(HandEmpty)

95

No a Priori Discretization

Values given at start:
1 initial configuration: (Conf, [-7.5 5.])
2 initial poses: (Pose, A, [0. 0.]), (Pose, B, [7.5 0.])
2 grasps: (Grasp, A, [0. -2.5]), (Grasp, B, [0. -2.5])
Planner needs to find:
Action classes: pick, move, place ...
1 pose within a region: (contain A ?p red)
1 collision-free pose: (crree A 2p ? B 2p2)
4 grasping configurations: (kin ?b ?p 2g 2q)
4 robot trajectories: (Motion ?ql 2t ?q2)

96

Decoupled vs Integrated TAMP

Decoupled: discrete (task) planning then continuous
(motion) planning

Requires a strong downward refinement assumption

Every correct discrete plan can be refined into a
correct continuous plan (from hierarchal planning)

Integrated: simultaneous discrete & continuous planning

[Discrete Planning] /\
v

J [Discrete Planning] [Continuous Planning

~_

Decoupled o Integrated

[Continuous Planning

Obtain Continuous Action Parameters by Sampling

Slide credit C. R. Garrett

= Qutputs of one conditional
sampler are the inputs to
another

= Directed acyclic graph (DAG)

of conditional samplers

Pose

Trajectory 71, 72, ...

Config g2

98

What Samplers Do We Need?

]
= Low-dimensional placement stability constraint (Contain)
= i.e. 1D manifold embedded in 2D pose space
= Directly sample values that satisfy the constraint
» May need arbitrarily many samples
= Gradually enumerate an infinite sequence

I
. .

99

Intersection of Constraints

= Kinematic constraint (Kin) involves poses, grasps,
and configurations

« Conditional samplers - samplers with inputs

Pose p

*—» Config g1, g2, ...
Grasp g

Slide credit C. R. Garrett 100

Stream: a function to a generator

Advantages def stream(x1l, x2, x3):
i=0
Programmatic implementation while True:
yl = ix(x1 + x2)

Compositional y2 = i*(x2 + x3)
. . [] ie.Ld (1, 2)
Supports infinite sequences Tem "

Stream - function from an input object tuple (x1, x2, x3)
to a (potentially infinite) sequence of output object

tuples [(y1, y2), (Y1, Y'2), ...]

ﬁ [Kaelbling 201 1][Srivastava 2014]

Input x1 [Garrett 2018a][Garrett 2018b]

Input x2 Outputs [(y1, y2), (Y1, ¥'2), --.]

Input x3

101

Sampling Contained Poses
| 72

(:stream sample-region
:inputs (?b ?r)
:domain (and (Block ?b) (Region ?r))
:outputs (?p)
:certified (and (Pose ?b ?p) (Contain ?b ?p ?r)))

def sample_region(b, r):

x_min, x_max = REGIONSI|r]

w = BLOCKS[b].width

while True:
X = random.uniform(x_min + w/2,

X_max — w/2)

p = np.array([x, 0.])
YiE].d (p;)

Block b
L
Regionr

102

Sampling IK Solutions

= Inverse kinematics (IK) to produce robot grasping
configuration

= Trivial in 2D, non-trial in general (e.g. 7 DOF arm)

(:stream sample-ik
:inputs (?b ?p ?9)
:domain (and (Pose ?b ?p) (Grasp ?b ?9g))
:outputs (?2q)
:certified (and (Conf ?qg) (Kin ?b ?p 29 ?q)))

Block b
~-

Pose p :m Conf [(d'), (9")]

Grasp g

Slide credit C. R. Garrett 103

Calling a Motion Planner

B
= “Sample” (e.g. via a PRM) multi-waypoint trajectories

 Include joint limits & fixed obstacle collisions, but not

movable object collisions
(:stream sample-motion
:inputs (?gl ?g2)
:domain (and (Conf ?gl) (Conf ?2g2))
:outputs (?t)
:certified (and (Traj ?t) (Motion ?gl ?t ?2g2)))

sample-motion Trajectory [(t)]

Slide credit C. R. Garrett 104

STRIPStream = STRIPS + Streams

|77
» Domain dynamics (domain.pddl): declares actions
= Stream properties (stream.pddl)
= Declares stream inputs, outputs, and certified facts
= Problem and stream implementation (problem.py)
= |nitial state, Python constants, & goal formula
= Stream implementation using Python generators

Domain
Plan
. STRIPStream
User provides
Planner)
Supporting
Init & Goal Facts

[Garrett 2018b] STRIP: a formal language for
Slide credit C. R Garrett 105 expressing planning problems

Obtain Continuous Action Parameters by Sampling

Oft-the-shelf Al planner
(e.g. FastDownward)

=
[Discre're Planning] N\
v

J [Discrete Planning] [Conﬁnuous Planning

~

Decoupled Integrated

[Conﬁnuous Planning

106

Incremental Algorithm

I
= Incrementally construct all possible initial facts

= Periodically check if a solution exists
= Repeat:

1. Compose and evaluate a finite number of streams
to unveil more facts in the initial state

2. Search the current PDDL problem for plan
3. Terminate when a plan is found

FastDownward No plan = Sample
Start =&
Search Streams

Plan found N fact [Garrett 2018al]
Donel ew racts [Garrett 2018b]

107

Incremental: Sampling lteration 1

[81
lteration 1 - 14 stream evaluations

= Sampled:
= 2 new robot configurations: v

= 4 new block poses: A ‘

= 2 new trajectories: =)

Slide credit C. R. Garrett 108

Incremental: Search lteration 1

(e2 |
= Pass current discretization to FastDownward
= If infeasible, the current set of samples is insufficient

FastDownward

Slide credit C. R. Garrett 109

Incremental: Sampling lteration 2

lteration 2 - 54 stream evaluations

Sampled:
4 new robot configurations: v

4 new block poses: ‘ A

10 new trajectories: =———p

er Sy
AL NE A LK

110

Slide credit C. R. Garrett

Incremental: Search lteration 2

(ea |
= Pass current discretization to FastDownward
= If infeasible, the current set of samples is insufficient

FastDownward
Still infeasible!

111

Incremental Example: lterations 3-4

lteration 3 - 118 stream evaluations
lteration 4 - 182 stream evaluations

Solution:
1) move [-7.5 5.][[-7.5 5.),[-7.5 5.],[7.55.],[7.5 2.5]] [7.5 2.5]

2) pick B[7.5 0.][0. -2.5] [7.5 2.5]

3) move [7.5 2.5] [[7.5 2.5],[7.5 5.],[10.97 5. 1,[10.97 2.5]][10.97 2.5]
4) place B[10.97 0.][0.-2.5][10.97 2.5]

5) move [10.97 2.5][[10.97 2.5],[10.97 5.],[0.5.],[0. 2.5]]1 [0. 2.5]

6) pick A [0. 0.] [0. -2.5] [0. 2.5]

7) move [0. 2.5][[0. 2.5],[0.5.],[7.65 5. 1,[7.65 2.51][7.65 2.5]

8) place A [7.65 0.]1[0.-2.5][7.65 2.5]

Drawback - many unnecessary samples produced
Computationally expensive to generate

Induces large discrete-planning problems

112

What are the Assumptions / Limitations?

 Limitations:

» TAMP needs to hand craft samplers for (sub)goal
configurations. How to generalize to novel objects /
scene.

» TAMP needs to pre-define action classes. How to
generalize to unseen tasks?

» TAMP assumes deterministic actions, which produce the
same intended effect all the time

» TAMP assumes perfect perception. Robots know the
perfect object states.

» TAMP has heavy computational overhead.

« What are the modern ways to do TAMP?

113

Automate TAMP with VLM

Task Plan Generation
Sub-task 2: Sub-task 3: Data generation

it the drawer handle Check for success Trajectory

F aen?

“"Open the top drawer”

Pull o

Collected

Successful task trajector i
Verification condition: 'Did the robot Verification condition: "Did the robot B Ry demonstrations
LS gripper pull out the top drawer? open the top drawer?'

-

~ - Sub-task 2

<Pull><drawer handle>

Action Sub-task

: . : Action Sub-task
» Generanon* Verification » Generation* Verification
Module ! "N Module 0%
¢ I— | " Module Module
- o @ \ Temporary Goal State ¢ @ [] @ @
Verification condition: ‘Didtherobor = S e mmemmmm-— Verification condition: Did the robot

gripper grasp the top drawer handle?’ \

gripper pull out the top drower” /

Foundatign § e -y s
Grasp i o f a , i -
Model < &k % ¢

A 2 y

Action
Categorization

Agent-centric

Q =

Verification candition:
d "INd the robar gripper pufl
ant the rop drawer?'

Sub-t.;lsk: Succeed/Failed

114

L LMs that Perceive, Plan Subtasks, Determine the
Motion, Monitor the Progress

Task Plan Generation

Sub-task 1: Sub-task 2: Sub-task 3:
i rawer handl Pull out the drawer handle Check for success

115

L LMs that Perceive, Plan Subtasks, Determine the
Motion, Monitor the Progress

Task Plan Generation

Sub-task 1: Sub-task 2: Sub-task 3:
| wer hanai Pull out the drawer handle

"Open the top drawer"

Collected
demonstrations

L LMs that Perceive, Plan Subtasks, Determine the
Motion, Monitor the Progress

Action Generation Module

Foundation Task-specific grasp pose

Grasp
Model

Action
Categorization

Generated action code

117

L LMs that Perceive, Plan Subtasks, Determine the
Motion, Monitor the Progress

Sub-task Verification

Temporary Goal State

Verification condition:
'Did the robot gripper pull
out the top drawer?"

Sub-tas-k: Succeed/Failed

118

"Reasoning task"
= £

"Correct all the dices to 6 [front-facing" '‘Uncap thekar "Correct all the dices to 6 front-facing"

Manipulate Anything: Automating Real-World Robots using Vision-
Language Models. Duan et al.

'Put objects on their colored mat' o) 'Close the laptop'

.

120

	Slide 1: Robot Perception and Learning
	Slide 2
	Slide 3: But We want a Robot that can See and Act
	Slide 4
	Slide 5: How to Define Goals?
	Slide 6: A Robot’s End-Effector Poses are Common Representations of Goals
	Slide 7: Motion Planning
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71: Virtual Potential Fields
	Slide 72
	Slide 73: Non-Linear Optimization
	Slide 74: For more on Motion Planning, check “Planning Algorithms” by Steven M. LaValle
	Slide 75
	Slide 76: Decision Making is in fact Hierarchical
	Slide 77: Decision Making is in fact Hierarchical
	Slide 78: Decision Making Should be Adaptive w.r.t the Kinematic and Geometric Feasibility
	Slide 79
	Slide 80: We Need to Decide What are the Tasks, the Order of the Tasks, the Goal per Task, the Motion/Path to Achieve the Goal
	Slide 81: We Need to Decide What are the Tasks, the Order of the Tasks, the Goal per Task, the Motion/Path to Achieve the Goal
	Slide 82: We Need to Replan Based on Kinematic and Geometric Feasibility
	Slide 83: Classical Task Planning: Decide Which Tasks and the Ordering of the Tasks
	Slide 84: State Representations of Objects
	Slide 85: State Representations of Objects
	Slide 86: Actions Lead to Transitions between States
	Slide 87: Task Planning: Search a sequence of actions that convert the initial states to the goal states
	Slide 88: Forward Best-First Search
	Slide 89: Classical Task Planning
	Slide 90: However, Discretized States and Actions Oversimplify the World and Robot-Object Interaction
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120

