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Recap: Robotic Kinematics

2Robotics: Modeling, Planning and Control. Siciliano et al.



But We want a Robot that can See and Act

Video credit Pieter Abbeel 3



Action Requires Deciding a Goal, Planning to Achieve the 
Goal, and Controlling Motion to Follow the Plan
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How to Define Goals?

Language instruction Object configuration Robot pose



Neural Descriptor Fields: SE(3)-Equivariant Object 
Representations for Manipulation. Simeonov et al.

VoxPoser: Composable 3D Value Maps for Robotic 
Manipulation with Language Models. Huang et al
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Encoder

“Sweep the 

dust into a 

dustpan”

3D Diffuser Actor: Policy Diffusion with 3D Scene 
Representations. Ke et al.

A Robot’s End-Effector Poses are Common 
Representations of Goals
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Motion Planning

Goal
Motion 

Planning
Low-level 
Controller

• Task: Find a feasible (and optimal) path/motion from the current 
configuration/pose of the robot to the goal configuration/pose

• Feasibility: The proposed plan should follow the given constraints

➢ Environmental constraints (obstacles)

➢ Efficiency constraints (dynamics/kinematics)

• Completeness: Report whether or not a feasible path exist in finite time

• Optimality: Return the best solution in finite time that minimizes the 
cost: time, energy, risk …
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https://vimeo.com/58686590

Motion Planning: Piano Mover’s Problem
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Video credit ccuRobo from Nvidia

https://vimeo.com/58709484 https://vimeo.com/58686593

Video credit J.J. Kuffner

https://vimeo.com/58686594 https://vimeo.com/587095899



Toy Example: 2D Path Planning with Point Robot

The robot is a point, that can only translate in 2D without rotation.
How can it reach for the red location from the green location? 

obstacle

start

goal

10Image adapted from K. Hauser



• Discretize the 2D space into grids.
• Robot can only travel to neighboring grids

➢ cost=1 to horizontal/vertical neighbors

➢ cost= 2 to diagonal neighbors
➢ cost=∞ to neighbors including obstacles
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Solution 1: Roadmap Planner Algorithm

Image credit K. Hauser



• Discretize the 2D space into grids.
• Robot can only travel to neighboring grids

➢ cost=1 to horizontal/vertical neighbors

➢ cost= 2 to diagonal neighbors
➢ cost=∞ to neighbors including obstacles

• Search the best path (e.g. Dijkstra's algorithm)
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Solution 1: Roadmap Planner Algorithm

Image credit K. Hauser



Roadmap Planner Algorithm Has Resolution Problems

Coarse-resolution grids:
• Computationally efficient
• May not be optimal

13Image credit K. Hauser



Roadmap Planner Algorithm Has Resolution Problems

Coarse-resolution grids:
• Computationally efficient
• May not be optimal

Fine-resolution grids:
• Computationally inefficient
• More likely to be optimal

14Image credit K. Hauser



Solution 2: Visibility Graph Algorithm

We don’t need grids, but vertices of the start location, goal location and obstacle corners

1. Let 𝑉 be the union of the start, the goal and all obstacle vertices. 
2. 𝐸 ←
3. for all pairs of distinct vertices 𝑢, 𝑣 𝜖𝑉
4. if 𝑢𝑣 is an obstacle edge
5. Add (𝑢, 𝑣) to 𝐸
6. else if 𝑢𝑣 is collision free
7. Add (𝑢, 𝑣) to 𝐸
8. Search 𝐺=(𝑉,𝐸), with Cartesian distance as the edge cost, to connect the start and goal
9. return the path if one is found.

15Image credit K. Hauser



Solution 3: Cell Decomposition Algorithm

1

2

3

4

Segment the free space into cells by vertices

Connect neighboring free-space cells

Search a path that traverses from the start cell 
to the goal cell

16Image Credit S. M. LaValle



A General Framework for Motion/Path Planning

Slide adapted from Sanjiban Choudhury

Create a graph Search the graph Densify the graph
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But Planning is Hard…

18Slide adapted from Sanjiban Choudhury

• Previously, we only consider 2D point robots.  What if the robot shape is 
triangle that can both translate and rotate in 2D? 

• What if the robot is a car which cannot make pure left/right movement?
• What if the robot is a 2-joint planar arm?
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But Planning is Hard…

• Previously, we only consider 2D point robots.  What if the robot shape is 
triangle that can both translate and rotate in 2D? 

• What if the robot is a car which cannot make pure left/right movement?
• What if the robot is a 2-joint planar arm?



• Previously, we only consider 2D point robots.  What if the robot shape is 
triangle that can both translate and rotate in 2D? 

• What if the robot is a car which cannot make pure left/right movement?
• What if the robot is a 2-joint planar arm?
• What if the robot is a 7-joint planar arm?
• What if the robot works in 3D?
What is the unified planning formulation for robots with different mechanisms?

20

But Planning is Hard…

Slide adapted from Sanjiban Choudhury



The Configuration Space
• The configuration of of a robot is a complete specification of the position of every 

point of the robot 
• Configuration space (C-space) is the n-dimensional space containing all possible 

configurations of the robot.  In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

ℝ2

21



ℝ2

We can represent it with coordinates 𝑥, 𝑦

C-space

𝑥

𝑦

• The configuration of of a robot is a complete specification of the position of every 
point of the robot 

• Configuration space (C-space) is the n-dimensional space containing all possible 
configurations of the robot.  In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.
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The Configuration Space



ℝ2

We can represent it with coordinates 𝑥, 𝑦

C-space

𝑥

𝑦

𝑥

𝑦

workspace

The configuration that 
the robot can reach 

• The configuration of of a robot is a complete specification of the position of every 
point of the robot 

• Configuration space (C-space) is the n-dimensional space containing all possible 
configurations of the robot.  In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

The Configuration Space
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ℝ2

We can represent it with coordinates 𝑥, 𝑦

C-space

𝑥

𝑦

𝑥

𝑦

workspace

The configuration that 
the robot can reach 

• The configuration of of a robot is a complete specification of the position of every 
point of the robot 

• Configuration space (C-space) is the n-dimensional space containing all possible 
configurations of the robot.  In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

The Configuration Space
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• The configuration of of a robot is a complete specification of the position of every 
point of the robot 

• Configuration space (C-space) is the n-dimensional space containing all possible 
configurations of the robot.  In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

ℝ2 𝕊1×

The Configuration Space
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• The configuration of of a robot is a complete specification of the position of every 
point of the robot 

• Configuration space (C-space) is the n-dimensional space containing all possible 
configurations of the robot.  In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

We can represent it with coordinates 𝑥, 𝑦

ℝ2 𝕊1×
We can represent it with angle 𝜃

C-space

𝜃

𝑦

𝑥

The Configuration Space
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• The configuration of of a robot is a complete specification of the position of every 
point of the robot 

• Configuration space (C-space) is the n-dimensional space containing all possible 
configurations of the robot.  In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

We can represent it with coordinates 𝑥, 𝑦

ℝ2 𝕊1×
We can represent it with angle 𝜃

𝜃

𝑥

𝑦

𝑥

𝑦

C-space workspace

The Configuration Space

27



• The configuration of of a robot is a complete specification of the position of every 
point of the robot 

• Configuration space (C-space) is the n-dimensional space containing all possible 
configurations of the robot.  In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

We can represent it with coordinates 𝑥, 𝑦

ℝ2 𝕊1×
We can represent it with angle 𝜃

𝜃

𝑥

𝑦

𝑥

𝑦

C-space workspace

The Configuration Space
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• The configuration of of a robot is a complete specification of the position of every 
point of the robot 

• Configuration space (C-space) is the n-dimensional space containing all possible 
configurations of the robot.  In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

We can represent it with coordinates 𝑥, 𝑦

ℝ2 𝕊1×
We can represent it with angle 𝜃

𝜃

𝑥

𝑦

𝑥

𝑦

C-space workspace

The Configuration Space
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• The configuration of of a robot is a complete specification of the position of every 
point of the robot 

• Configuration space (C-space) is the n-dimensional space containing all possible 
configurations of the robot.  In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

ℝ2 𝕊1× ℝ2 𝕊1×

We can represent it with coordinates 𝑥, 𝑦

We can represent it with angle 𝜃

The Configuration Space

30



• The configuration of of a robot is a complete specification of the position of every 
point of the robot 

• Configuration space (C-space) is the n-dimensional space containing all possible 
configurations of the robot.  In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

ℝ2 𝕊1×

We can represent it with angle 𝜃1, 𝜃2

ℝ2 𝕊1× 𝕊1 × 𝕊1

The Configuration Space
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• The configuration of of a robot is a complete specification of the position of every 
point of the robot 

• Configuration space (C-space) is the n-dimensional space containing all possible 
configurations of the robot.  In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

ℝ2 𝕊1×

We can represent it with angle 𝜃1, 𝜃2, … 𝜃𝑛

ℝ2 𝕊1× 𝕊1 × 𝕊1 𝕊1 ×⋯× 𝕊1

𝑛 joints

The Configuration Space
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How to Specify Obstacles in the Configuration Space?

33Slide credit Sanjiban Choudhury



Image credit H. Choset

Robot

Obstacle 𝒪

𝐶𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒

𝑞: 𝐴(𝑞) ∩ 𝒪 ≠ ∅

Example: Rotational Motion

34



𝑞: 𝐴(𝑞) ∩ 𝒪 ≠ ∅
Obstacle 𝒪

𝐶𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒

Robot

Example: Rotational Motion

Image credit H. Choset 35
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Example: 2-Link Planar Arm

Image credit T. Bhattacharya 37



https://www.youtube.com/watch?v=SBFwgR4K1Gk

Motion Planning is Hard….

38



Slide credit Sanjiban Choudhury 39



Image credit S. LaValle

We can apply previous techniques (e.g. grid-search, 
visibility graph, cell decomposition) here!

40



• n-joint robot has n-dim C-space
• Assume we have 𝑀 vertices per dim.  The n-dim C-

space has 𝑀𝑛 vertices…
• In high dimensions:

➢ Computing the C-space obstacle is hard
➢ Planning is hard

10 vertices per dim 

41

Motion Planning is Hard….



• n-joint robot has n-dim C-space
• Assume we have 𝑀 vertices per dim.  The n-dim C-

space has 𝑀𝑛 vertices…
• In high dimensions:

➢ Computing the C-space obstacle is hard
Solution: Don’t compute 𝐶𝑜𝑏𝑠 explicitly, instead we 
query a collision detector

➢ Planning is hard
Solution: Don’t search a path from all vertices, but 
sampled vertices

• Idea: Don’t compute until being queried!

10 vertices per dim 

Motion Planning is Hard….

42



Implicit C-Obstacle Representations

• Feasibility query:

𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑞 = ቊ
1 , 𝑖𝑓 𝑞 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑟𝑒𝑒 𝑠𝑝𝑎𝑐𝑒
0, 𝑖𝑓 𝑞 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑠𝑝𝑎𝑐𝑒
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• Feasibility query:

𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑞 = ቊ
1 , 𝑖𝑓 𝑞 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑟𝑒𝑒 𝑠𝑝𝑎𝑐𝑒
0, 𝑖𝑓 𝑞 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑠𝑝𝑎𝑐𝑒

• Visibility query:

𝑉𝑖𝑠𝑖𝑏𝑙𝑒 𝑞1, 𝑞2 = ቊ
1 , 𝑖𝑓 𝑞1𝑞2 𝑖𝑠 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑙𝑦 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑟𝑒𝑒 𝑠𝑝𝑎𝑐𝑒
0, 𝑖𝑓𝑞1𝑞2 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑠 𝑡ℎ𝑒 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑠𝑝𝑎𝑐𝑒

𝑞1 𝑞2

𝑞1𝑞2[𝑖]

Chunk segment 𝑞1𝑞2 into parts, check feasibility of each part

44

Implicit C-Obstacle Representations



Probabilistic Roadmaps (PRM)

We don’t’ have an explicit feasibility 
map. Just for reference…

RPM Algorithm:

Slide adapted from K. Hauser 45



RPM Algorithm:
1. Sample random N configurations from 

the C-space and query their feasibilities

𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑞

Probabilistic Roadmaps (PRM)

Slide adapted from K. Hauser 46



𝑔

𝑠

RPM Algorithm:
1. Sample random N configurations from 

the C-space and query their feasibilities
2. Add milestones (all feasible, the start 

and the goal configurations).

We don’t’ have an explicit feasibility 
map. Just for reference…

Probabilistic Roadmaps (PRM)

Slide adapted from K. Hauser 47



𝑔

𝑠

𝑔

𝑠

𝑔

𝑠

RPM Algorithm:
1. Sample random N configurations from 

the C-space and query their feasibilities
2. Add milestones (all feasible, the start 

and the goal configurations).
3. Connect pairs of neighboring 

milestones if they are visible

We don’t’ have an explicit feasibility 
map. Just for reference…

𝑉𝑖𝑠𝑖𝑏𝑙𝑒 𝑞, 𝑝

Probabilistic Roadmaps (PRM)

Slide adapted from K. Hauser 48



𝑔

𝑠

𝑔

𝑠

𝑔

𝑠

𝑔

𝑠

RPM Algorithm:
1. Sample random N configurations from 

the C-space and query their feasibilities
2. Add milestones (all feasible, the start 

and the goal configurations).
3. Connect pairs of neighboring 

milestones if they are visible
4. Search for a path from the start to the 

goal

We don’t’ have an explicit feasibility 
map. Just for reference…

Probabilistic Roadmaps (PRM)

Slide adapted from K. Hauser 49



Probabilistic Roadmaps (PRM)

Slide adapted from K. Hauser 50



Is Uniformly Randomly Sampling Good Enough?

51Slide credit Sanjiban Choudhury

The narrow passage: We need more samples here



The narrow passage: We need more samples here

Solutions:
1. Sample near obstacle surface
2. Add samples that are in between two 

obstacles
3. Train a learner to detect the narrow passages

Is Uniformly Randomly Sampling Good Enough?

52Slide credit Sanjiban Choudhury



Quick summary of PRM

𝑔

𝑠

𝑔

𝑠

𝑔

𝑠

𝑔

𝑠

• PRM randomly samples configurations to 
build a roadmap, hoping to cover the free 
space

• PRM is great when we want to reuse the 
graph.  For example, plan many times 
with different start/goal pairs

• What if we just need to plan once?  For 
example, a robot only needs to pick up 
the object once

We don’t’ have an explicit feasibility 
map. Just for reference…
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Rapidly Exploring Random Trees (RRTs)

𝑠 𝑠

𝑔

𝑠

Grow a tree of feasible paths from the start to the goal
configuration, instead of building a graph. 

54



RRT-Connect: An Efficient Approach to Single-Query Path 
Planning.  J. Kuffner and S. LaValle.

Sample random configuration with probability 
𝑝, and the goal with probability 1 − 𝑝

Slide adapted from M. Likhachev55

Rapidly Exploring Random Trees (RRTs)



Select the closest 
configuration in the tree

How to expand the tree?  Expand from the 
node that is the closest to the configured q

RRT-Connect: An Efficient Approach to Single-Query Path 
Planning.  J. Kuffner and S. LaValle. Slide adapted from M. Likhachev56

Rapidly Exploring Random Trees (RRTs)



Move by at most 𝜀 from 
𝑞𝑛𝑒𝑎𝑟 to 𝑞

Select the closest 
configuration in the tree

RRT-Connect: An Efficient Approach to Single-Query Path 
Planning.  J. Kuffner and S. LaValle. Slide adapted from M. Likhachev57

Rapidly Exploring Random Trees (RRTs)



Expansion Strategy

Image credit D. Fox

Randomly uniformly sampling
Biased sampling toward 

unexplored regions

Sample random configuration with probability 
𝑝, and the goal with probability 1 − 𝑝

58



Voronoi Diagram
Voronoi diagram: nearest-neighbor segmentation.  Assign each pixel to the nearest 
node.  We can check the area of each region and explore more in the large ones.
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Voronoi Bias Strategy

Sample random configuration with 
probability 𝑝, which is proportional to 
the volume of its Voronoi cell.
• Bias sampling toward unexplored 

areas.

Voronoi diagram: nearest-
neighbor segmentation

60
RRT-Connect: An Efficient Approach to Single-Query Path 
Planning.  J. Kuffner and S. LaValle.



RRT-Connect: Bi-direction RRTs

# new configuration is added

Greedily move from 𝑞𝑛𝑒𝑎𝑟 to 𝑞𝑟𝑎𝑛𝑑

Grow two trees, one from the start 
and another from the goal

61
RRT-Connect: An Efficient Approach to Single-Query Path 
Planning.  J. Kuffner and S. LaValle.



Single Tree vs. Double Trees

Image credit D. Fox 62



RRT Still Has Problems…

Slide adapted from K. Hauser

• The “bugtrap” problem: due to the Voronoi bias, RRT frequently attempts infeasible 
extensions

• To escape the mouth of a bugtrap, we need to sample a very carefully chosen 
sequence of milstones within the general area that it has already explored

• A tradeoff between exploring new regions and refine the roadmap of explored areas

63



Slide credit Abhishek Gupta;  Image credit T. Chinenov 64

RRT Still Has Problems…



RRT*: RRT + Re-Wiring

Integrating Rigidity Analysis into the Exploration of Protein 
Conformational Pathways Using RRT* and MC. F. Afrasiabi et al.

• Can we find more optimal path passing through 𝑞𝑛𝑒𝑤 ?
• Can we find more optimal path to 𝑞𝑛𝑒𝑤 ?

65
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RRT*: RRT + Re-Wiring

Slide credit K. Hauser



Slide credit K. Hauser 67

RRT*: RRT + Re-Wiring



Sampling-based Algorithms for Optimal Motion Planning. S. 
Karaman and E. Frazzoli.

RRT

RRT*

RRT vs. RRT*

68



RRT vs. RRT*

RRT RRT*

69
Sampling-based Algorithms for Optimal Motion Planning. S. 
Karaman and E. Frazzoli.



RRT*

Image credit T. Chinenov 70



Virtual Potential Fields

• From physics we know that a potential field 𝑃(𝑞) defined over 𝐶 induces a force 

𝐹 = −𝜕𝑃

𝜕𝑞
that drives an object from high to low potential.

• In robotics, we can define a potential field and derive the corresponding force, with 
which we drive the configuration 𝒒 from high to low potential.

• The potential field of reaching a goal:

• The potential field induced by a 𝐶-obstacle 𝛽

71



Pushing configuration 
to regions with low 
potential

𝑞𝑡+1 = 𝑞𝑡 +
∆𝑡
𝑚Σ𝐹

72



Non-Linear Optimization
• We can consider path planning as an optimization problem

• We can parametrize control 𝑢(𝑡) and path 𝑞 𝑡 with the coefficients of (1) a 
polynomial, (2) a truncated Fourier series, (3) spline, (4) wavelet, or (5)piecewise 
constant acceleration segments in time. 

73



For more on Motion Planning, check
“Planning Algorithms” by Steven M. LaValle
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Sensor

State 
Estimation

Goal 
Prediction

Motion 
Planning

Actuator

Motion Control

Low-level 
Controller

Decision Making

Perception

Trajectory 
Generation

Action Requires Deciding a Goal, Planning to Achieve the 
Goal, and Controlling Motion to Follow the Plan

75



Sensor

State 
Estimation

Goal 
Prediction

Motion 
Planning

Actuator

Low-level 
Controller

Decision Making

Decision Making is in fact Hierarchical

Sensor

State 
Estimation

Actuator

Low-level 
Controller

Oversimplified!

goal 1

Final goal

goal 2

Subgoal 1.a Subgoal 1.n…
…

Motion 
Planning

Decision Making
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Sensor

State 
Estimation

Goal 
Prediction

Motion 
Planning

Actuator

Low-level 
Controller

Decision Making is in fact Hierarchical

Sensor

State 
Estimation

Actuator

Low-level 
Controller

goal 1

Final goal

goal 2

Subgoal 1.a Subgoal 1.n…
…

Cook Egg

Find egg

Grasp egg 
from Y

Goto fridge
at X

Motion 
Planning

Decision Making

77

Decision Making

Oversimplified!



https://youtu.be/tNHjpXP8RFo?si=Sokgfvgef0T18Tuy

Decision Making Should be Adaptive w.r.t the Kinematic 
and Geometric Feasibility

78



https://youtu.be/VndjJtzl7ho?si=Uqc5rLSI2rPLbMIe 79

Decision Making Should be Adaptive w.r.t the Kinematic 
and Geometric Feasibility



We Need to Decide What are the Tasks, the Order of the Tasks, 
the Goal per Task, the Motion/Path to Achieve the Goal

Task: Put the mustard in the blue region SubTask1: Grasp the mustard
• Subgoal configuration of the gripper pose

➢ Motion planning for the trajectory
SubTask2: Lift up the mustard

• Subgoal configuration of the gripper pose
➢ Motion planning for the trajectory

SubTask3: Carry the mustard above the blue region
• Subgoal configuration of the gripper pose

➢ Motion planning for the trajectory
SubTask4: Put down the mustard

• Subgoal configuration of the gripper pose
➢ Motion planning for the trajectory

80



The plan is not feasible, since the robot can‘t 
reach the occluded mustard

Task: Put the mustard in the blue region SubTask1: Grasp the mustard
• Subgoal configuration of the gripper pose

➢ Motion planning for the trajectory
SubTask2: Lift up the mustard

• Subgoal configuration of the gripper pose
➢ Motion planning for the trajectory

SubTask3: Carry the mustard above the blue region
• Subgoal configuration of the gripper pose

➢ Motion planning for the trajectory
SubTask4: Put down the mustard

• Subgoal configuration of the gripper pose
➢ Motion planning for the trajectory

We Need to Decide What are the Tasks, the Order of the Tasks, 
the Goal per Task, the Motion/Path to Achieve the Goal

81



We Need to Replan Based on Kinematic and 
Geometric Feasibility

Task: Put the mustard in the blue region
SubTask 1: Grasp the Cheezit

⋮
SubTask N: Grasp the mustard

• Subgoal configuration of the gripper pose
➢ Motion planning for the trajectory

SubTask N+1: Lift up the mustard
• Subgoal configuration of the gripper pose

➢ Motion planning for the trajectory
SubTask N+2: Carry the mustard above the blue region

• Subgoal configuration of the gripper pose
➢ Motion planning for the trajectory

SubTask N+3: Put down the mustard
• Subgoal configuration of the gripper pose

➢ Motion planning for the trajectory
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Classical Task Planning: Decide Which Tasks 
and the Ordering of the Tasks

Task: Put the mustard in the blue region

SubTask 1: Grasp the Cheezit
⋮

SubTask N: Grasp the mustard
• Precondition
• Effect

SubTask N+1: Lift up the mustard
• Precondition
• Effect

SubTask N+2: Carry the mustard above the blue region
• Precondition
• Effect

SubTask N+3: Put down the mustard
• Precondition
• Effect ← leads to the final goal (mustard in the 

blue region)
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• The world is abstracted into a discrete space with many variables (e.g. A, B, C, D, E)

Slide adapted from C. R. Garrett and C. Paxton

State Representations of Objects
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• The world is abstracted into a discrete space with many variables (e.g. A, B, C, D, E)

• State representations of objects:
➢ Predicate: Boolean function                                                (On ?b1 ?b2)=True/False
➢ Facts (literals): instantiated predicates                                                              (On D C)
➢ States: set of facts                                                                {¬(On A B),(On D C), …}

State Representations of Objects

85Slide adapted from C. R. Garrett and C. Paxton



Actions Lead to Transitions between States

D

• Action:
➢ Preconditions test feasibility of the 

action
➢ Effects describe changes to a set of 

states
➢ Parameters show the set of states 

involved in the action

86Slide adapted from C. R. Garrett and C. Paxton



Task Planning: Search a sequence of actions 
that convert the initial states to the goal states

(On D C)

(On D B)

D

Unstack(D C) Stack(D B)⋮

Stack(E A)

Stack(A B)

⋮

(On D C)

(On E A)

(On D C)

(On A B)

⋮
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Forward Best-First Search

Video credit https://en.wikipedia.org/wiki/A*_search_algorithm88Slide adapted from C. Paxton

How close to the goal



Classical Task Planning

• Initial states: (On D C)
• Goal states: {(On E C),(On C A),(On B D)}
• Actions:

1. Unstack(D, C)

2. Stack(D, B)

3. Stack(C, A)

4. Stack(E, C)

5. Unstack(D, B)

6. Stack(B, D)
89Slide adapted from C. R. Garrett and C. Paxton



However, Discretized States and Actions Oversimplify the 
World and Robot-Object Interaction

D

D

Abstract states

(On D B)

(On D B)

Continuous object 
configurations

(On D B, px=0.0, py=1.0)

(On D B, px=0.2, py=1.0)
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D

D

Abstract action

Unstack(D B)

Unstack(D B)

Continuous object 
configurations

Unstack(D B) 

pgripper=<0.0, 1.0, 0°>
trajectory=τ

Unstack(D B) 

pgripper=<0.2, 1.0, 30°>
trajectory=τ

91

However, Discretized States and Actions Oversimplify the 
World and Robot-Object Interaction



Parameterize States with Continuous Variables

(:derived (On ?b1 ?b2)

(exists (?p1) (?p2) (and (Above ?p2 ?p1)

(AtPose ?b1 ?p1)

(AtPose ?b2 ?p2))))

?b: block
?p: 6DoF object pose

Parameters:

AtPose: is block ?b at pose ?p
Above: is pose ?p1 above pose ?p2

Static Predicates:
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(:action pick

:parameters (?b ?p ?g ?q)

:precondition (and (Kin ?b ?p ?g ?q)

(AtPose ?b ?p)

(Empty)

(AtConf ?q))

:effect (and (Holding ?b ?g)

(not (AtPose ?b ?p)

(not (Empty))))

?b: block
?p: 6DoF object pose
?g: 6DoF robot’s end-effector pose
?q: Robot’s configuration

Parameters:

Kin: Are a grasp ?g and robot configuration ?q valid 
when block ?b is at pose ?p
AtPose: is block ?b at pose ?p
Empty: is the robot’s end-effector is empty
Holding: is block ?b hold by a grasp ?g
AtConf: is the robot at configuration ?q

Static Predicates:

93

Parameterize States with Continuous Variables



Task and Motion Planning: Plan a sequence of 
Actions and their Continuous Parameters

Task: Put block A in the red region

94Slide adapted from C. R. Garrett



Task: Put block A in the red region

We need to decide the discrete action class and its continuous 
parameters!

Task and Motion Planning: Plan a sequence of 
Actions and their Continuous Parameters

95Slide adapted from C. R. Garrett



◼ Action classes: pick, move, place …

◼ Planner needs to find:

96Slide credit C. R. Garrett



97Slide credit C. R. Garrett



Obtain Continuous Action Parameters by Sampling

98Slide credit C. R. Garrett



99Slide credit C. R. Garrett



100Slide credit C. R. Garrett



101Slide credit C. R. Garrett



102Slide credit C. R. Garrett



103Slide credit C. R. Garrett



104Slide credit C. R. Garrett



STRIP: a formal language for 
expressing planning problems105Slide credit C. R. Garrett



Obtain Continuous Action Parameters by Sampling

Off-the-shelf AI planner
(e.g. FastDownward)

Sample from streams

106



107Slide credit C. R. Garrett



108Slide credit C. R. Garrett



109Slide credit C. R. Garrett



110Slide credit C. R. Garrett



111Slide credit C. R. Garrett



112Slide credit C. R. Garrett



What are the Assumptions / Limitations?

• Limitations:
➢ TAMP needs to hand craft samplers for (sub)goal 

configurations.  How to generalize to novel objects / 
scene.

➢ TAMP needs to pre-define action classes.  How to 
generalize to unseen tasks?

➢ TAMP assumes deterministic actions, which produce the 
same intended effect all the time

➢ TAMP assumes perfect perception.  Robots know the 
perfect object states.

➢ TAMP has heavy computational overhead.

• What are the modern ways to do TAMP?
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Manipulate Anything: Automating Real-World Robots using Vision-
Language Models.  Duan et al.

Automate TAMP with VLM

114



LLMs that Perceive, Plan Subtasks, Determine the 
Motion, Monitor the Progress

Manipulate Anything: Automating Real-World Robots using Vision-
Language Models.  Duan et al. 115
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Manipulate Anything: Automating Real-World Robots using Vision-
Language Models.  Duan et al. 119



Manipulate Anything: Automating Real-World Robots using Vision-
Language Models.  Duan et al. 120
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