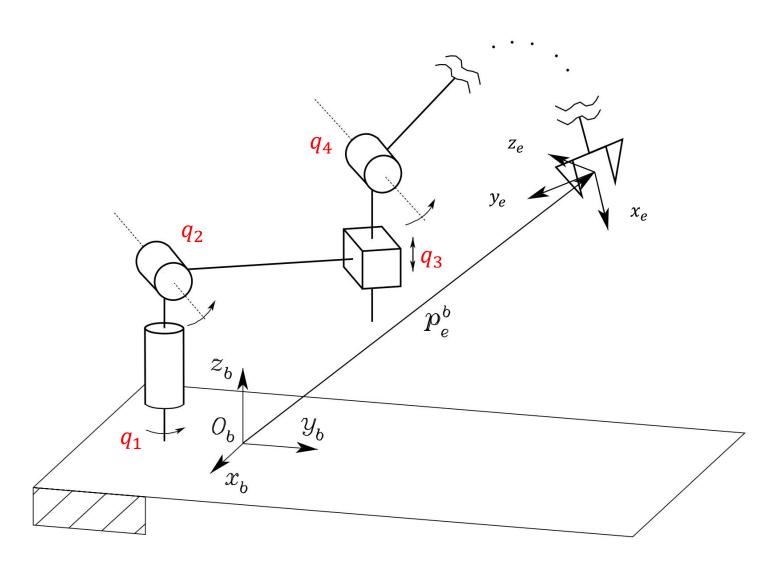
Robot Perception and Learning

Task planning and Motion planning

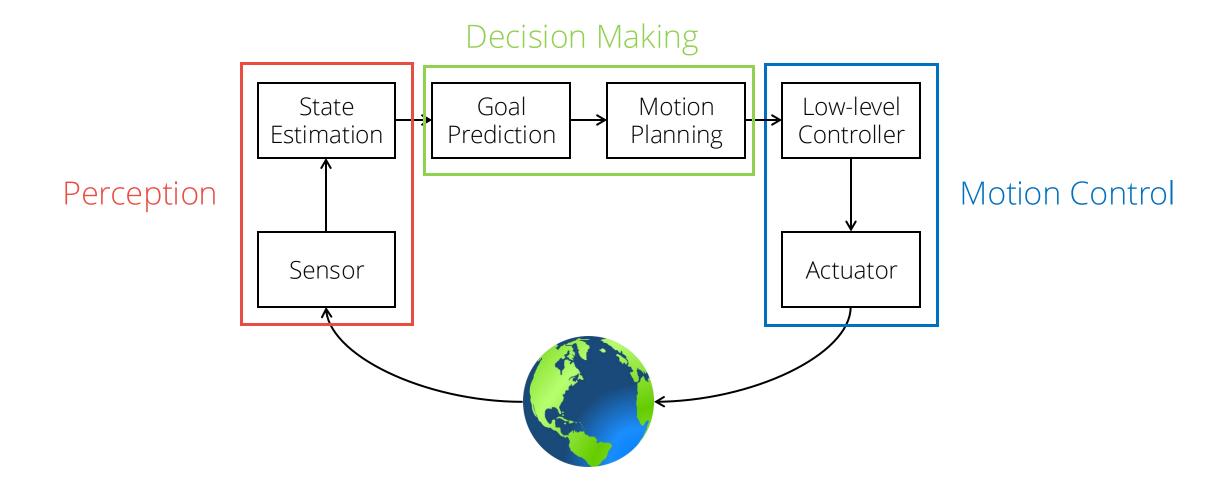
Tsung-Wei Ke Fall 2025

Recap: Robotic Kinematics

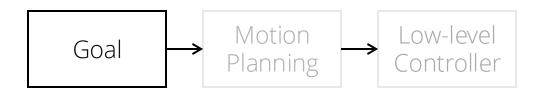


But We want a Robot that can See and Act

Action Requires Deciding a Goal, Planning to Achieve the Goal, and Controlling Motion to Follow the Plan



How to Define Goals?



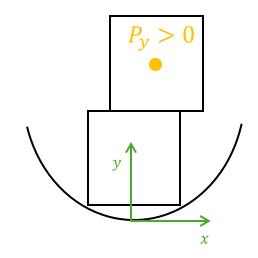
Language instruction

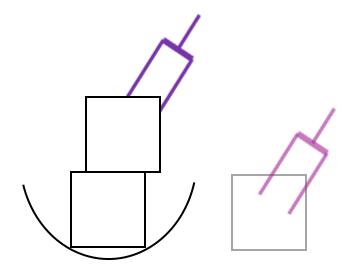
Object configuration

Robot pose

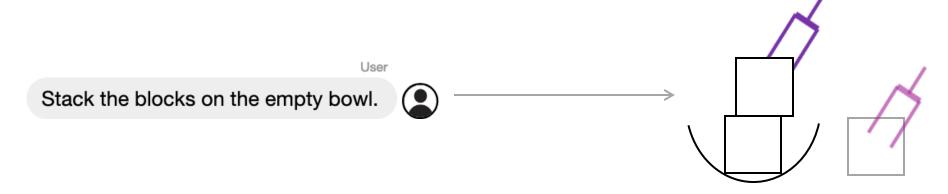
Stack the blocks on the empty bowl.

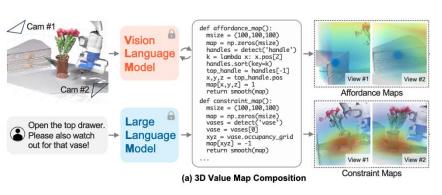
User



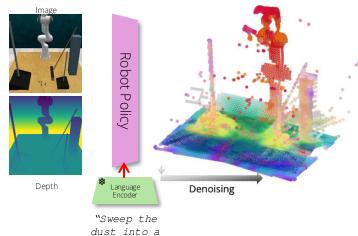


A Robot's End-Effector Poses are Common Representations of Goals





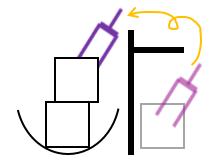
VoxPoser: Composable 3D Value Maps for Robotic Manipulation with Language Models. Huang et al



3D Diffuser Actor: Policy Diffusion with 3D Scene Representations. Ke et al.

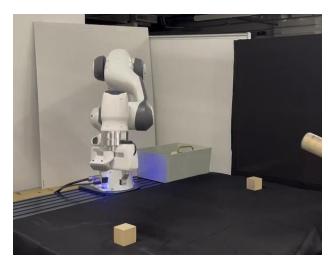
dustpan"

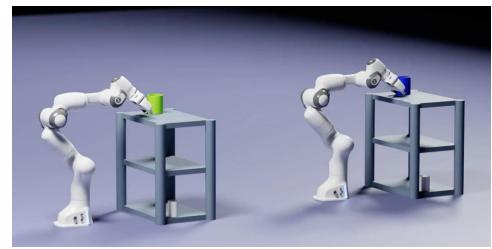
Motion Planning



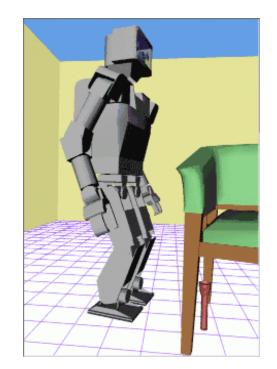
- Task: Find a feasible (and optimal) path/motion from the current configuration/pose of the robot to the goal configuration/pose
- Feasibility: The proposed plan should follow the given constraints
 - > Environmental constraints (obstacles)
 - > Efficiency constraints (dynamics/kinematics)
- Completeness: Report whether or not a feasible path exist in finite time
- Optimality: Return the best solution in finite time that minimizes the cost: time, energy, risk ...

Motion Planning: Piano Mover's Problem

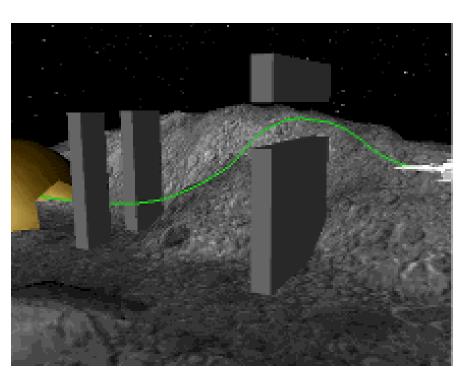


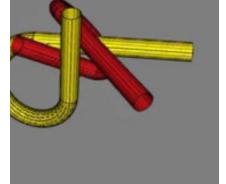


Video credit ccuRobo from Nvidia

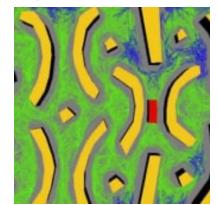


Video credit J.J. Kuffner

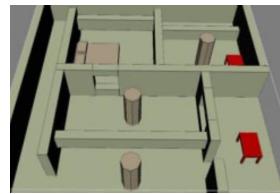




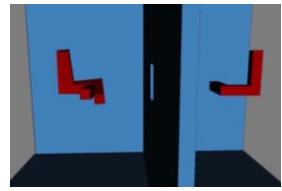
https://vimeo.com/58709484



https://vimeo.com/58686594



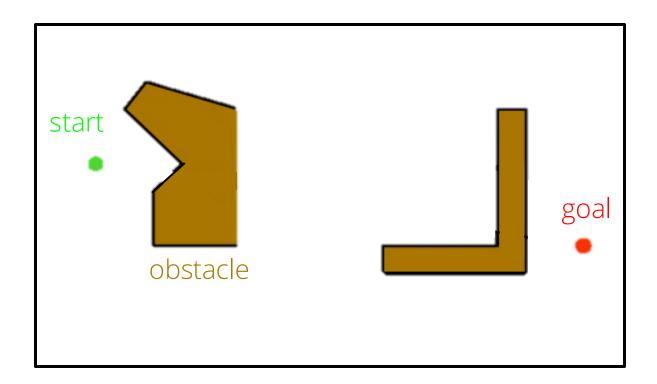
https://vimeo.com/58686593



https://vimeo.com/58709589

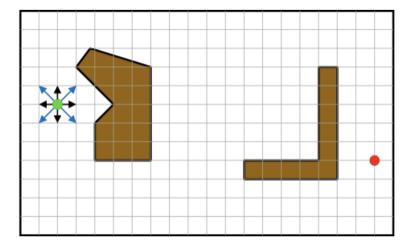
Toy Example: 2D Path Planning with Point Robot

The robot is a point, that can only translate in 2D without rotation. How can it reach for the red location from the green location?



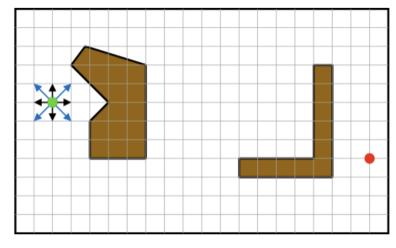
Solution 1: Roadmap Planner Algorithm

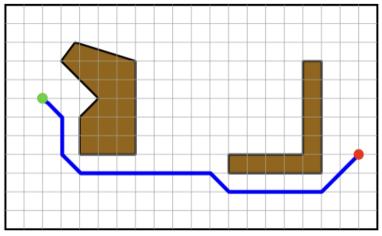
- Discretize the 2D space into grids.
- Robot can only travel to neighboring grids
 - > cost=1 to horizontal/vertical neighbors
 - \triangleright cost= $\sqrt{2}$ to diagonal neighbors
 - ➤ cost=∞ to neighbors including obstacles



Solution 1: Roadmap Planner Algorithm

- Discretize the 2D space into grids.
- Robot can only travel to neighboring grids
 - > cost=1 to horizontal/vertical neighbors
 - ightharpoonup cost= $\sqrt{2}$ to diagonal neighbors
 - ➤ cost=∞ to neighbors including obstacles
- Search the best path (e.g. Dijkstra's algorithm)



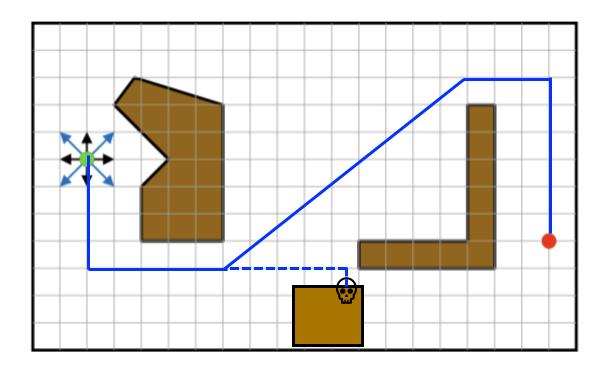


12

Roadmap Planner Algorithm Has Resolution Problems

Coarse-resolution grids:

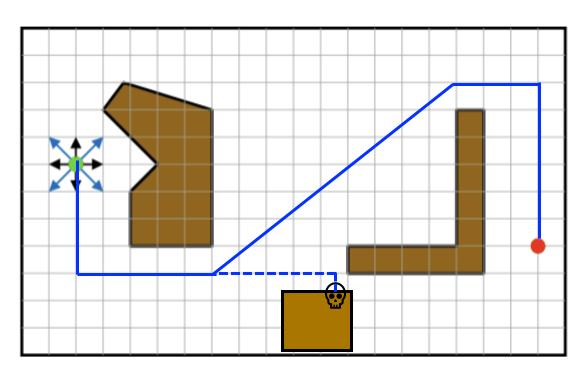
- Computationally efficient
- May not be optimal



Roadmap Planner Algorithm Has Resolution Problems

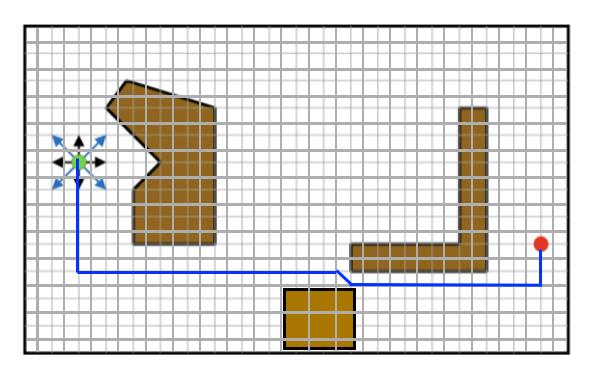
Coarse-resolution grids:

- Computationally efficient
- May not be optimal



Fine-resolution grids:

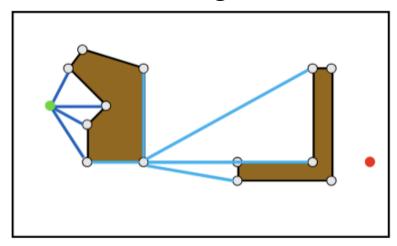
- Computationally inefficient
- More likely to be optimal

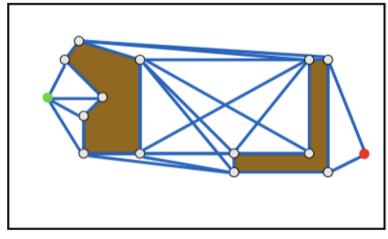


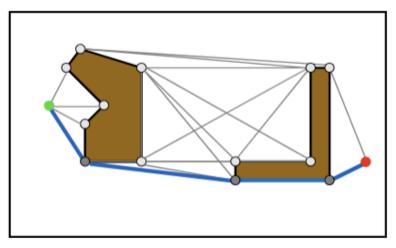
14

Solution 2: Visibility Graph Algorithm

We don't need grids, but vertices of the start location, goal location and obstacle corners



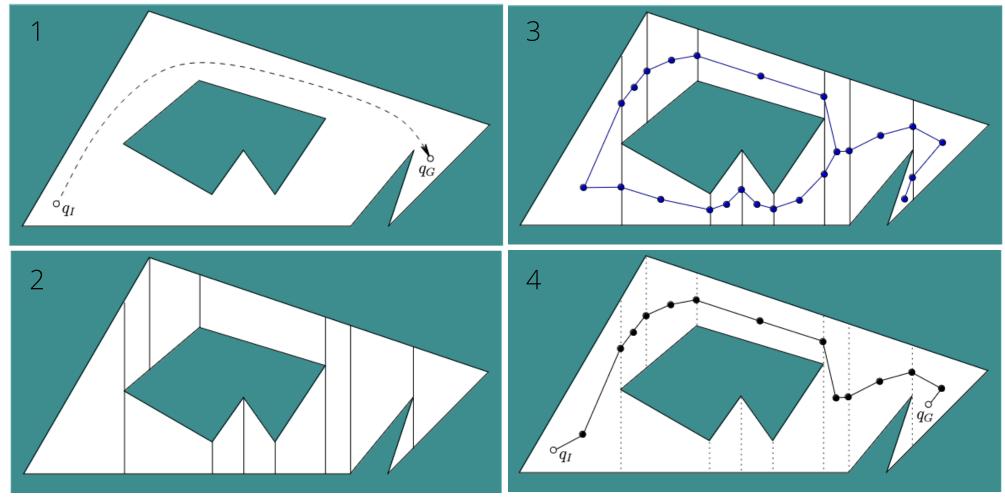




- 1. Let V be the union of the start, the goal and all obstacle vertices.
- 2. $E \leftarrow \{\}$
- **3. for** all pairs of distinct vertices $u, v \in V$
- **4. if** \overline{uv} is an obstacle edge
 - . Add (u, v) to E
- **6. else if** \overline{uv} is collision free
 - Add (u, v) to E
- **8.** Search G=(V,E), with Cartesian distance as the edge cost, to connect the start and goal
- 9. **return** the path if one is found.

Solution 3: Cell Decomposition Algorithm

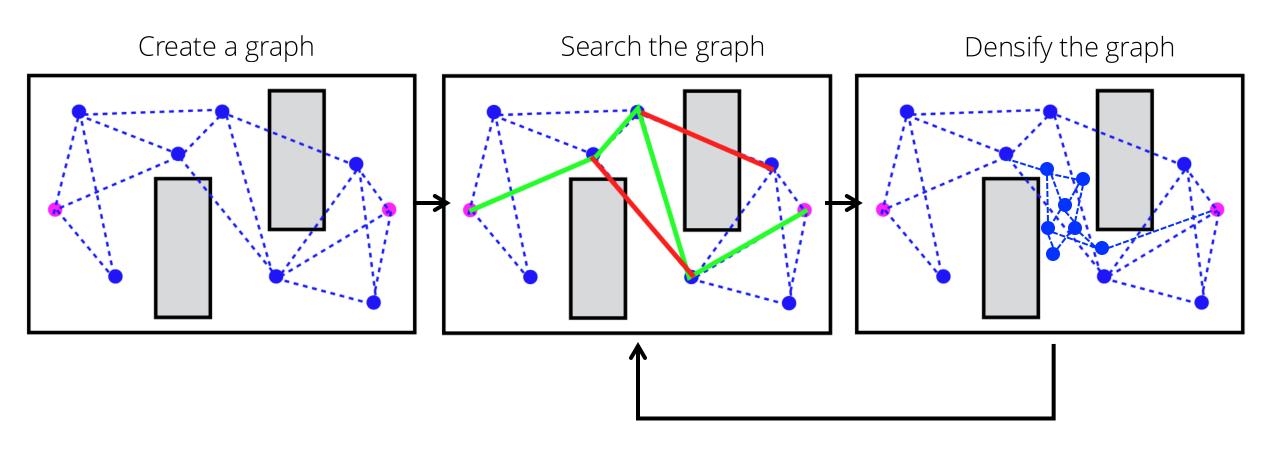
Connect neighboring free-space cells



Segment the free space into cells by vertices

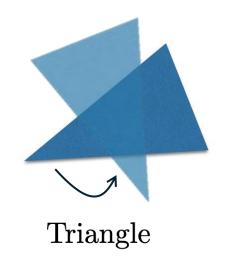
Search a path that traverses from the start cell to the goal cell

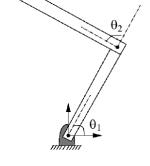
A General Framework for Motion/Path Planning



But Planning is Hard...

- Previously, we only consider 2D point robots. What if the robot shape is triangle that can both translate and rotate in 2D?
- What if the robot is a car which cannot make pure left/right movement?
- What if the robot is a 2-joint planar arm?



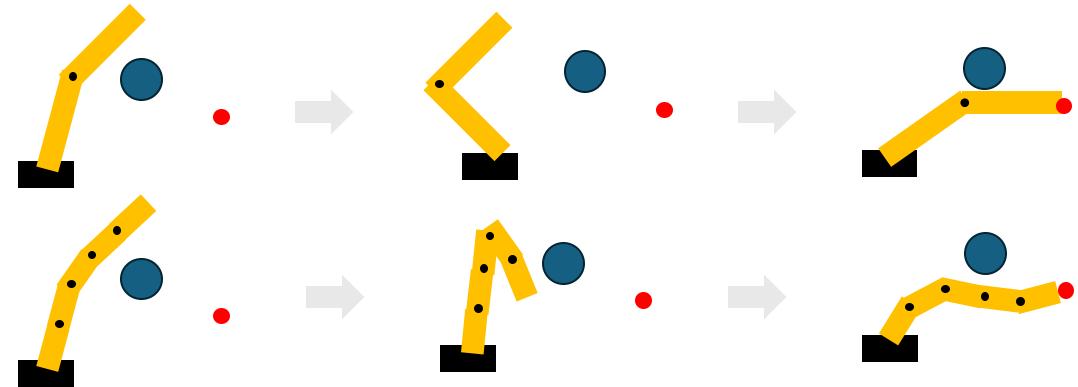


Racecar

2-joint planar arm

But Planning is Hard...

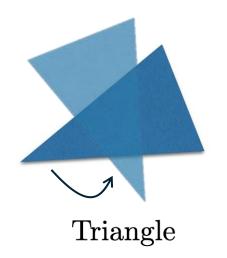
- Previously, we only consider 2D point robots. What if the robot shape is triangle that can both translate and rotate in 2D?
- What if the robot is a car which cannot make pure left/right movement?
- What if the robot is a 2-joint planar arm?

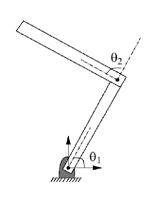


But Planning is Hard...

- Previously, we only consider 2D point robots. What if the robot shape is triangle that can both translate and rotate in 2D?
- What if the robot is a car which cannot make pure left/right movement?
- What if the robot is a 2-joint planar arm?
- What if the robot is a 7-joint planar arm?
- What if the robot works in 3D?

What is the unified planning formulation for robots with different mechanisms?

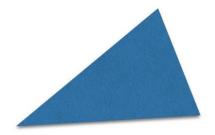




2-joint planar arm

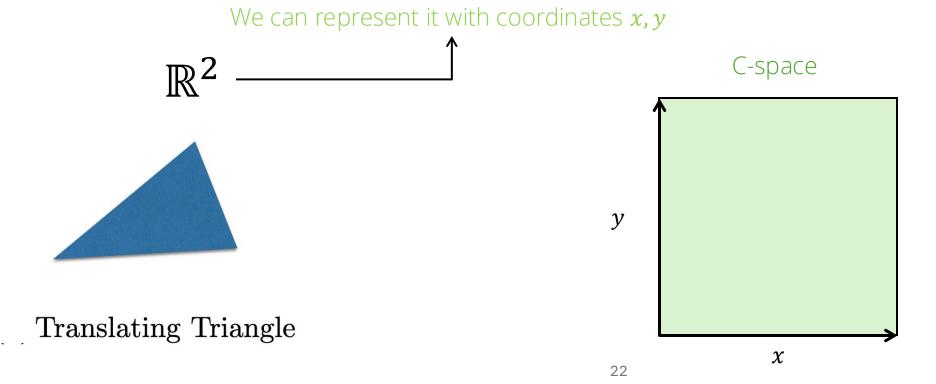
- The configuration of of a robot is a complete specification of the position of every point of the robot
- Configuration space (C-space) is the n-dimensional space containing all possible configurations of the robot. In other words, C-space includes the set of all rigid-body transformations that can be applied to the robot.

 \mathbb{R}^2



Translating Triangle

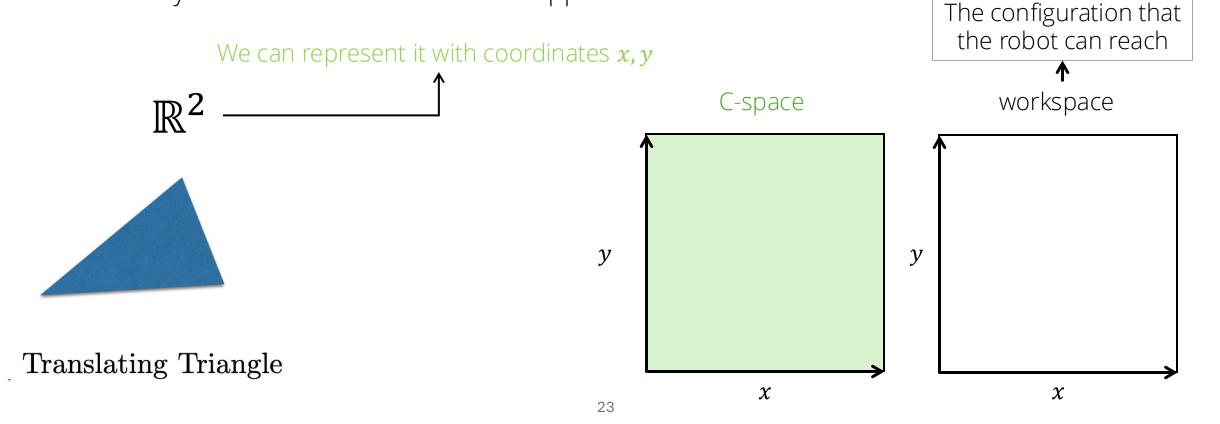
- The configuration of of a robot is a complete specification of the position of every point of the robot
- Configuration space (C-space) is the n-dimensional space containing all possible configurations of the robot. In other words, C-space includes the set of all rigid-body transformations that can be applied to the robot.



 The configuration of of a robot is a complete specification of the position of every point of the robot

• Configuration space (C-space) is the n-dimensional space containing all possible configurations of the robot. In other words, C-space includes the set of all rigid-

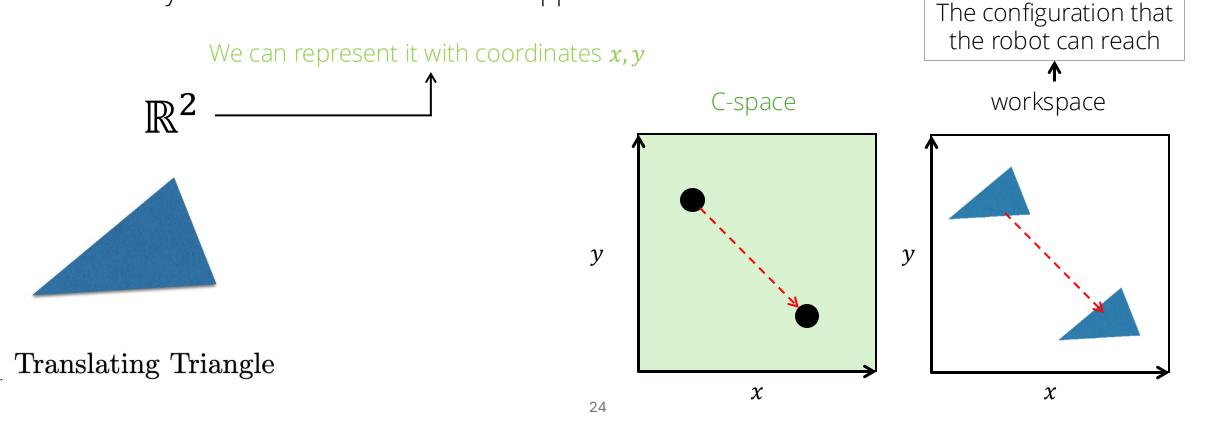
body transformations that can be applied to the robot.



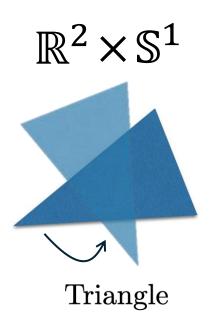
 The configuration of of a robot is a complete specification of the position of every point of the robot

• Configuration space (C-space) is the n-dimensional space containing all possible configurations of the robot. In other words, C-space includes the set of all rigid-

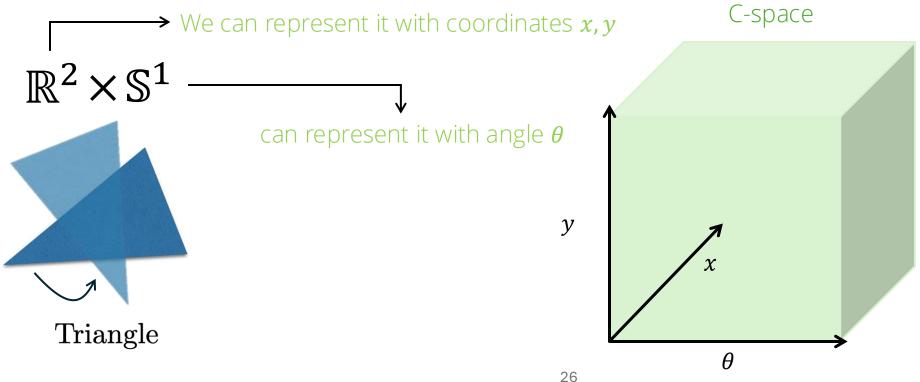
body transformations that can be applied to the robot.



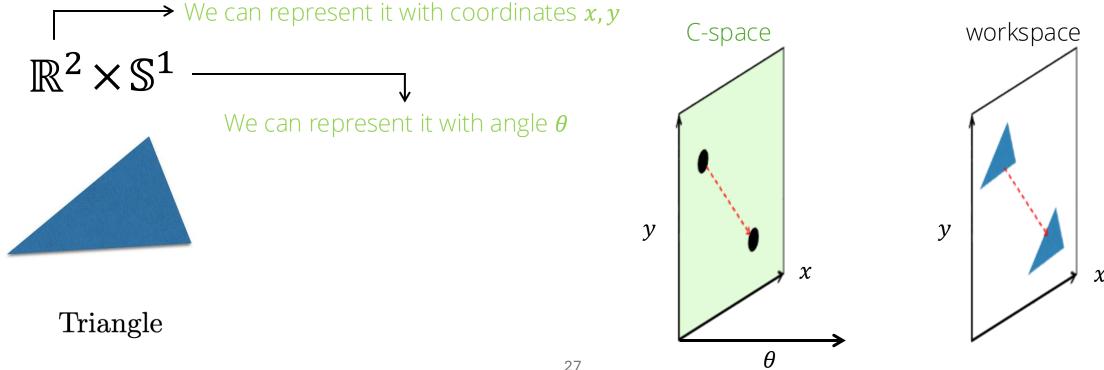
- The configuration of of a robot is a complete specification of the position of every point of the robot
- Configuration space (C-space) is the n-dimensional space containing all possible configurations of the robot. In other words, C-space includes the set of all rigid-body transformations that can be applied to the robot.



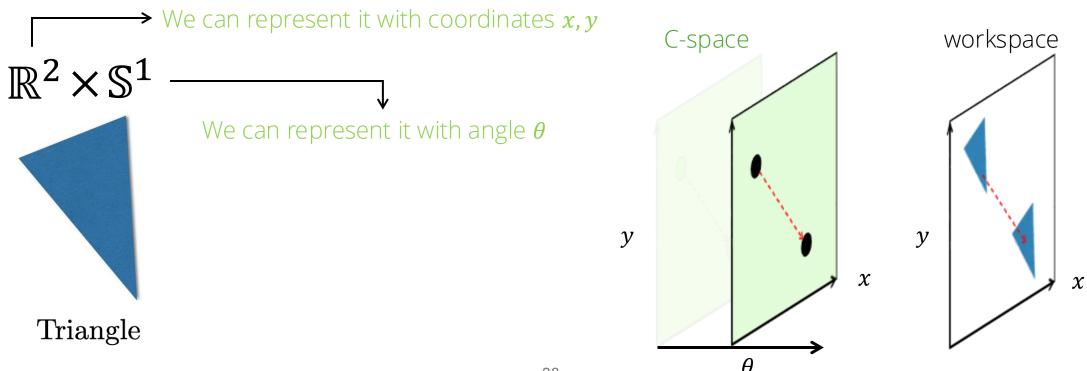
- The configuration of of a robot is a complete specification of the position of every point of the robot
- Configuration space (C-space) is the n-dimensional space containing all possible configurations of the robot. In other words, C-space includes the set of all rigidbody transformations that can be applied to the robot.



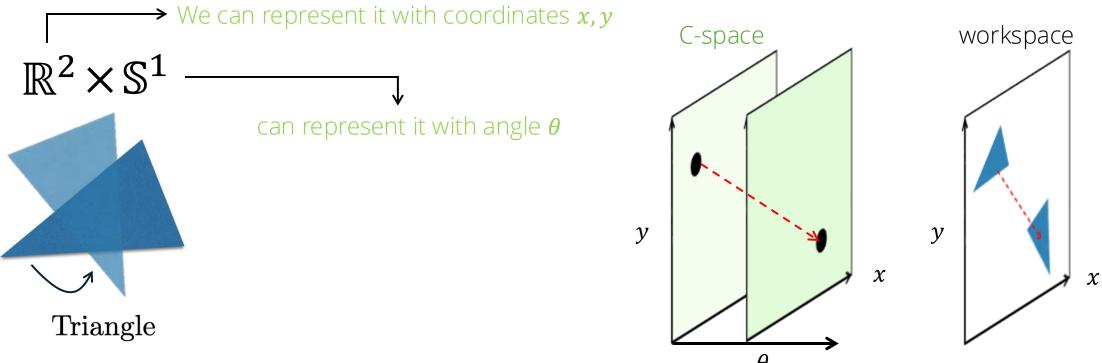
- The configuration of of a robot is a complete specification of the position of every point of the robot
- Configuration space (C-space) is the n-dimensional space containing all possible configurations of the robot. In other words, C-space includes the set of all rigidbody transformations that can be applied to the robot.



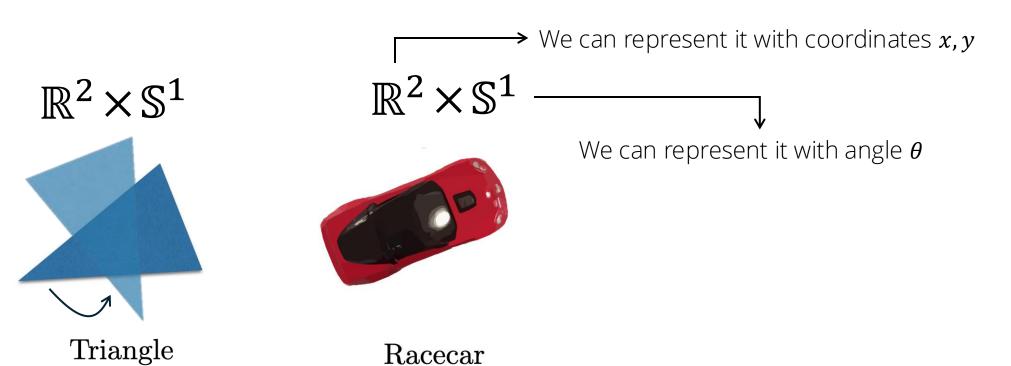
- The configuration of of a robot is a complete specification of the position of every point of the robot
- Configuration space (C-space) is the n-dimensional space containing all possible configurations of the robot. In other words, C-space includes the set of all rigid-body transformations that can be applied to the robot.



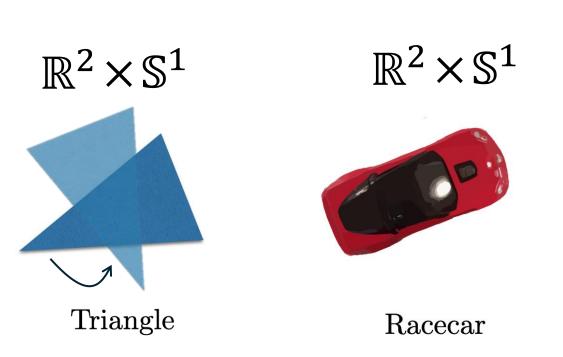
- The configuration of of a robot is a complete specification of the position of every point of the robot
- Configuration space (C-space) is the n-dimensional space containing all possible configurations of the robot. In other words, C-space includes the set of all rigid-body transformations that can be applied to the robot.

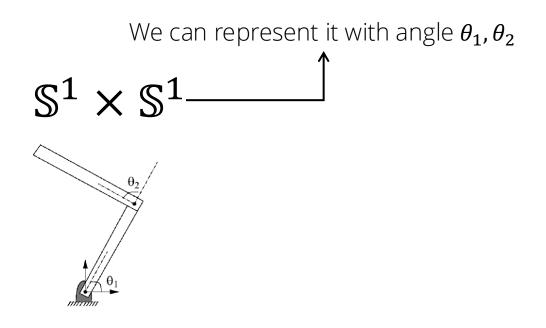


- The configuration of of a robot is a complete specification of the position of every point of the robot
- Configuration space (C-space) is the n-dimensional space containing all possible configurations of the robot. In other words, C-space includes the set of all rigid-body transformations that can be applied to the robot.



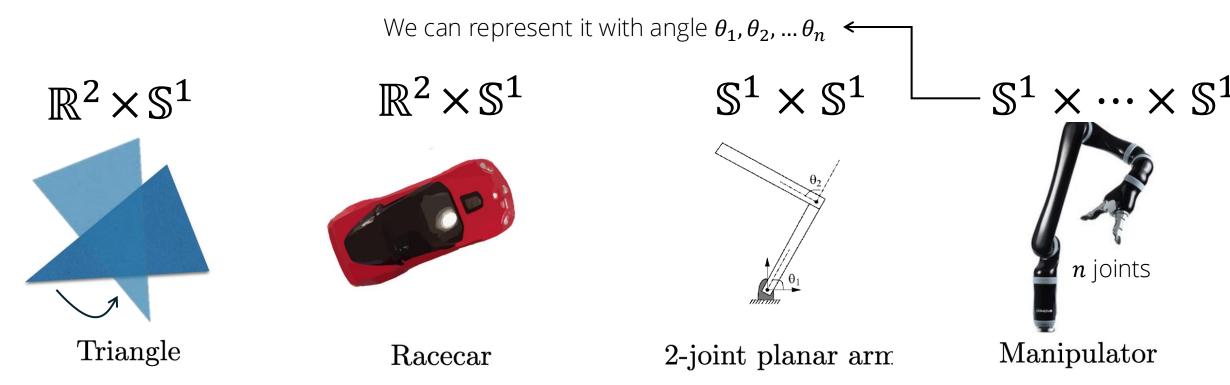
- The configuration of of a robot is a complete specification of the position of every point of the robot
- Configuration space (C-space) is the n-dimensional space containing all possible configurations of the robot. In other words, C-space includes the set of all rigid-body transformations that can be applied to the robot.





2-joint planar arm

- The configuration of of a robot is a complete specification of the position of every point of the robot
- Configuration space (C-space) is the n-dimensional space containing all possible configurations of the robot. In other words, C-space includes the set of all rigid-body transformations that can be applied to the robot.



How to Specify Obstacles in the Configuration Space?

Robot operates in a 2D / 3D workspace $\mathcal{W} = \mathbb{R}^2$ or \mathbb{R}^3

$$\mathcal{W} = \mathbb{R}^2 \text{ or } \mathbb{R}^3$$

Subset of this space is obstacles

$$\mathcal{O} \subset \mathcal{W}$$

semi-algebraic models (polygons, polyhedra)

Geometric shape of the robot (set of points occupied by robot at a config)

$$\mathcal{A}(q) \subset \mathcal{W}$$

C-space obstacle region

$$\mathcal{C}_{obs} = \{ oldsymbol{q} \in \mathcal{C} \mid \mathcal{A}(oldsymbol{q}) \cap \mathcal{O}
eq \emptyset \}$$
 $\mathcal{C}_{free} = \mathcal{C} \setminus \mathcal{C}_{obs}$

Example: Rotational Motion

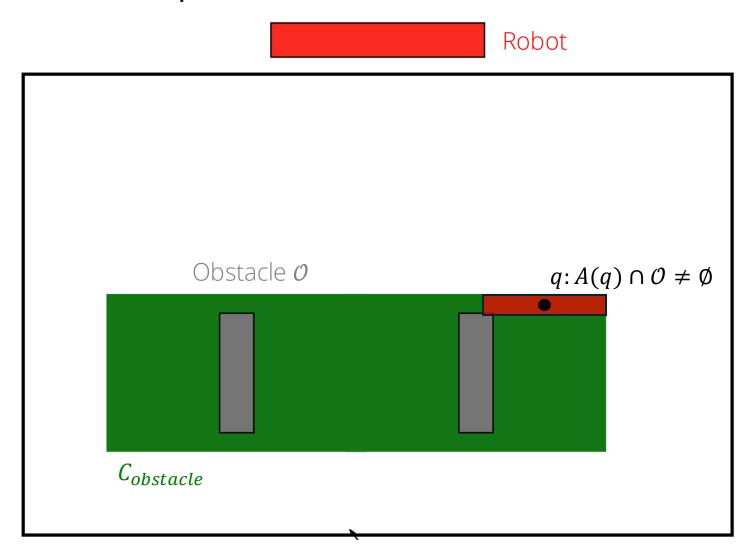


Image credit H. Choset

Example: Rotational Motion

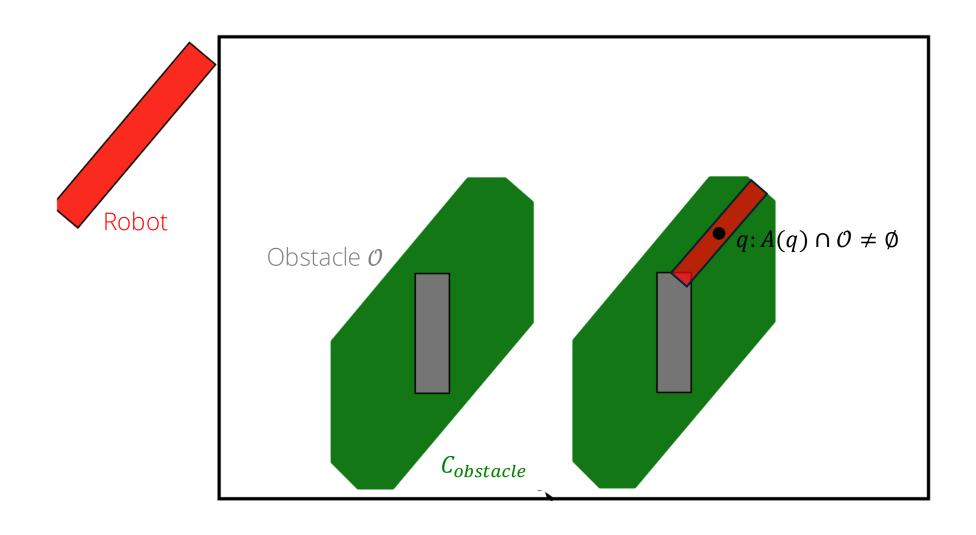
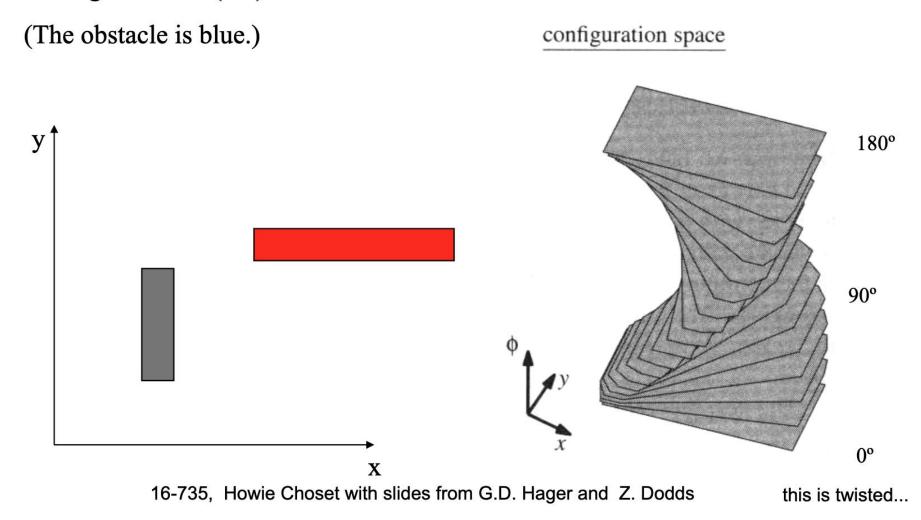
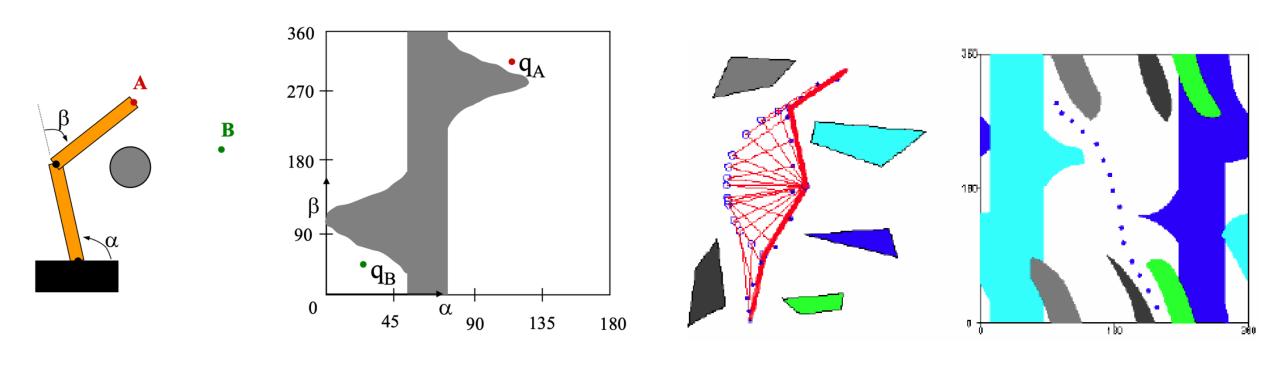


Image credit H. Choset

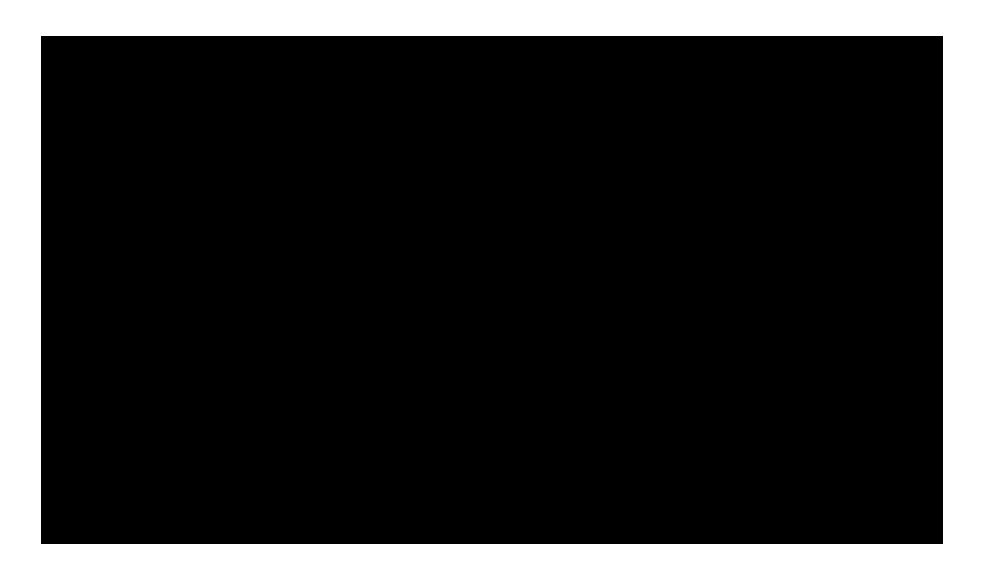
What would the configuration space of a rectangular robot (red) in this world look like?



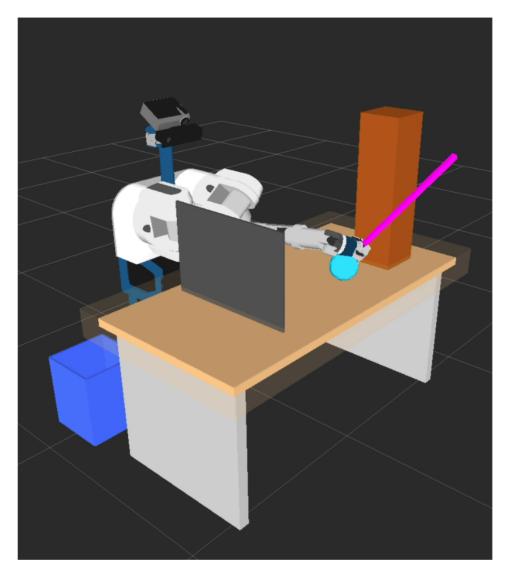
Example: 2-Link Planar Arm



Motion Planning is Hard....



Geometric Path Planning Problem



Also known as Piano Mover's Problem (Reif 79)

Given:

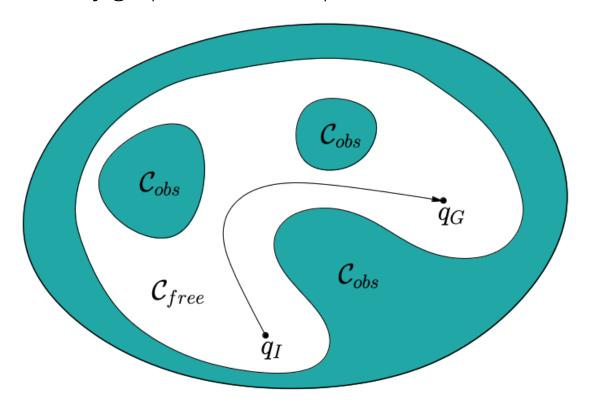
- 1. A workspace W, where either $W = \mathbb{R}^2$ or $W = \mathbb{R}^3$.
- 2. An obstacle region $\mathcal{O} \subset \mathcal{W}$.
- 3. A robot defined in W. Either a rigid body A or a collection of m links: A_1, A_2, \ldots, A_m .
- 4. The configuration space C (C_{obs} and C_{free} are then defined).
- 5. An initial configuration $q_I \in \mathcal{C}_{free}$.
- 6. A goal configuration $q_G \in \mathcal{C}_{free}$. The initial and goal configuration are often called a query (q_I, q_G) .

Compute a (continuous) path, $\tau : [0,1] \to \mathcal{C}_{free}$, such that $\tau(0) = \mathbf{q_I}$ and $\tau(1) = \mathbf{q_G}$.

Also may want to minimize cost c(au)

Geometric Path Planning Problem

We can apply previous techniques (e.g. grid-search, visibility graph, cell decomposition) here!



Also known as

Piano Mover's Problem (Reif 79)

Given:

- 1. A workspace W, where either $W = \mathbb{R}^2$ or $W = \mathbb{R}^3$.
- 2. An obstacle region $\mathcal{O} \subset \mathcal{W}$.
- 3. A robot defined in W. Either a rigid body A or a collection of m links: A_1, A_2, \ldots, A_m .
- 4. The configuration space C (C_{obs} and C_{free} are then defined).
- 5. An initial configuration $q_I \in \mathcal{C}_{free}$.
- 6. A goal configuration $q_G \in \mathcal{C}_{free}$. The initial and goal configuration are often called a query (q_I, q_G) .

Compute a (continuous) path, $\tau : [0,1] \to \mathcal{C}_{free}$, such that $\tau(0) = \mathbf{q}_I$ and $\tau(1) = \mathbf{q}_G$.

Also may want to minimize cost c(au)

Motion Planning is Hard....

10 vertices per dim

	# vertices
2	100
3	1,000
6	1,000,000
8	100,000,000
10	10,000,000,000
15	1,000,000,000,000,000
20	100,000,000,000,000,000,000

- n-joint robot has n-dim C-space
- Assume we have M vertices per dim. The n-dim C-space has M^n vertices...
- In high dimensions:
 - > Computing the C-space obstacle is hard
 - Planning is hard

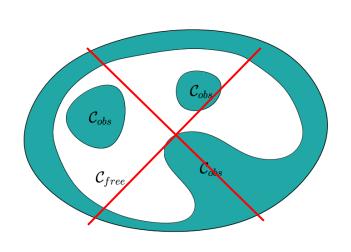
Motion Planning is Hard....

10 vertices per dim

Dimension d	# vertices
2	100
3	1,000
6	1,000,000
8	100,000,000
10	10,000,000,000
15	1,000,000,000,000,000
20	100,000,000,000,000,000,000

- n-joint robot has n-dim C-space
- Assume we have M vertices per dim. The n-dim C-space has M^n vertices...
- In high dimensions:
 - \triangleright Computing the C-space obstacle is hard Solution: Don't compute C_{obs} explicitly, instead we query a collision detector
 - Planning is hard Solution: Don't search a path from all vertices, but sampled vertices
- Idea: Don't compute until being queried!

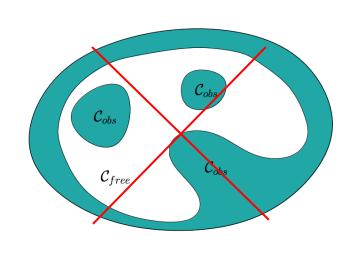
Implicit C-Obstacle Representations



• Feasibility query:

$$Feasible(q) = \begin{cases} 1, & if \ q \ is \ in \ the \ free \ space \\ 0, & if \ q \ is \ in \ the \ obstacle \ space \end{cases}$$

Implicit C-Obstacle Representations

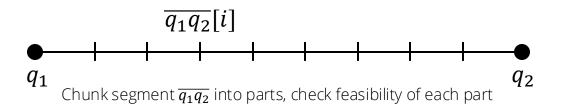


Feasibility query:

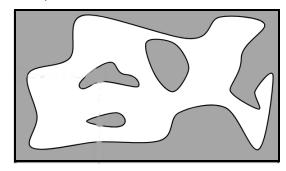
$$Feasible(q) = \begin{cases} 1, & if \ q \ is \ in \ the \ free \ space \\ 0, & if \ q \ is \ in \ the \ obstacle \ space \end{cases}$$

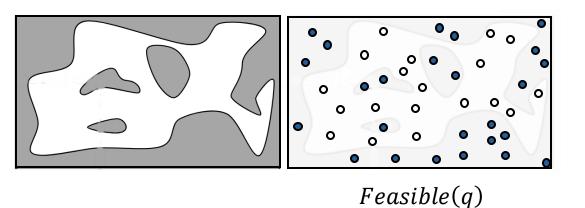
Visibility query:

$$Visible(q_1, q_2) = \begin{cases} 1, & \text{if } \overline{q_1q_2} \text{ is completly in the free space} \\ 0, & \text{if } \overline{q_1q_2} \text{ intersects the obstacle space} \end{cases}$$



We don't' have an explicit feasibility map. Just for reference...

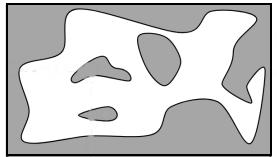


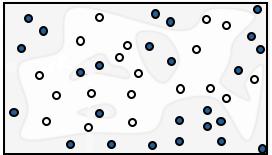


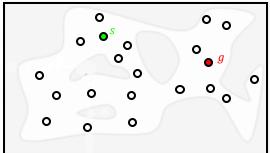
RPM Algorithm:

. Sample random N configurations from the C-space and query their feasibilities

We don't' have an explicit feasibility map. Just for reference...

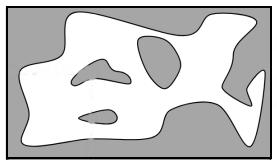


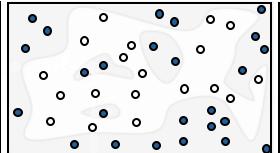


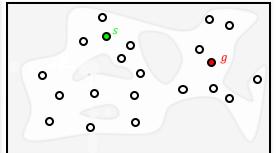


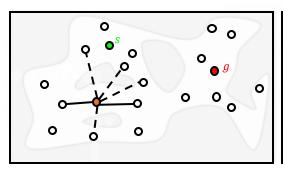
- 1. Sample random N configurations from the C-space and query their feasibilities
- 2. Add milestones (all feasible, the start and the goal configurations).

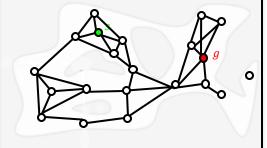
We don't' have an explicit feasibility map. Just for reference...







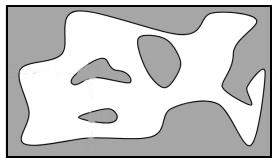


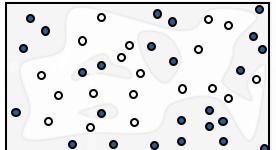


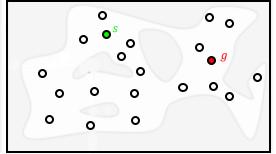
Visible(q,p)

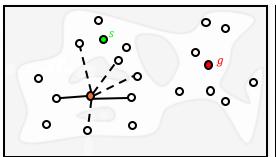
- 1. Sample random N configurations from the C-space and query their feasibilities
- 2. Add milestones (all feasible, the start and the goal configurations).
- 3. Connect pairs of neighboring milestones if they are visible

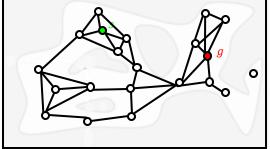
We don't' have an explicit feasibility map. Just for reference...

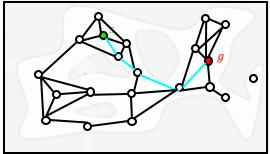












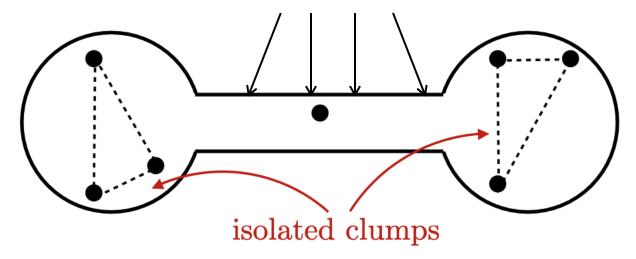
- . Sample random N configurations from the C-space and query their feasibilities
- 2. Add **milestones** (all feasible, the start and the goal configurations).
- 3. Connect pairs of neighboring milestones if they are visible
- 4. Search for a path from the start to the goal

Algorithm Basic-PRM(s,g,N)

- 1. $V \leftarrow \{s, g\}$.
- 2. $E \leftarrow \{\}$.
- 3. for i = 1, ..., N do
- 4. $q \leftarrow Sample()$
- 5. **if** not Feasible(*q*) **then** return to Line 3.
- 6. Add q to V (add q as a new milestone)
- 7. **for** all $p \in near(q, V)$
- 8. **if** Visible(p, q) **then**
- 9. Add (p, q) to E.
- 10. Search G = (V, E), with Cartesian distance as the edge cost, to connect s and g.
- 11. **return** the path if one is found.

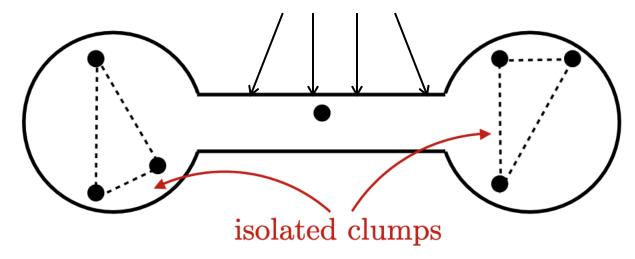
Is Uniformly Randomly Sampling Good Enough?

The narrow passage: We need more samples here



Is Uniformly Randomly Sampling Good Enough?

The narrow passage: We need more samples here

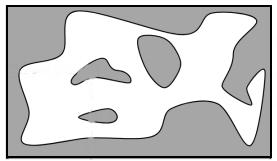


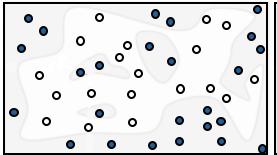
Solutions:

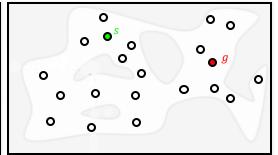
- 1. Sample near obstacle surface
- 2. Add samples that are in between two obstacles
- 3. Train a learner to detect the narrow passages

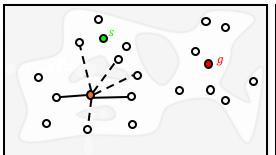
Quick summary of PRM

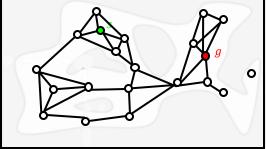
We don't' have an explicit feasibility map. Just for reference...

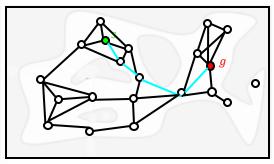




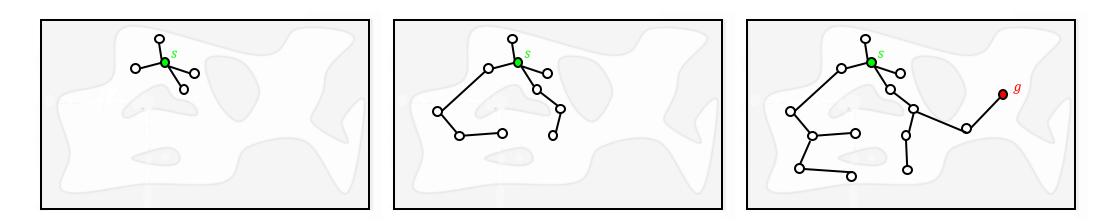








- PRM randomly samples configurations to build a roadmap, hoping to cover the free space
- PRM is great when we want to reuse the graph. For example, plan many times with different start/goal pairs
- What if we just need to plan once? For example, a robot only needs to pick up the object once



Grow a tree of feasible paths from the start to the goal configuration, instead of building a graph.

```
BUILD_RRT(q_{init})

1 \mathcal{T}.init(q_{init});

2 for k = 1 to K do

3 q_{rand} \leftarrow RANDOM\_CONFIG();

4 EXTEND(\mathcal{T}, q_{rand});

5 Return \mathcal{T}
```

How to expand the tree? Expand from the node that is the closest to the configured q

```
EXTEND(T, q)

1 q_{near} \leftarrow \text{NEAREST\_NEIGHBOR}(q, T);

2 if \text{NEW\_CONFIG}(q, q_{near}, q_{new}) then

3 T.\text{add\_vertex}(q_{new});

4 T.\text{add\_edge}(q_{near}, q_{new});

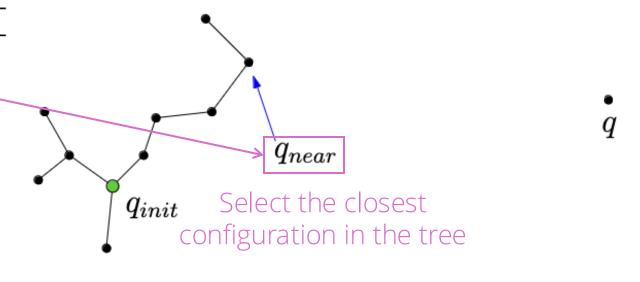
5 if q_{new} = q then

6 \text{Return } Reached;

7 else

8 \text{Return } Advanced;

9 \text{Return } Trapped;
```

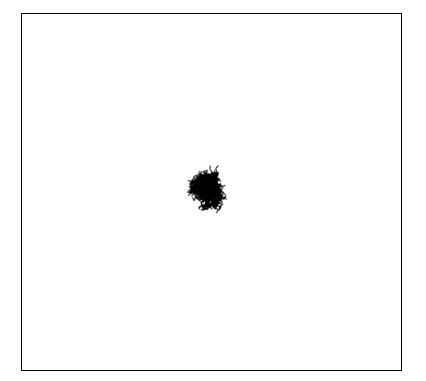


```
BUILD_RRT(q_{init})
      \mathcal{T}.\operatorname{init}(q_{init});
      for k = 1 to K do
                                                                                                   Move by at most \varepsilon from
            q_{rand} \leftarrow \text{RANDOM\_CONFIG()};
                                                                                                              q_{near} to q
            \text{EXTEND}(\mathcal{T}, q_{rand});
      Return \mathcal{T}
                                                                                                                           q_{new}
\text{EXTEND}(\mathcal{T}, q)
      q_{near} \leftarrow \text{NEAREST\_NEIGHBOR}(q, \mathcal{T});
      if \overline{\text{NEW\_CONFIG}(q,q_{near},q_{new})} then
            \mathcal{T}.\mathrm{add\_vertex}(q_{new});
                                                                                                             q_{near}
            T.add\_edge(q_{near}, q_{new});
            if q_{new} = q then
                                                                                                     Select the closest
                                                                                        q_{init}
                  Return Reached;
                                                                                               configuration in the tree
            else
                  Return Advanced;
       Return Trapped;
```

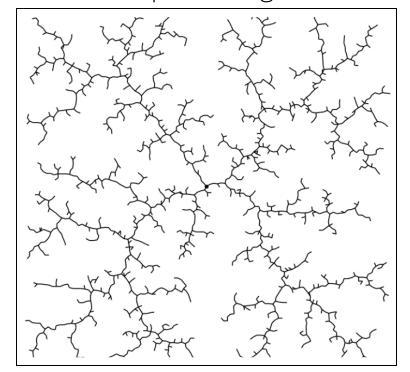
Expansion Strategy

```
\begin{array}{ll} \text{BUILD\_RRT}(q_{init}) \\ 1 & \mathcal{T}.\text{init}(q_{init}); \\ 2 & \textbf{for } k = 1 \textbf{ to } K \textbf{ do} \\ 3 & q_{rand} \leftarrow & \text{RANDOM\_CONFIG}(); \\ 4 & \text{EXTEND}(\mathcal{T}, q_{rand}); \\ 5 & \text{Return } \mathcal{T} \end{array} \qquad \begin{array}{l} \text{Sample random configuration with probability } \\ p, \text{ and the goal with probability } 1 - p \end{array}
```

Randomly uniformly sampling

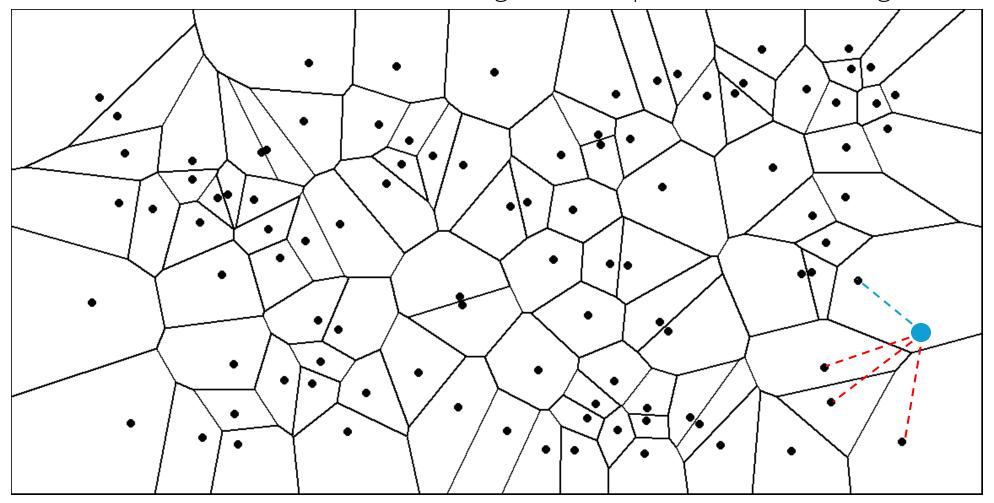


Biased sampling toward unexplored regions

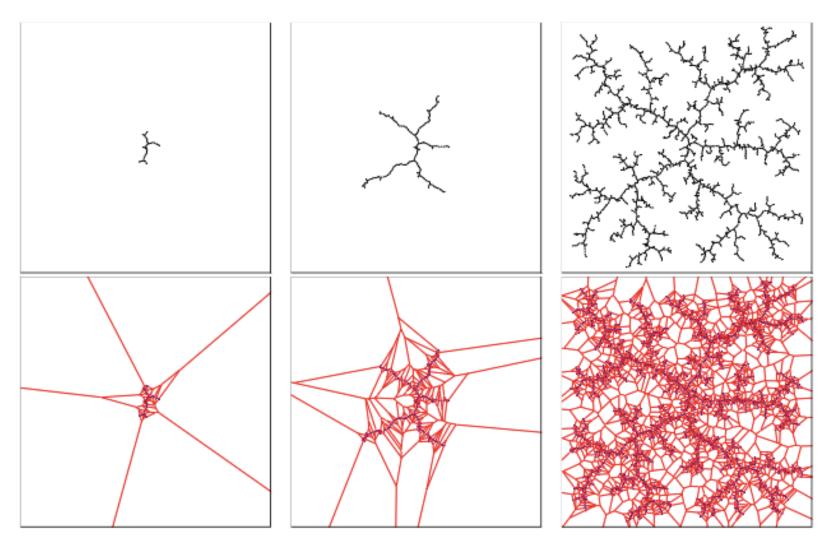


Voronoi Diagram

Voronoi diagram: nearest-neighbor segmentation. Assign each pixel to the nearest node. We can check the area of each region and explore more in the large ones.



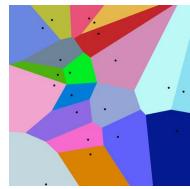
Voronoi Bias Strategy



Sample random configuration with probability p, which is proportional to the volume of its Voronoi cell.

Bias sampling toward unexplored areas.

Voronoi diagram: nearestneighbor segmentation



RRT-Connect: Bi-direction RRTs

```
CONNECT(\mathcal{T}, q)

1 repeat

2 S \leftarrow \text{EXTEND}(\mathcal{T}, q);

3 until not (S = Advanced) # new configuration is added

4 Return S;

RRT_CONNECT_PLANNER(q_{init}, q_{goal})
```

```
RRT_CONNECT_PLANNER(q_{init}, q_{goal})

1 \mathcal{T}_a.\operatorname{init}(q_{init}); \mathcal{T}_b.\operatorname{init}(q_{goal});

2 for k = 1 to K do

3 q_{rand} \leftarrow \operatorname{RANDOM\_CONFIG}();

4 if not (\operatorname{EXTEND}(\mathcal{T}_a, q_{rand}) = \operatorname{Trapped}) then

5 if (\operatorname{CONNECT}(\mathcal{T}_b, q_{new}) = \operatorname{Reached}) then

6 Return \operatorname{PATH}(\mathcal{T}_a, \mathcal{T}_b);

7 \operatorname{SWAP}(\mathcal{T}_a, \mathcal{T}_b);

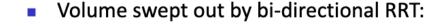
8 Return \operatorname{Failure}
```

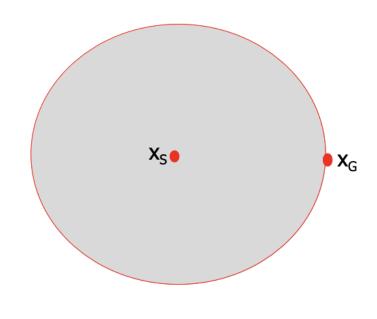
Greedily move from q_{near} to q_{rand}

Grow two trees, one from the start and another from the goal

Single Tree vs. Double Trees

Volume swept out by unidirectional RRT:

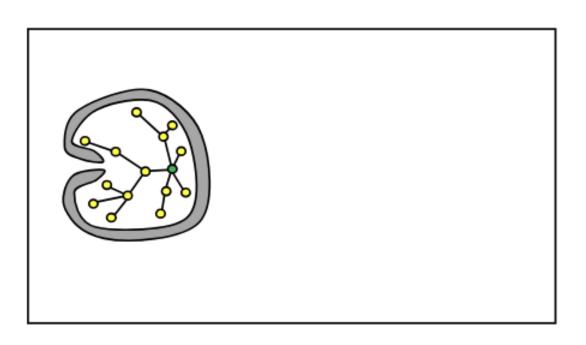


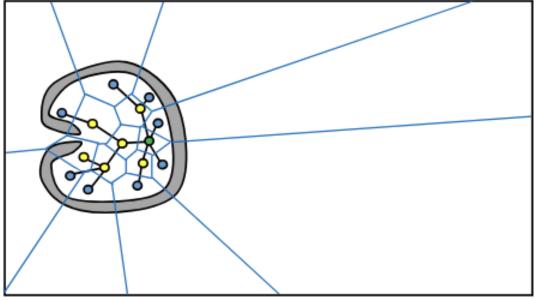


Difference more and more pronounced as dimensionality increases

Image credit D. Fox 62

RRT Still Has Problems...

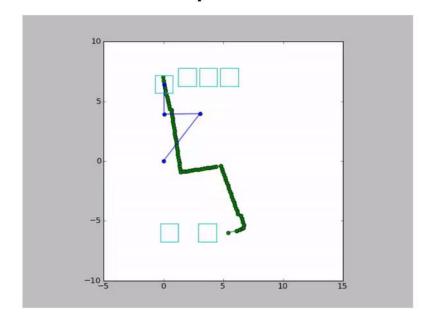


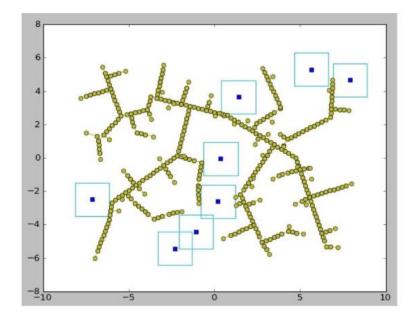


- The "bugtrap" problem: due to the Voronoi bias, RRT frequently attempts infeasible extensions
- To escape the mouth of a bugtrap, we need to sample a very carefully chosen sequence of milstones within the general area that it has already explored
- A tradeoff between exploring new regions and refine the roadmap of explored areas

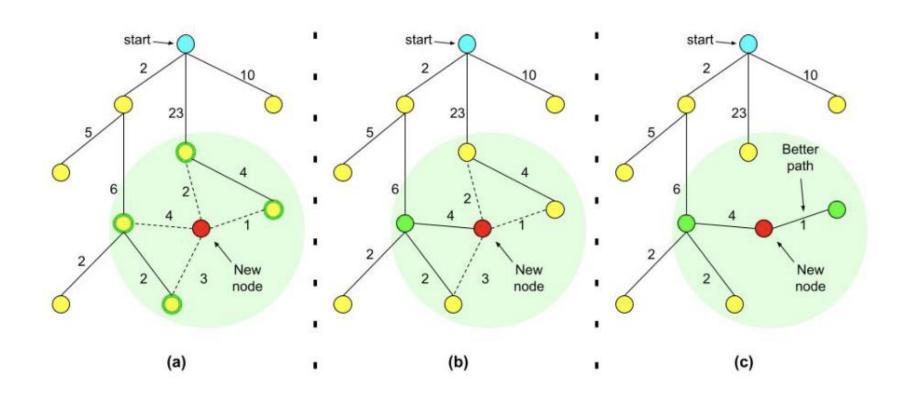
RRT Still Has Problems...

- RRT guarantees probabilistic completeness but not optimality (shortest path)
 - In practice leads to paths that are very roundabout and non-direct -> not shortest paths





RRT*: RRT + Re-Wiring



- Can we find more optimal path passing through q_{new} ?
- Can we find more optimal path to q_{new} ?

RRT*: RRT + Re-Wiring

Algorithm RRT*

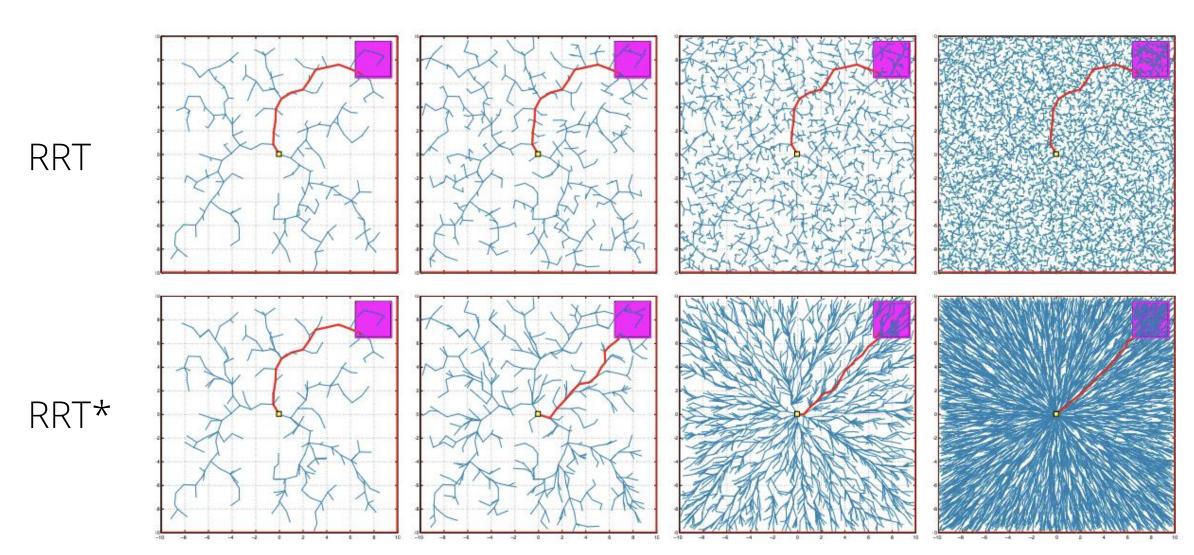
- 1. $T \leftarrow \{s\}$..
- 2. for i = 1, ..., N do
- 3. $q_{rand} \leftarrow Sample()$
- 4. $q_e \leftarrow \text{Extend-Tree}(T, q_{rand}, \delta)$
- 5. if $q_e \neq nil$ then Rewire $(T, q_e, |T|)$
- 6. if $d(q_e, g) \leq \delta$ and Visible (q_e, g) then
- 7. Add edge $q_e \rightarrow g$ to T
- 8. $c(g) = \cos t$ of optimal path from s to g, if g is connected, and ∞ otherwise
- 9. return "no path"

RRT*: RRT + Re-Wiring

Algorithm Rewire (T, q_{new}, n)

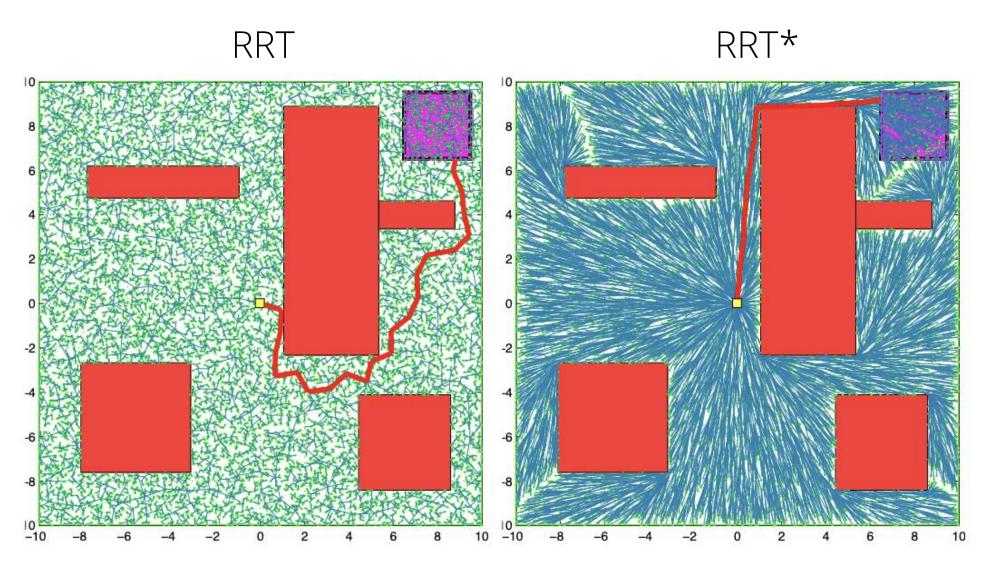
- 1. Neighbors \leftarrow Set of $k^*(n)$ -nearest neighbors in T, or points in $R^*(n)$ -neighborhood.
- 2. for $q \in Neighbors$ sorted by increasing c(q) do
- 3. if $c(q_{new}) + d(q_{new}, q) < c(q)$ then (optimal path to q passes through q_{new})
- 4. $c(q) \leftarrow c(q_{new}) + d(q_{new}, q)$
- Update costs of descendants of q.
- 6. if $c(q) + d(q, q_{new}) < c(q_{new})$ then (optimal path to q_{new} passes through q)
- 7. $c(q_{new}) \leftarrow c(q) + d(q, q_{new})$
- 8. Set parent of q_{new} to q.
- 9. Revise costs and parents of descendants of q_{new} .

RRT vs. RRT*

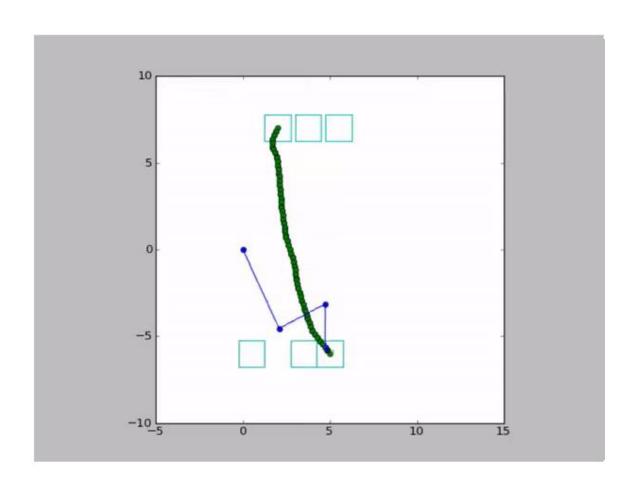


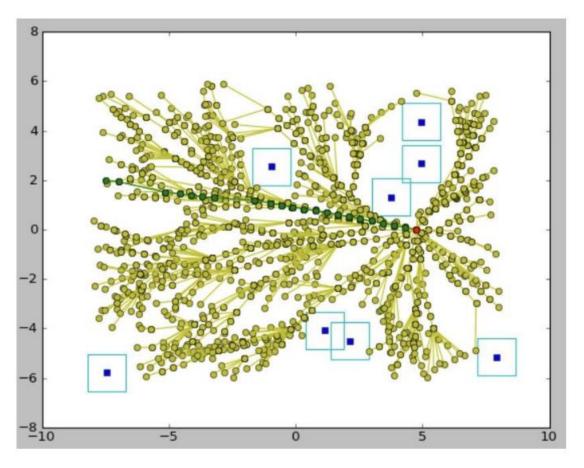
Sampling-based Algorithms for Optimal Motion Planning. S. Karaman and E. Frazzoli.

RRT vs. RRT*



RRT*





Virtual Potential Fields

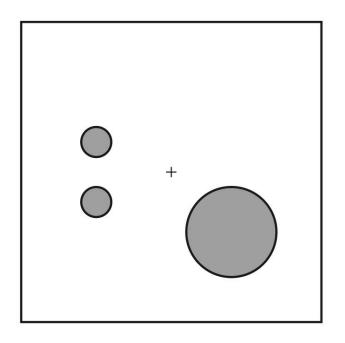
- From physics we know that a potential field P(q) defined over C induces a force $F = -\frac{\partial P}{\partial q}$ that drives an object from high to low potential.
- In robotics, we can define a potential field and derive the corresponding force, with which we drive the configuration q from high to low potential.
- The potential field of reaching a goal:

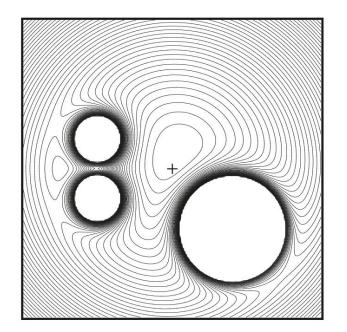
$$\mathcal{P}_{\mathrm{goal}}(q) = \frac{1}{2}(q - q_{\mathrm{goal}})^{\mathrm{T}}K(q - q_{\mathrm{goal}}), \qquad F_{\mathrm{goal}}(q) = -\frac{\partial \mathcal{P}_{\mathrm{goal}}}{\partial q} = K(q_{\mathrm{goal}} - q),$$

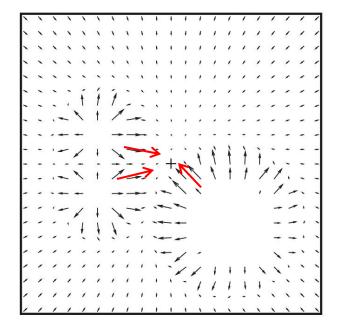
• The potential field induced by a C-obstacle β

$$\mathcal{P}_{\mathcal{B}}(q) = rac{k}{2d^2(q,\mathcal{B})}$$

$$F_{\mathcal{B}}(q) = -rac{\partial \mathcal{P}_{\mathcal{B}}}{\partial q} = rac{k}{d^3(q,\mathcal{B})} rac{\partial d}{\partial q}.$$







Pushing configuration to regions with low potential

$$q_{t+1} = q_t + \frac{\Delta t}{m} \Sigma F$$

Non-Linear Optimization

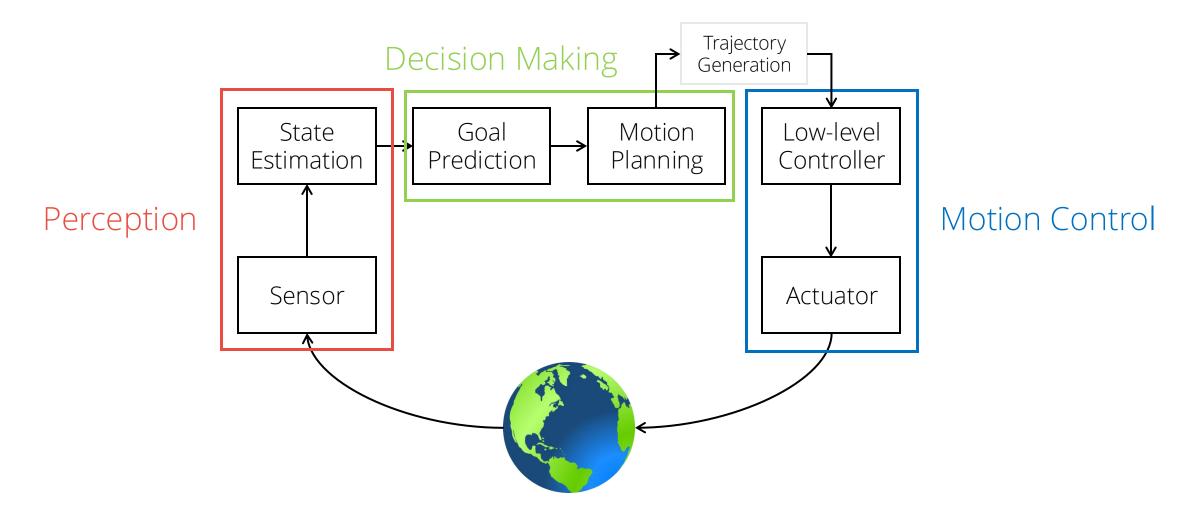
• We can consider path planning as an optimization problem

find	u(t),q(t),T		(10.6)
minimizing	J(u(t),q(t),T)		(10.7)
subject to	$\dot{x}(t) = f(x(t), u(t)),$	$\forall t \in [0, T],$	(10.8)
	$u(t) \in \mathcal{U},$	$\forall t \in [0, T],$	(10.9)
	$q(t) \in \mathcal{C}_{\mathrm{free}},$	$\forall t \in [0, T],$	(10.10)
	$x(0) = x_{\text{start}},$		(10.11)
	$x(T) = x_{\text{goal}}.$		(10.12)

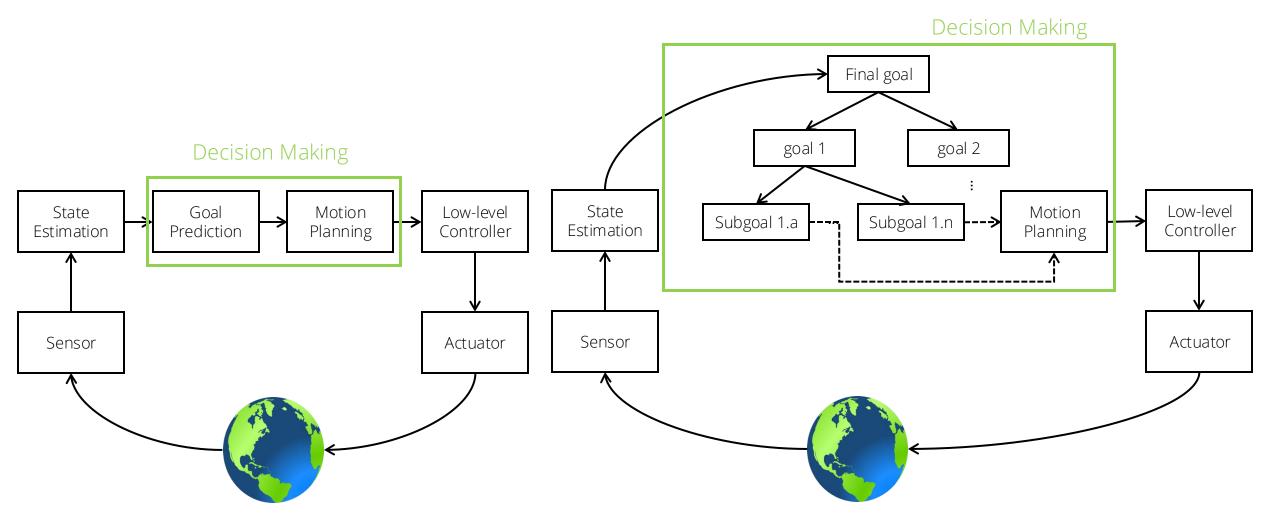
• We can parametrize control u(t) and path q(t) with the coefficients of (1) a polynomial, (2) a truncated Fourier series, (3) spline, (4) wavelet, or (5) piecewise constant acceleration segments in time.

For more on Motion Planning, check "Planning Algorithms" by Steven M. LaValle

Action Requires Deciding a Goal, Planning to Achieve the Goal, and Controlling Motion to Follow the Plan

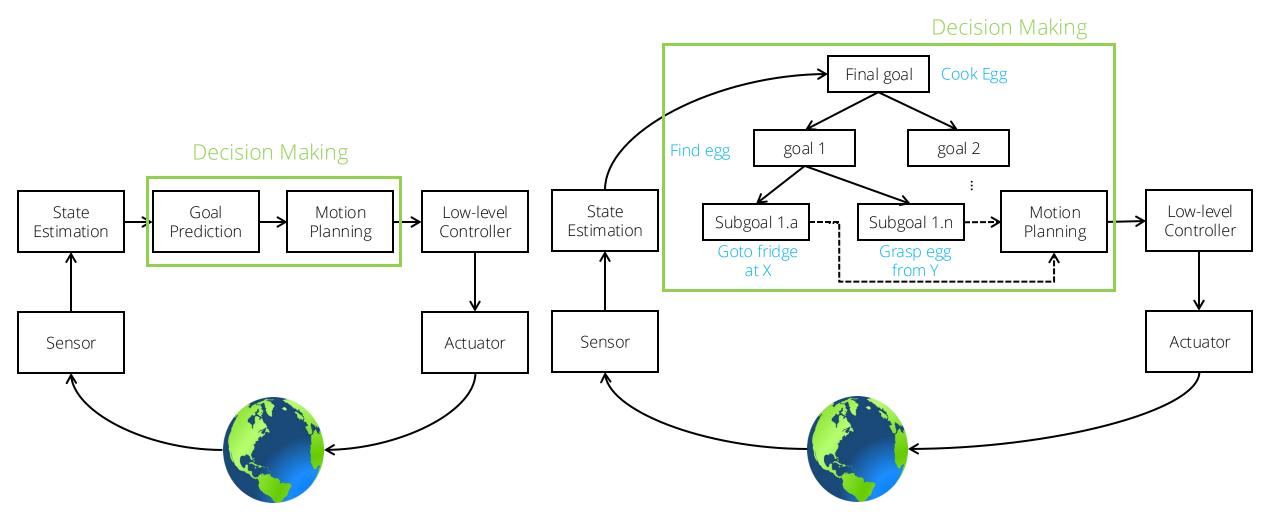


Decision Making is in fact Hierarchical



Oversimplified!

Decision Making is in fact Hierarchical



Oversimplified!

Decision Making Should be Adaptive w.r.t the Kinematic and Geometric Feasibility



Decision Making Should be Adaptive w.r.t the Kinematic and Geometric Feasibility



We Need to Decide What are the Tasks, the Order of the Tasks, the Goal per Task, the Motion/Path to Achieve the Goal

Task: Put the mustard in the blue region

SubTask1: Grasp the mustard

- Subgoal configuration of the gripper pose
 - ➤ Motion planning for the trajectory

SubTask2: Lift up the mustard

- Subgoal configuration of the gripper pose
 - ➤ Motion planning for the trajectory

SubTask3: Carry the mustard above the blue region

- Subgoal configuration of the gripper pose
 - Motion planning for the trajectory

SubTask4: Put down the mustard

- Subgoal configuration of the gripper pose
 - Motion planning for the trajectory

We Need to Decide What are the Tasks, the Order of the Tasks, the Goal per Task, the Motion/Path to Achieve the Goal

Task: Put the mustard in the blue region

The plan is not feasible, since the robot can't reach the occluded mustard

SubTask1: Grasp the mustard

- Subgoal configuration of the gripper pose
 - Motion planning for the trajectory

SubTask2: Lift up the mustard

- Subgoal configuration of the gripper pose
 - ➤ Motion planning for the trajectory

SubTask3: Carry the mustard above the blue region

- Subgoal configuration of the gripper pose
 - Motion planning for the trajectory

SubTask4: Put down the mustard

- Subgoal configuration of the gripper pose
 - Motion planning for the trajectory

We Need to Replan Based on Kinematic and Geometric Feasibility

Task: Put the mustard in the blue region

SubTask 1: Grasp the Cheezit

:

SubTask N: Grasp the mustard

- Subgoal configuration of the gripper pose
 - Motion planning for the trajectory

SubTask N+1: Lift up the mustard

- Subgoal configuration of the gripper pose
 - Motion planning for the trajectory

SubTask N+2: Carry the mustard above the blue region

- Subgoal configuration of the gripper pose
 - Motion planning for the trajectory

SubTask N+3: Put down the mustard

- Subgoal configuration of the gripper pose
 - Motion planning for the trajectory

Classical Task Planning: Decide Which Tasks and the Ordering of the Tasks

Task: Put the mustard in the blue region

SubTask 1: Grasp the Cheezit

:

SubTask N: Grasp the mustard

- Precondition
- Effect

SubTask N+1: Lift up the mustard

- Precondition
- Effect

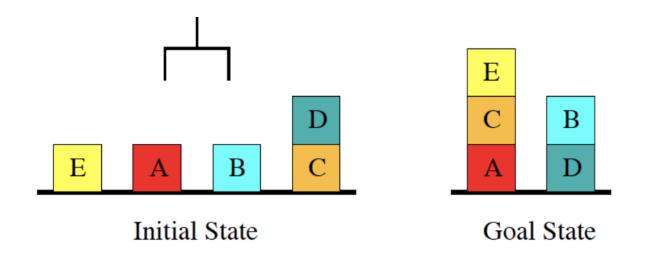
SubTask N+2: Carry the mustard above the blue region

- Precondition
- Effect

SubTask N+3: Put down the mustard

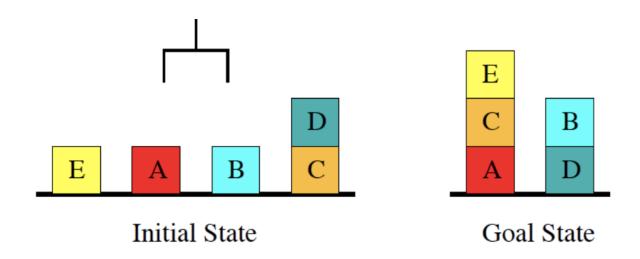
- Precondition
- Effect ← leads to the final goal (mustard in the blue region)

State Representations of Objects



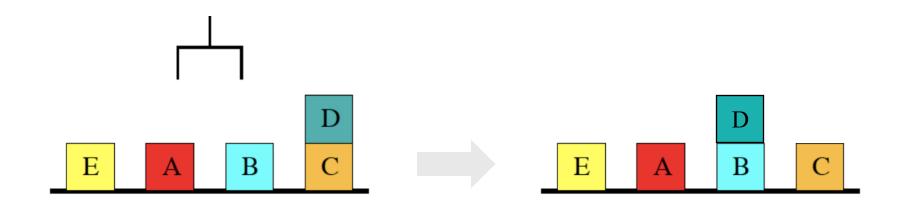
• The world is abstracted into a <u>discrete</u> space with <u>many variables</u> (e.g. A, B, C, D, E)

State Representations of Objects



- The world is abstracted into a <u>discrete</u> space with <u>many variables</u> (e.g. A, B, C, D, E)
- State representations of objects:
 - > Predicate: Boolean function
 - > Facts (literals): instantiated predicates
 - > States: set of facts

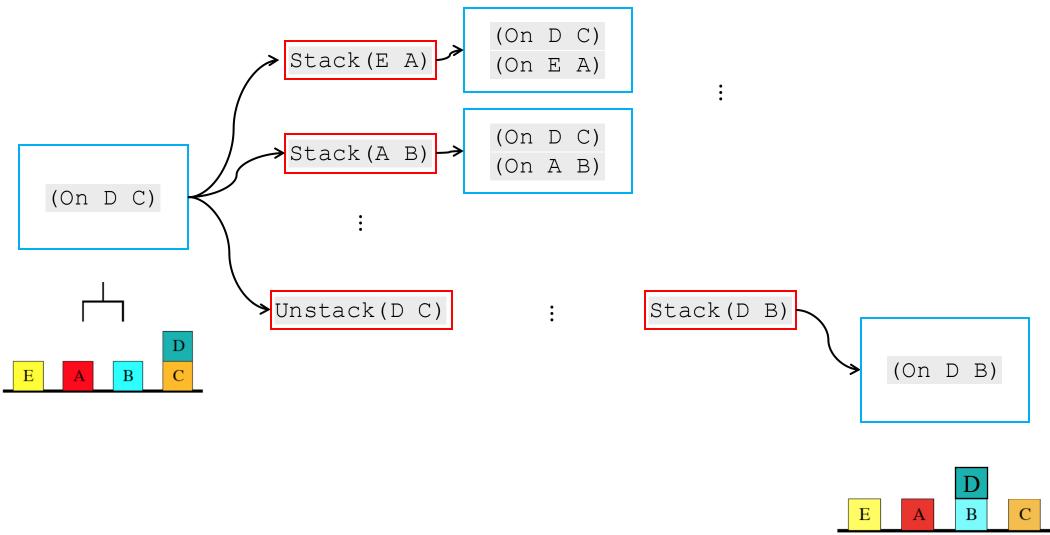
Actions Lead to Transitions between States



```
(:action stack
    :parameters (?b1 ?b2)
    :precondition (and
          (Holding ?b1) (Clear ?b2))
    :effect (and
          (ArmEmpty)
          (On ?b1 ?b2) (Clear ?b1)
          (not (Holding ?b1))
          (not (Clear ?b2))))
```

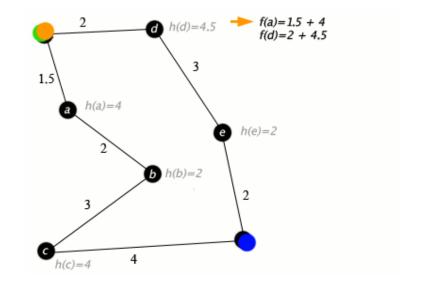
- Action:
 - Preconditions test feasibility of the action
 - Effects describe changes to a set of states
 - Parameters show the set of states involved in the action

Task Planning: Search a sequence of actions that convert the initial states to the goal states

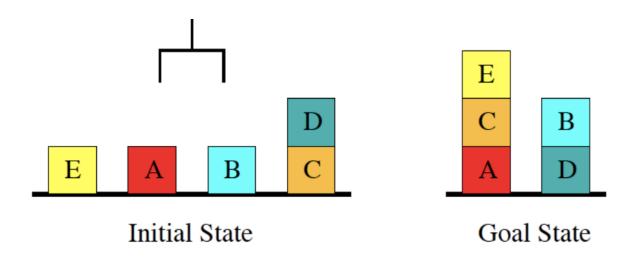


Forward Best-First Search

- \blacksquare For a state s
 - Path cost: g(s)
 - Heuristic estimate: h(s) ← How close to the goal
 - lacksquare Open list **sorted** by priority f(s)
- Weighted A*: f(s) = g(s) + wh(s)
 - Uniform cost search: $w = 0 \implies f(s) = g(s)$
- **A*** search: $w=1 \implies f(s)=g(s)+h(s)$
- Greedy best-first search: $w = \infty \implies f(s) = h(s)$
- How do we estimate h(s)?
 - No obvious metric (no metric-space embedding)

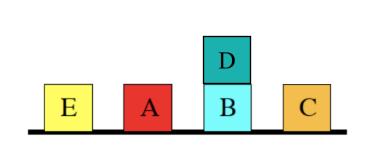


Classical Task Planning



- Initial states: (On D C)
- Goal states: { (On E C), (On C A), (On B D) }
- Actions:
 - 1. Unstack(D, C)
 - 2. Stack(D, B)
 - 3. Stack(C, A)
 - 4. Stack(E, C)
 - 5. Unstack(D, B)
 - 6. Stack(B, D)

However, Discretized States and Actions Oversimplify the World and Robot-Object Interaction

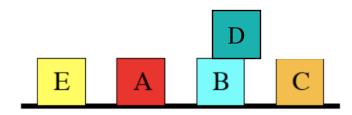


Abstract states

(On D B)

Continuous object configurations

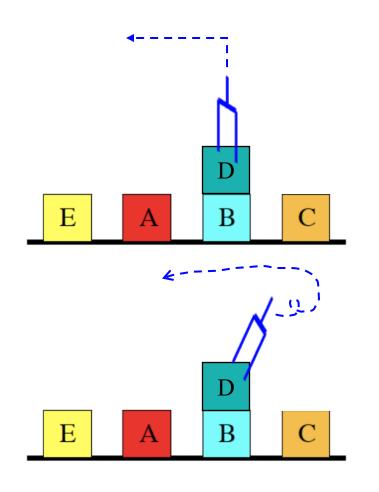
(On D B,
$$p_x=0.0$$
, $p_y=1.0$)



(On D B)

(On D B, $p_x=0.2$, $p_y=1.0$)

However, Discretized States and Actions Oversimplify the World and Robot-Object Interaction



Abstract action

Unstack(D B)

Unstack(D B)

Continuous object configurations

Unstack(D B)
$$p_{gripper} = <0.2$$
, 1.0, 30°> trajectory= τ

Parameterize States with Continuous Variables

Parameters:

?b: block

?p: 6DoF object pose

Static Predicates:

AtPose: is block?b at pose?p

Above: is pose ?p1 above pose ?p2

Parameterize States with Continuous Variables

Parameters:

?b: block

?p: 6DoF object pose

?g: 6DoF robot's end-effector pose

?q: Robot's configuration

Static Predicates:

Kin: Are a grasp?g and robot configuration?q valid

when block ?b is at pose ?p

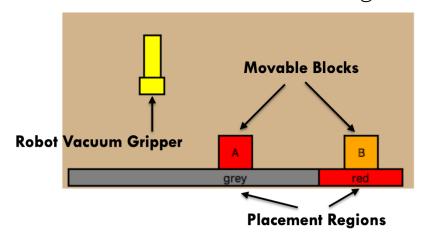
AtPose: is block?b at pose?p

Empty: is the robot's end-effector is empty

Holding: is block?b hold by a grasp?g AtConf: is the robot at configuration?q

Task and Motion Planning: Plan a sequence of Actions and their Continuous Parameters

Task: Put block A in the red region

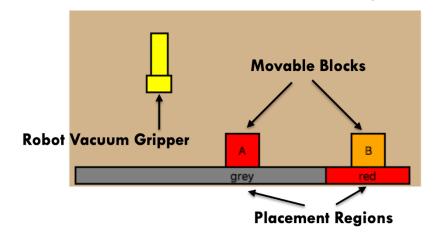


- Static initial facts value is constant over time
- (Block, A), (Block, B), (Region, red), (Region, grey),

- Fluent initial facts value changes over time
 - (AtConf, [-7.5 5.]), (HandEmpty),
 (AtPose, A, [0. 0.]), (AtPose, B, [7.5 0.])
- Goal formula: (exists (?p) (and (Contained A ?p red) (AtPose A ?p)))

Task and Motion Planning: Plan a sequence of Actions and their Continuous Parameters

Task: Put block A in the red region



We need to decide the discrete action class and its continuous parameters! (AtConf, [0. 2.5]) (AtPose, A, [0. 0.]) (AtPose, B, [7.5 0.]) pick, A, [0. 0.], [0. -2.5], [0. 2.5]) $[-7.5 5.], \tau_1, [0. 2.5]$ (HandEmpty) (AtConf, [-7.5 5.]) (AtConf, [0. 2.5]) Initial (AtPose, A, [0. 0.]) (AtGrasp, A, [0. -2.5]) State (AtPose, B, [7.5 0.]) (AtPose, B, [7.5 0.]) (HandEmpty) move, [-5. 5.], τ_3 , [0. 2.5]) **move** [-7.5 5.], τ_2 , [-5. 5.] (AtConf, [-5. 5.]) (AtPose, A, [0. 0.]) (AtPose, B, [7.5 0.]) (HandEmpty)

No a Priori Discretization

Values given at start:

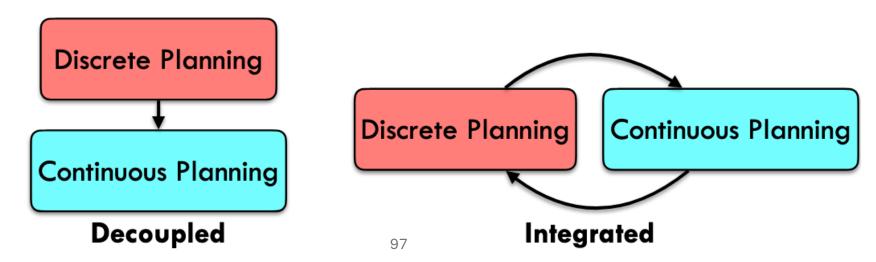
- 1 initial configuration: (Conf, [-7.5 5.])
- 2 initial poses: (Pose, A, [0. 0.]), (Pose, B, [7.5 0.])
- 2 grasps: (Grasp, A, [0. -2.5]), (Grasp, B, [0. -2.5])

Planner needs to find:

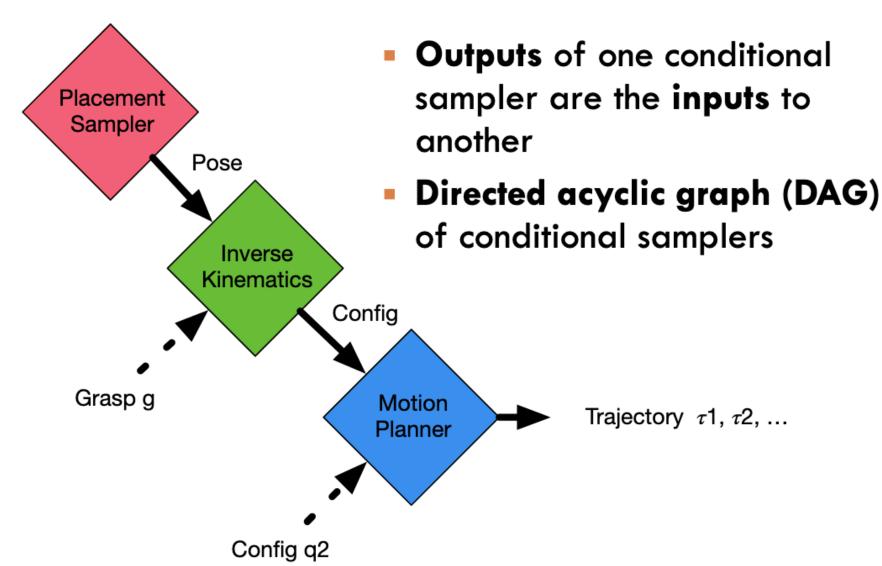
- Action classes: pick, move, place ...
- 1 pose within a region: (Contain A ?p red)
- 1 collision-free pose: (CFree A ?p ? B ?p2)
- 4 grasping configurations: (Kin ?b ?p ?g ?q)
- 4 robot trajectories: (Motion ?q1 ?t ?q2)

Decoupled vs Integrated TAMP

- Decoupled: discrete (task) planning then continuous (motion) planning
- Requires a strong downward refinement assumption
 - Every correct discrete plan can be refined into a correct continuous plan (from hierarchal planning)
- Integrated: <u>simultaneous</u> discrete & continuous planning

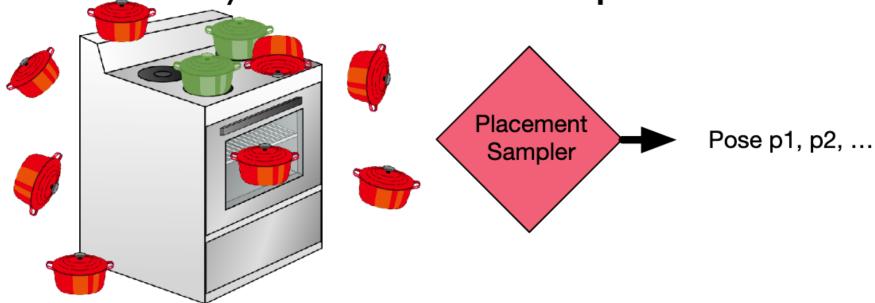


Obtain Continuous Action Parameters by Sampling



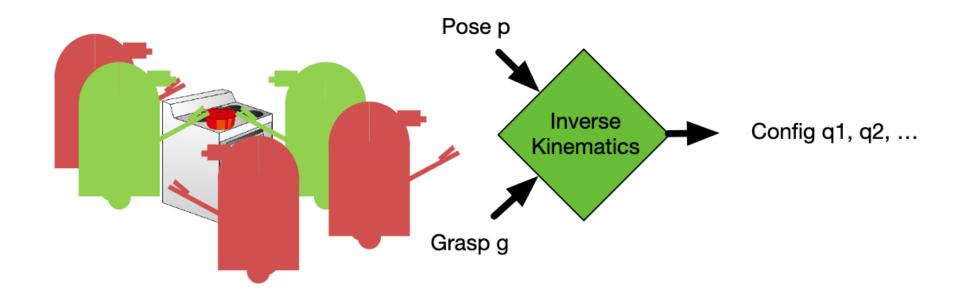
What Samplers Do We Need?

- Low-dimensional placement stability constraint (Contain)
 - i.e. 1D manifold embedded in 2D pose space
- Directly sample values that satisfy the constraint
- May need arbitrarily many samples
 - Gradually enumerate an infinite sequence



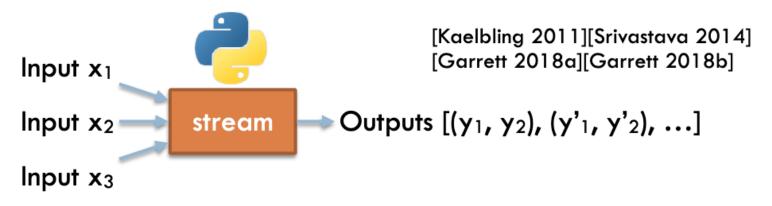
Intersection of Constraints

- Kinematic constraint (Kin) involves poses, grasps, and configurations
- Conditional samplers samplers with inputs



Stream: a function to a generator

- Advantages
 - Programmatic implementation
 - Compositional
 - Supports infinite sequences
- def stream(x1, x2, x3):
 i = 0
 while True:
 y1 = i*(x1 + x2)
 y2 = i*(x2 + x3)
 yield (y1, y2)
 i += 1
- Stream function from an input object tuple (x1, x2, x3) to a (potentially infinite) sequence of output object tuples [(y1, y2), (y'1, y'2), ...]



Sampling Contained Poses

(:stream sample-region :inputs (?b ?r) :domain (and (Block ?b) (Region ?r)) :outputs (?p) :certified (and (Pose ?b ?p) (Contain ?b ?p ?r))) def sample_region(b, r): $x_min, x_max = REGIONS[r]$ w = BLOCKS[b].widthwhile True: $x = random.uniform(x_min + w/2,$ $x_max - w/2)$ p = np.array([x, 0.])yield (p,) Block b sample-region Pose [(p), (p'), (p"), ...] Region r

Sampling IK Solutions

73

- Inverse kinematics (IK) to produce robot grasping configuration
 - Trivial in 2D, non-trial in general (e.g. 7 DOF arm)

Calling a Motion Planner

- "Sample" (e.g. via a PRM) multi-waypoint trajectories
- Include joint limits & fixed obstacle collisions, but not movable object collisions

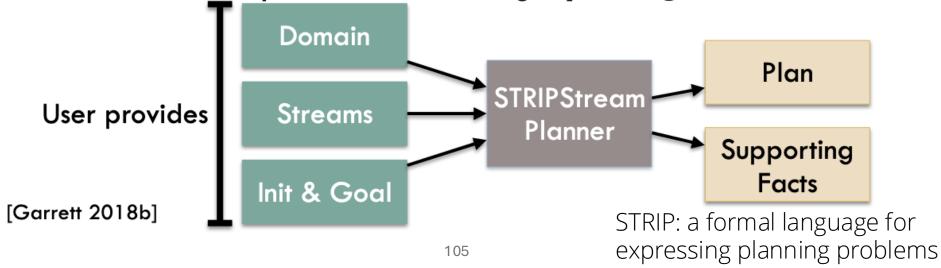
```
(:stream sample-motion
    :inputs (?q1 ?q2)
    :domain (and (Conf ?q1) (Conf ?q2))
    :outputs (?t)
    :certified (and (Traj ?t) (Motion ?q1 ?t ?q2)))
```



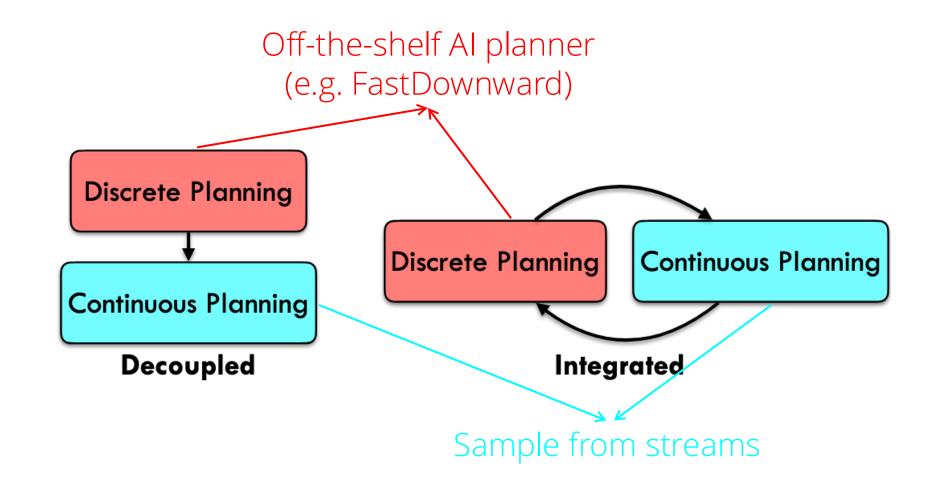
```
Conf q_1
sample-motion Trajectory [(t)]
Conf q_2
```

STRIPStream = STRIPS + Streams

- Domain dynamics (domain.pddl): declares actions
- Stream properties (stream.pddl)
 - Declares stream inputs, outputs, and certified facts
- Problem and stream implementation (problem.py)
 - Initial state, Python constants, & goal formula
 - Stream implementation using Python generators

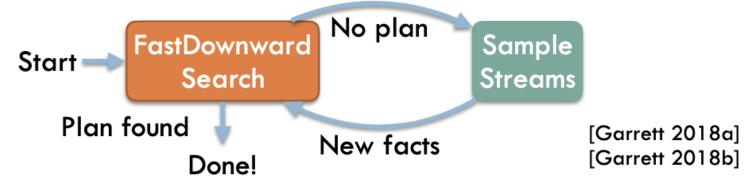


Obtain Continuous Action Parameters by Sampling



Incremental Algorithm

- Incrementally construct all possible initial facts
- Periodically check if a solution exists
- Repeat:
 - 1. Compose and evaluate a finite number of streams to unveil more facts in the initial state
 - 2. **Search** the current PDDL problem for plan
 - 3. Terminate when a plan is found

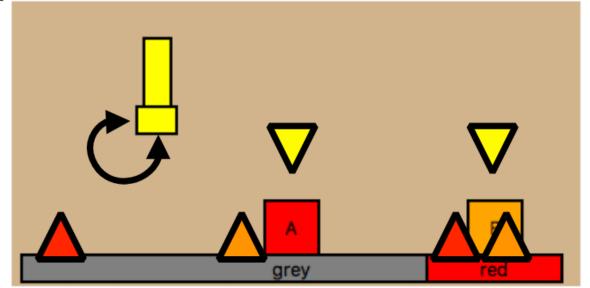


Incremental: Sampling Iteration 1

81

Iteration 1 - 14 stream evaluations

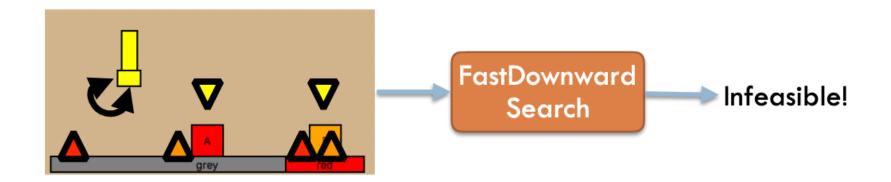
- Sampled:
 - 2 new robot configurations:
 - 4 new block poses:
 - 2 new trajectories:



Incremental: Search Iteration 1

82

- Pass current discretization to FastDownward
- If infeasible, the current set of samples is insufficient



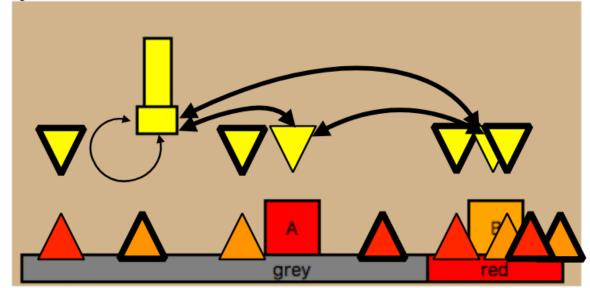
109

Incremental: Sampling Iteration 2

83

Iteration 2 - 54 stream evaluations

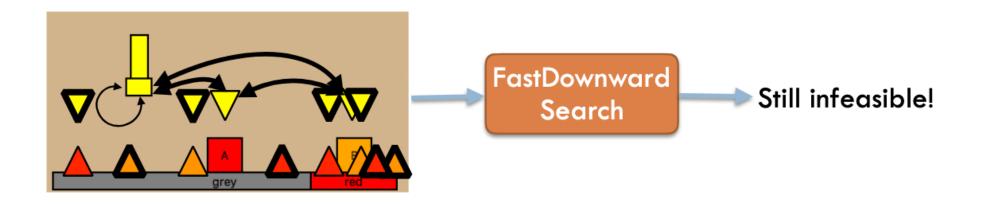
- Sampled:
 - 4 new robot configurations:
 - 4 new block poses:
 - 10 new trajectories:



Incremental: Search Iteration 2

84

- Pass current discretization to FastDownward
- If infeasible, the current set of samples is insufficient



Incremental Example: Iterations 3-4

85

Iteration 3 - 118 stream evaluations **Iteration 4** - 182 stream evaluations

Solution:

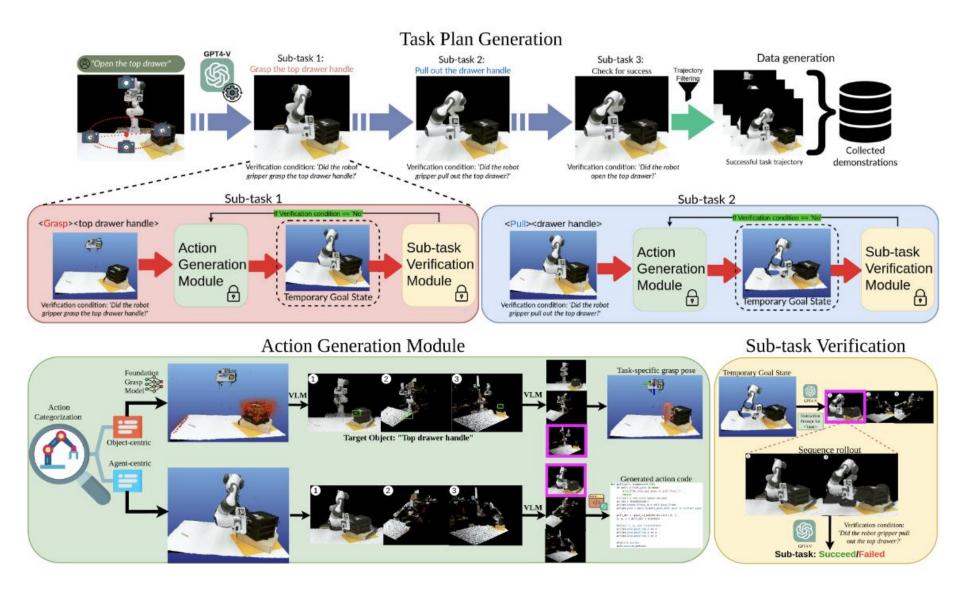
- 1) move [-7.5 5.] [[-7.5 5.], [-7.5 5.], [7.5 5.], [7.5 2.5]] [7.5 2.5]
- 2) pick B [7.5 0.] [0. -2.5] [7.5 2.5]
- 3) move [7.5 2.5] [[7.5 2.5], [7.5 5.], [10.97 5.], [10.97 2.5]] [10.97 2.5]
- 4) place B [10.97 0.] [0. -2.5] [10.97 2.5]
- 5) move [10.97 2.5] [[10.97 2.5], [10.97 5.], [0. 5.], [0. 2.5]] [0. 2.5]
- 6) **pick A** [0. 0.] [0. -2.5] [0. 2.5]
- 7) move [0. 2.5] [[0. 2.5], [0. 5.], [7.65 5.], [7.65 2.5]] [7.65 2.5]
- 8) **place A** [7.65 0.] [0. -2.5] [7.65 2.5]
- Drawback many unnecessary samples produced
 - Computationally expensive to generate
 - Induces large discrete-planning problems

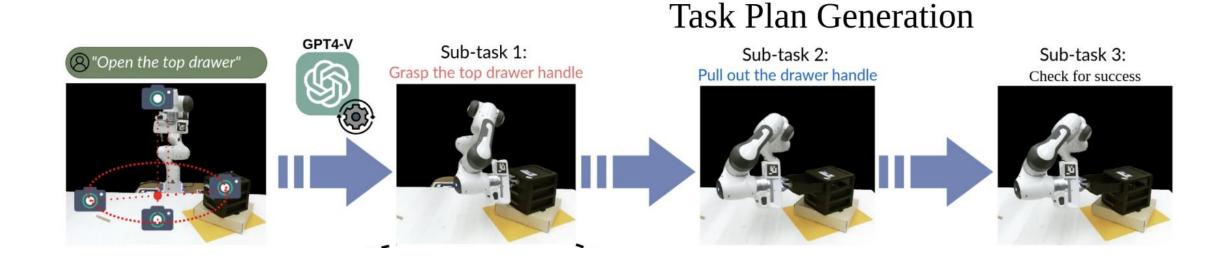
What are the Assumptions / Limitations?

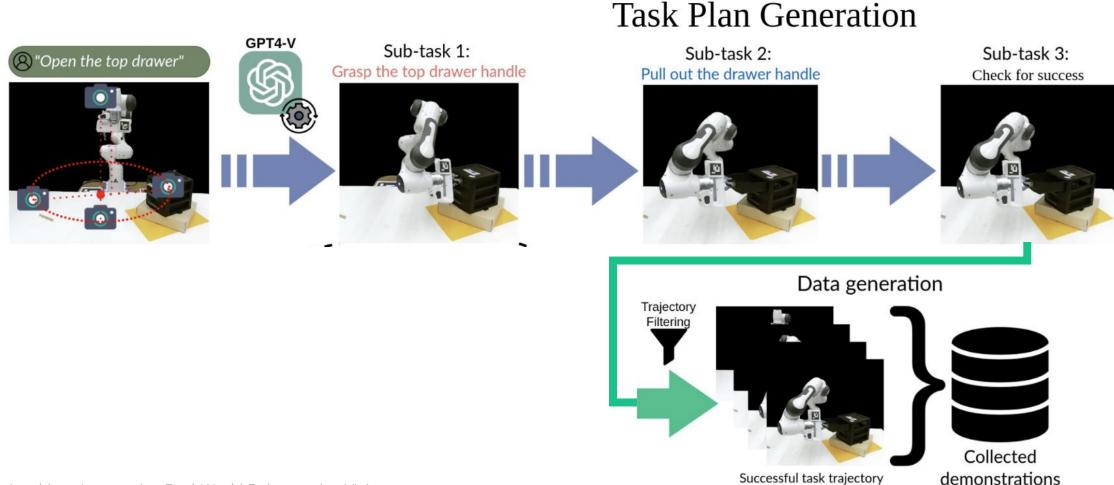
• Limitations:

- ➤ TAMP needs to hand craft samplers for (sub)goal configurations. How to generalize to novel objects / scene.
- ➤ TAMP needs to pre-define action classes. How to generalize to unseen tasks?
- > TAMP assumes deterministic actions, which produce the same intended effect all the time
- ➤ TAMP assumes perfect perception. Robots know the perfect object states.
- > TAMP has heavy computational overhead.
- What are the modern ways to do TAMP?

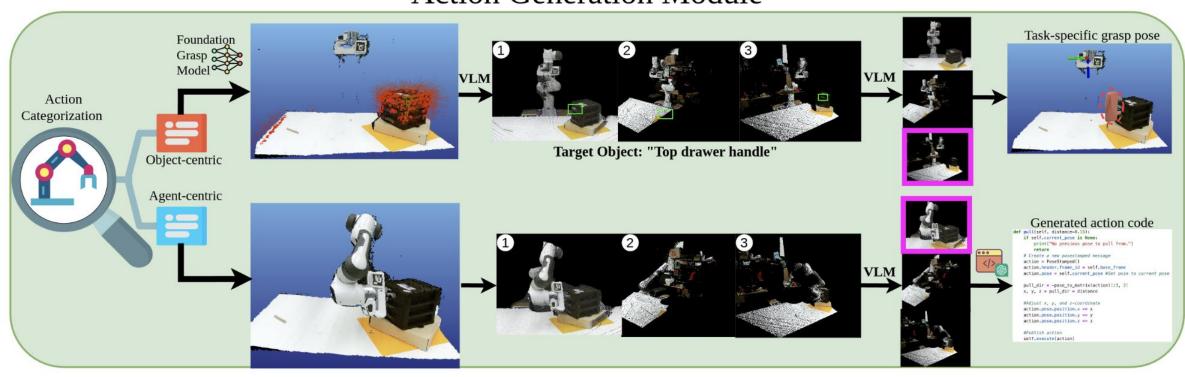
Automate TAMP with VLM







Action Generation Module



Sub-task Verification

