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Recap: Robotic Kinematics




But We want a Robot that can See and Act




Action Requires Deciding a Goal, Planning to Achieve the
Goal, and Controlling Motion to Follow the Plan

State .| Goal J Motion | 1| Low-level
Estimation | | 1| Prediction Planning Controller
N
Perception Motion Control
\ 4
Sensor Actuator
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How to Define Goals?

Goal

Language instruction

Stack the blocks on the empty bowl. ®

Object configuration

L/

Robot pose

/




A Robot's E
Re

User

Nnd-Effector Poses are Common
oresentations of Goals

Stack the blocks on the empty bowl. @

Vision

ﬁ:’ g (

Model

Large

Open the top drawer.
Please also watch
out for that vase!

Neural Descriptor Fields: SE(3)-Equivariant Object
Representations for Manipulation. Simeonov et al.

- Language

- Language —>

v

N
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def affordance_map():
msize = (100,100,100)
map = np.zeros(msize)
A handles = detect("handle')
- k = lambda x: x.pos[2]
handles. sort(key=k)
top_handle = handles[-1]
X,y,z = top_handle.pos
map[x,y,z] = 1
return smooth(map)
def constraint_map():
~ msize = (100,100,100)
i’ map = np.zer‘osEmsize)
vases = detect('vase')
vase = vases[0]
Xyz = vase.occupancy_grid >
map[xyz] = -1

Pl
View #1

Affordance Maps

Ad1104 1000y

A : -

.

Model return smooth(map) H
5 R View #1 View#2 Depth Languzge Denoising
(a) 3D Value Map Composition Constraint Maps ——
“Sweep the
VoxPoser: Composable 3D Value Maps for Robotic dust into a
Manipulation with Language Models. Huang et al dustpan

3D Diffuser Actor: Policy Diffusion with 3D Scene
Representations. Ke et al.



Motion Planning

_| Motion | /7 o
Planning £~/
NI
Task: Find a feasible (and optimal) path/motion from the current
configuration/pose of the robot to the goal configuration/pose
Feasibility: The proposed plan should follow the given constraints
> Environmental constraints (obstacles)
» Efficiency constraints (dynamics/kinematics)

Completeness: Report whether or not a feasible path exist in finite time

Optimality: Return the best solution in finite time that minimizes the
cost: time, energy, risk ...




Motion Planning: Piano Mover's Problem







Toy Example: 2D Path Planning with Point Robot

The robot is a point, that can only translate in 2D without rotation.
How can it reach for the red location from the green location?

start
&
goal
@
obstacle
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Solution 1: Roadmap Planner Algorithm

« Discretize the 2D space into grids.

« Robot can only travel to neighboring grids
» cost=1 to horizontal/vertical neighbors
> cost=v2 to diagonal neighbors
» Cost=oo0 to neighbors including obstacles
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Solution 1: Roadmap Planner Algorithm

« Discretize the 2D space into grids.
« Robot can only travel to neighboring grids
» cost=1 to horizontal/vertical neighbors

> cost=v2 to diagonal neighbors

» Cost=co to neighbors including obstacles
« Search the best path (e.g. Dijkstra's algorithm)
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Roadmap Planner Algorithm Has Resolution Problems

Coarse-resolution grids:
« Computationally efficient
« May not be optimal

13



Roadmap Planner Algorithm Has Resolution Problems

Coarse-resolution grids: Fine-resolution grids:
« Computationally efficient « Computationally inefficient
- May not be optimal « More likely to be optimal

illll
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Solution 2: Visibility Graph Algorithm

We don't need grids, but vertices of the start location, goal location and obstacle corners

Let V be the union of the start, the goal and all obstacle vertices.
E<{}
for all pairs of distinct vertices u, v eV
if uv is an obstacle edge
Add (u,v) tO E
else if uv is collision free
Add (u,v) to E
Search &=(V,£), with Cartesian distance as the edge cost, to connect the start and goal
return the path if one is found.

N BN JUN YRS
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Solution 3: Cell Decomposition Algorithm

Connect neighboring free-space cells

Segment the free space into cells by vertices Search a path that traverses from the start cell
to the goal cell

Image Credit S. M. LaValle 16



A General Framework for Motion/Path Planning

Create a graph

Search the graph

Density the graph

-
'f

17




But Planning is Hard...

 Previously, we only consider 2D point robots. What if the robot shape is

triangle that can both translate and rotate in 2D?
« What if the robot is a car which cannot make pure left/right movement?

« What if the robot is a 2-joint planar arm?

.

Triangle Racecar 2-joint planar arm
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But Planning is Hard...

« Previously, we only consider 2D point robots. What if the robot shape is
triangle that can both translate and rotate in 2D?

« What if the robot is a car which cannot make pure left/right movement?

« What if the robot is a 2-joint planar arm?

« What if the robot is a 7-joint planar arm?

« What if the robot works in 3D?

What is the unified planning formulation for robots with different mechanisms?

%o

Triangle Racecar 2-joint planar arm Manipulator
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The Configuration Space

The configuration of of a robot is a complete specification of the position of every
point of the robot
Configuration space (C-space) is the n-dimensional space containing all possible

configurations of the robot. In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

]RZ

~Translating Triangle
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The Configuration Space
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The Configuration Space

The configuration of of a robot is a complete specification of the position of every
point of the robot
Configuration space (C-space) is the n-dimensional space containing all possible

configurations of the robot. In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

The configuration that
the robot can reach

A
RZ T C-space workspace

~Translating Triangle
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The Configuration Space

The configuration of of a robot is a complete specification of the position of every
point of the robot
Configuration space (C-space) is the n-dimensional space containing all possible

configurations of the robot. In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

The configuration that
the robot can reach

A
RZ T C-space workspace

~Translating Triangle
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The Configuration Space

The configuration of of a robot is a complete specification of the position of every
point of the robot

Configuration space (C-space) is the n-dimensional space containing all possible
configurations of the robot. In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

R?% xSt

N
Triangle
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The Configuration Space

The configuration of of a robot is a complete specification of the position of every
point of the robot

Configuration space (C-space) is the n-dimensional space containing all possible
configurations of the robot. In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

| 5 C-space

IRZXSl l

N
Triangle
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The Configuration Space

The configuration of of a robot is a complete specification of the position of every
point of the robot

Configuration space (C-space) is the n-dimensional space containing all possible
configurations of the robot. In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

| >
IRZXSl l

C-space workspace
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The Configuration Space

The configuration of of a robot is a complete specification of the position of every
point of the robot

Configuration space (C-space) is the n-dimensional space containing all possible
configurations of the robot. In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

| >
IRZXSl l

C-space workspace
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The Configuration Space

The configuration of of a robot is a complete specification of the position of every
point of the robot

Configuration space (C-space) is the n-dimensional space containing all possible
configurations of the robot. In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

| ” C-space workspace
R? X S* | ey
= )

NS

X
Triangle / /}
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The Configuration Space

The configuration of of a robot is a complete specification of the position of every
point of the robot

Configuration space (C-space) is the n-dimensional space containing all possible
configurations of the robot. In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

| > We can represent it with coordinates x, y
1
RZ x S1 R*XS )

We can represent it with angle 6

N
Triangle

Racecar
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The Configuration Space

The configuration of of a robot is a complete specification of the position of every
point of the robot

Configuration space (C-space) is the n-dimensional space containing all possible
configurations of the robot. In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

We can represent it with angle 84, 6

T

RZ x St R?Z x St

NS

Triangle Racecar 2-joint planar arm
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The Configuration Space

The configuration of of a robot is a complete specification of the position of every
point of the robot

Configuration space (C-space) is the n-dimensional space containing all possible
configurations of the robot. In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

We can represent it with angle 64, 8,, ...6,, <—

RZxS1 Rz xSt

— St x - X §

n joints

NS

Triangle Racecar 2-joint planar arm Manipulator
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How to Specify Obstacles in the Configuration Space?

Robot operates in a 2D / 3D workspace V) = Rz or R?)

Subset of this space is obstacles OcCw

semi-algebraic models (polygons, polyhedra)

Geometric shape of the robot A ( ) cW
(set of points occupied by robot at a config) q

Cobs ={q € C | A(q) N O # 0}
Cffree =C \ Cobs

33

C-space obstacle region



Example: Rotational Motion
I oo

Obstacle O qQ:A(@Q) N0+ @

Cobstacle

34



Example: Rotational Motion

Robot
Obstacle 0

35



What would the configuration space of a
rectangular robot (red) in this world look like?

(The obstacle is blue.) configuration space

180°

90°

> X
00
X

16-735, Howie Choset with slides from G.D. Hager and Z. Dodds this is twisted...

36



Example: 2-Link Planar Arm

360

270 +

[ ]
® -

Image credit T. Bhattacharya 37



Motion Planning is Hard....




Geometric Path Planning Problem

Also known as
Piano Mover’s Problem (Reif 79)

Given:
1. A workspace W, where either W = R? or W = R3.
2. An obstacle region O C W.

3. A robot defined in W. Either a rigid body A or a
collection of m links: Ay, As, ..., An.

4. The configuration space C (Cops and Cfree are then
defined).

5. An nitial configuration qr € Cyree.

6. A goal configuration qg € Cfree- The initial and
goal configuration are often called a query (qr,9¢).

Compute a (continuous) path, 7 : [0,1] — Cppee, such
that 7(0) = gy and 7(1) = q¢-

Also may want to minimize cost

c(7)

39



Geometric Path Planning Problem

We can apply previous techniques (e.g. grid-search,

visibility graph, cell decomposition) here!

Image credit S. LaValle
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Also known as
Piano Mover’s Problem (Reif 79)

Given:
1. A workspace W, where either W = R? or W = R3.
2. An obstacle region O C W.

3. A robot defined in W. Either a rigid body A or a
collection of m links: A, As,..., Apn.

4. The configuration space C (Cyps and Cyre. are then
defined).

5. An initial configuration qr € Cfree.

6. A goal configuration g € Cfree. The initial and
goal configuration are often called a query (qr,qq)-

Compute a (continuous) path, 7 : [0,1] — Cpree, such
that 7(0) = qr and 7(1) = q¢.

Also may want to minimize cost

e(7)



Motion Planning is Hard....

10 vertices per dim

Dimension d # vertices
2 wo e N-joint robot has n-dim C-space
: " e Assume we have M vertices per dim. The n-dim C-
6 1,000,000 h Mn rt| C e S
8 100,000,000 S pa Ce aS ve et
10 10,000,000,000 e In h|gh dimensions:
16 1,000,000,000,000,000 » Computing the C-space obstacle is hard

20 100,000,000,000,000,000,000

» Planning is hard

41



Motion Planning is Hard....

10 vertices per dim

Dimension d # vertices

2 100
3 1,000
6 1,000,000
8 100,000,000
10 10,000,000,000

15 1,000,000,000,000,000

20 100,000,000,000,000,000,000

n-joint robot has n-dim C-space
Assume we have M vertices per dim. The n-dim C-
space has M™ vertices...
In high dimensions:
» Computing the C-space obstacle is hard
Solution: Don't compute C, s explicitly, instead we
query a collision detector
» Planning is hard
Solution: Don't search a path from all vertices, but
sampled vertices

|[dea: Don't compute until being queried!

42



Implicit C-Obstacle Representations

« Feasibility query:

, 1, If qisinthe free space
Feasible(q) = {0, Lf qisinthe obstacle space

43



Implicit C-Obstacle Representations

« Feasibility query:

, 1, If qisinthe free space
Feasible(q) = {0, Lf qisinthe obstacle space

Visibility query:

.. i1, If q1q, is completly inthe free space
Visible(qs,q2) = { 0, 1fq,q, intersects the obstacle space

71921
o ——H—+—+—F—F+—F—1+—@

Chunk segmentq;q; into parts, check feasibility of each part

44



Probabilistic Roadmaps (PRM)

We don't’ have an explicit feasibility
map. Just for reference...

RPM Algorithm:




Probabilistic Roadmaps (PRM)

®o ° e o, 4
° 0 ol = o .o
(]
o ©°% o o o o RPM Algorithm:
) °. ° > 1. Sample random N configurations from
© o O © e° the C-space and query their feasibilities
© o o ©° o g

Feasible(q)

46



We don't’ have an explicit feasibility

map. Just for reference...

)
% ° o . ° 0
° o
0.0 o| og
° . =
o o o
o o ° o
°
°® o° o

Probabilistic Roadmaps (PRM)

RPM Algorithm:

47

1.

2.

Sample random N configurations from
the C-space and query their feasibilities
Add milestones (all feasible, the start
and the goal configurations).



Probabilistic Roadmaps (PRM)

We don't’ have an explicit feasibility
map. Just for reference...

0. o ®eo o o o 04
° 0 o o o .o- °© %o o
° o o) o e .
o © ° Yo o °o o ° o o ©| REM Algorithm:
D ‘o’ Y A e 1. Sample random N configurations from
© o ©O © e° © o © the C-space and query their feasibilities
© o o 0% ° 4 2. Add milestones (all feasible, the start
and the goal configurations).
o o, 3. Connect pairs of neighboring
? °oo °o | milestones if they are visible
()
o \ /-0 o Oo o o
o 4 ©

Visible(q, p)
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Probabilistic Roadmaps (PRM)

We don't’ have an explicit feasibility
map. Just for reference...

®e ° ®e o, P ° °o
° 0 S\® J ° .o- ° °o° o.g
o % o o o °o o ° o o ©| REM Algorithm:
D ‘o’ Y A e 1. Sample random N configurations from
© o ©O © e° © o © the C-space and query their feasibilities
© o o 0% ° 4 2. Add milestones (all feasible, the start
and the goal configurations).
o o, 3. Connect pairs of neighboring
? %o o milestones if they are visible
o OMeo o’ 4 y 4 y o| 4 Searchforapathfrom the startto the
Z SRR goal
o 4 ©
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Probabilistic Roadmaps (PRM)

Algorithm Basic-PRM(s,g,N)

1.V « {s,g}.

2. F « {}.

3.fori=1,..., Ndo

4. q « Sample()

5. if not Feasible(q) then return to Line 3.

6. AddgtoV (add g as a new milestone)

7. forall p € near(q,V)

8 if Visible(p, g) then

Q. Add (p, q) to E.
10. Search G = (V, E), with Cartesian distance as the edge cost, to connect s and g.
11. return the path if one is found.

50



s Unitormly Randomly Sampling Good Enough?

The narrow passage: We need more samples here

isolated clumps

51



s Unitormly Randomly Sampling Good Enough?

The narrow passage: We need more samples here

isolated clumps

Solutions:

1. Sample near obstacle surface

2. Add samples that are in between two
obstacles

3. Train a learner to detect the narrow passages

52



We don't’ have an explicit feasibility
map. Just for reference...

Quick summary of PRM

o ‘. ° 5 o ° 5
o
o o o o ol ° o
.O o X
o (o] o
o O o °0_0O5 o o o
o) (<)
o © o° o

Q
(o] oo
? %o o
o]
‘\/o Y g g
(o] 7=
_ o O (o] o
(o]

53

PRM randomly samples configurations to
build a roadmap, hoping to cover the free
space

PRM is great when we want to reuse the
graph. For example, plan many times
with different start/goal pairs

What if we just need to plan once? For
example, a robot only needs to pick up
the object once



Rapidly Exploring Random Trees (RRTs)

" C‘w& é%{\/

Grow a tree of feasible paths from the to the goal
configuration, instead of building a graph.

54



Rapidly Exploring Random Trees (RRTs)

BUILD _RRT(gins:)
1 7 .init(ginit);

2 fork=1to K do : : : "
3 drana | RANDOM_CONFIG(); _ Sample random configuration with probability
4

9

EXTEND(7, ¢rana): . p, and the goal with probability 1 — p
Return 7

55



Rapidly Exploring Random Trees (RRTs)

BUILD_RRT(g;nit)

1 7 .init(ginat); How to expand the tree? Expand from the
2 fork=1to K do node that is the closest to the configured g
3 Grand — RANDOM_CONFIG();

4 EXTEND(T, grand):

5 Return T

EXTEND(7,q)

1l  Gnear — NEAREST NEIGHBOR(q, 7T );

2 if NEW_CONFIG(q, gnear; @new) then . \

3 T .add_vertex(gnew); \

1 7T .add_edge(gnear, Inew); Anear
3 if ¢,0.y = q then o

6 Return Reached,; Qinit

7 else

8 Return Advanced,

9 Return Trapped;

56



Rapidly Exploring Random Trees (RRTs)

BUILD_RRT(g;nit)
1 T.init(qi;m-f);

2 fork=1to K do

3 drana  RANDOM_CONFIG(): Move by at most e from

4 EXTEND(T: QT‘and)§ Qnear to CI

5 Return T
I| € | q
'IH'I/ new

EXTEND(T,q) F.I _

1 ¢near — NEAREST _NEIGHBOR(q,7); SRRRETTTURY

2 if NEW_CONFIG(q, gnear, new then . ’/,/ \

3 T .add_vertex(gnew); :

1 7T .add_edge(gnear, Inew); Anear

5 if ¢,0.y = q then o

6 Return Reached,; Qinit

T else

8 Return Advanced,

9 Return Trapped;

57



Expansion Strategy

BUILD _RRT(g;nst)

1
2
3
4
5

T.iﬂit(qinﬁ) ;
for k =1 to K do

- Sample random configuration with probability

Granda —|RANDOM_CONFIG();
EXTEND(7, grand);
Return 7

Randomly uniformly sampling

i p, and the goal with probability 1 — p

Biased sampling toward

unexplored regions

58




Voronol Diagram




Voronoi Bias Strategy

s 4

g\

"

Wk .

: ARl N

;
- ALt i
e -‘.’r'-‘ A

T L
g, o
-t S
e Rk T .‘,

.

LT S A ..-,=..I.
(), Thr
vz

RRT-Connect: An Efficient Approach to Single-Query Path
Planning. J. Kuffner and S. LaValle.

60

Sample random configuration with

probability p, which is proportional to

the volume of its Voronoi cell.

« Bias sampling toward unexplored
areas.

Voronoi diagram: nearest-
neighbor segmentation




RRT-Connect: Bi-direction RRTs

CONNECT(T, q) :
1 repeat
2 S «— EXTEND(7,q); >
3 until not (S = Advanced) 9o
4 Return S;

RRT_CONNECT_PLANNER(qinit; 9goat)
1 ’It'z-init((i’in’it); %*init(qlqoai);
2 fork=1to K do
Grand — RANDOM_CONFIG();
if not (EXTEND(7,, ¢rand) =Trapped) then

if (CONNECT(7y, gnew) =Reached) then Grow two trees, one from the start

3

4

5

6 Return PATH(7,,7;); and another from the goal
7 SWAP(7,,Ts); :

8

Return Failure

Greedily move from gneqr 10 Qrana

61



Single Tree vs. Double Trees

= Volume swept out by unidirectional RRT: = Volume swept out by bi-directional RRT:

/// \\ — P——
s - h o i
/ X e ™ e ~
j}: \ Ve \
/ N\ ;'/ \\ ,/

A
\

':I ﬁflll I'|
|

| I\.. X 5 ® .'I'." . JIII

\ Xs® P Xg \ \\ <

~_ 7 new

(Xnew )

—
X
Xrand “near

near X
goa

X

init
= Difference more and more pronounced as dimensionality increases
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RRT Still Has Problems...

The “bugtrap” problem: due to the Voronoi bias, RRT frequently attempts infeasible
extensions

To escape the mouth of a bugtrap, we need to sample a very carefully chosen
sequence of milstones within the general area that it has already explored
A tradeoff between exploring new regions and refine the roadmap of explored areas

63



RRT Still Has Problems...

= RRT guarantees probabilistic completeness but not optimality
(shortest path)

= In practice leads to paths that are very roundabout and non-direct ->
not shortest paths

=25 -5 ) 5 10

64



RRT*: RRT + Re-Wiring

Better
path

(a) ' (b) ' (c)

« Canwe find more optimal path passing through g, ew ?
« Canwe find more optimal path to gew ?

65



RRT*: RRT + Re-Wiring

Algorithm RRT*

1.T « {s}..
2.fori=1,..., N do
3. Qrand < SﬂmPJEU
ge. <—Extend-Tree(T', grand, 0)
if g. # nil then Rewire(T, g., |T'|)
if d(g., g) < 6 and Visible(g., g)then
Addedgeg, — gto T
c(g) = cost of optimal path from s to g, if g is connected, and co otherwise

4
5
6.
7.
8
9. return "no path”

66



RRT*: RRT + Re-Wiring

Algorithm Rewire(T', e, 1)

1. Neighbors < Set of k* (n)-nearest neighbors in T', or points in R* (n)-neighborhood.
2. for g €Neighbors sorted by increasing c(q) do
3. ifc(guew) + d(Guew,q) < c(q) then  (optimal path to g passes through g,,.,,,)
c(q) < c(gnew) + d(Gnew q)
Update costs of descendants of g.
if c(q) + d(q, gnew) < ¢(qnew) then  (optimal path to g,.,, passes through g)
c(Gnew) < c(q) + d(q, Gnew)
Set parent of guew 10 g.
Revise costs and parents of descendants of ¢y, .

© o N A
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RRT vs. RRT*

R

Gy

-
A

N

R

-1

Sampling-based Algorithms for Optimal Motion Planning. S.

Karaman and E. Frazzoli.
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RRT vs. RRT*
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Sampling-based Algorithms for Optimal Motion Planning. S.
Karaman and E. Frazzoli. 69



RRT*

Image credit T. Chinenov 70



Virtual Potential Fielas

« From physics we know that a potential field P(q) defined over € induces a force
F = —g—’; that drives an object from high to low potential.

* Inrobotics, we can define a potential field and derive the corresponding force, with
which we drive the configuration g from high to low potential.

« The potential field of reaching a goal:

1 oP oal
7Dgt:)a.l(q) — i(q — ngal)TK(q — ngal)a Fgoal(Q) - = 8gq - K(ngal — Q):
« The potential field induced by a C-obstacle g
i oPs  k ad

Pel) = 2 B) F5l0) = =5, = B(4,B) 0¢
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Pushing configuration
to regions with low

potential

72



Non-Linear Optimization

We can consider path planning as an optimization problem

find u(t),q(t), T
minimizing  J(u(t),¢(t),T)
subject to z(t) = f(a(t),u(t)),
u(t) e U,
q(t) € Ciree;
£(0) = Tstart,

.CE(T) = :Egoa,l-

We can parametrize control u(t) and path q(t) with the coefficients of (1) a

Vt €
Vt €
Vt €

0,7
0,T
0,T

(10.6)
(10.7)
(10.8)
(10.9)

(10.10)

(10.11)

(10.12)

polynomial, (2) a truncated Fourier series, (3) spline, (4) wavelet, or (5)piecewise
constant acceleration segments in time.

73

P
u,,(t) = Z a,jtj.
7=0




For more on Motion Planning, check
"Planning Algorithms” by Steven M. LaValle



Action Requires Deciding a Goal, Planning to Achieve the
Goal, and Controlling Motion to Follow the Plan

Trajectory
Generation
State || Goal | Motion Low-level
Estimation | | | Prediction | | Planning Controller
N
Perception Motion Control
Sensor Actuator
A /

3/
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Decision Making is in fact Hierarchical

/A

Final goal

goal 1

goal 2

T~

Subgoal 1.a ==~
i
1
1
1

State Goal Motion Low-level State
Estimation Prediction Planning Controller Estimation
N N

\ 4
Sensor Actuator Sensor

&@/

Oversimplified!

Subgoal T.n ==

Motion Low-level
Planning Controller
N
1
\ 4
Actuator

\3 I
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Decision Making is in fact Hierarchical

/A

State Goal Motion Low-level State
Estimation Prediction Planning Controller Estimation
N N

\ 4
Sensor Actuator Sensor

&@/

Oversimplified!

Find egg

Final goal

goal 1

Cook Egg

goal 2

T~

Subgoal 1.a ==~

1
Goto fridge E
1
1

at X

Motion Low-level
subgoal 1.n == Planning Controller
Grasp egg =
_______ fromY o
\ 4
Actuator

\@/
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Decision Making Should be Adaptive w.r.t the Kinematic
and Geometric Feasibility

Acting
x4

https://youtu.be/tNHjpXP8RFo?si=Sokgfvgef0T18Tuy /8



Decision Making Should be Adaptive w.r.t the Kinematic
and Geometric Feasibility

Box Re-Orientation: Place on Side 1

Both arms have to work
together to solve the task

Handover solution found

https://youtu.be/VndjjtzI7ho?si=Uqc5rLSI2ZrPLbMle 79



We Need to Decide What are the Tasks, the Order of the Tasks,
the Goal per Task, the Motion/Path to Achieve the Goal

Task: Put the mustard in the blue region

SubTask1: Grasp the mustard
« Subgoal configuration of the gripper pose
» Motion planning for the trajectory
SubTask2: Lift up the mustard
« Subgoal configuration of the gripper pose
» Motion planning for the trajectory
SubTask3: Carry the mustard above the blue region
« Subgoal configuration of the gripper pose
» Motion planning for the trajectory
SubTask4: Put down the mustard
« Subgoal configuration of the gripper pose
» Motion planning for the trajectory
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We Need to Decide What are the Tasks, the Order of the Tasks,
the Goal per Task, the Motion/Path to Achieve the Goal

Task: Put the mustard in the blue region

The plan is not feasible, since the robot can't
reach the occluded mustard

SubTask1: Grasp the mustard
« Subgoal configuration of the gripper pose
» Motion planning for the trajectory

SubTask2: Lift up the mustard
« Subgoal configuration of the gripper pose
» Motion planning for the trajectory
SubTask3: Carry the mustard above the blue region
« Subgoal configuration of the gripper pose
» Motion planning for the trajectory
SubTask4: Put down the mustard
« Subgoal configuration of the gripper pose
» Motion planning for the trajectory
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We Need to Replan Based on Kinematic and
Geometric Feasibility

Task: Put the mustard in the blue region

SubTask 1: Grasp the Cheezit

SubTask N: Grasp the mustard
« Subgoal configuration of the gripper pose
» Motion planning for the trajectory
SubTask N+1: Lift up the mustard
« Subgoal configuration of the gripper pose
» Motion planning for the trajectory
SubTask N+2: Carry the mustard above the blue region
« Subgoal configuration of the gripper pose
» Motion planning for the trajectory
SubTask N+3: Put down the mustard
« Subgoal configuration of the gripper pose
» Motion planning for the trajectory
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Classical Task Planning: Decide Which Tasks
and the Ordering of the Tasks

SubTask 1: Grasp the Cheezit

Task: Put the mustard in the blue region

SubTask N: Grasp the mustard
« Precondition
« Effect
SubTask N+1: Lift up the mustard
« Precondition
« Effect
SubTask N+2: Carry the mustard above the blue regior
« Precondition
« Effect
SubTask N+3: Put down the mustard
« Precondition
« Effect « leads to the final goal (mustard in the
blue region)
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State Representations of Objects

- :

C B
C

Initial State Goal State

B

« Theworld is abstracted into a discrete space with many variables (e.g. A, B, C, D, E)
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State Representations of Objects

- :

C B
C

Initial State Goal State

B

« Theworld is abstracted into a discrete space with many variables (e.g. A, B, C, D, E)

« State representations of objects:
» Predicate: Boolean function (On ?bl ?b2)=True/False
» Facts (literals): instantiated predicates (On D C)
» States: set of facts {=(On A B), (On D C), ..}
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Actions Lead to Transitions between States

L

(:action stack
:parameters (?bl ?b2)

(and
(Holding ?bl) (Clear ?b2))
(and
(ArmEmpty)

(On ?bl ?b2) (Clear ?bl)
(not (Holding 7?bl))

(not (Clear ?b2))))

86

C

Action:

» Preconditions test feasibility of the
action

» FEffects describe changes to a set of
states

> Parameters show the set of states
involved in the action



'ask Planning: Search a sequence of actions
that convert the initial states to the goal states

(On D Q)
Stack (E 2)F°| (on E A)

(On D Q)
(On A B)

Stack (A B)

rLj Unstack (D C) : Stack (D B)~\\\>

(On D B)
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Forward Best-First Search

For a state s
Path cost: g(s)

Heuristic estimate: 1, ()« How close to the goal
Open list sorted by priority f(s)

Weighted A*: f(s) = g(s) + wh(s)
Uniform cost search: w=0= f(s)=g
A* search: w=1= f(s)=g
Greedy best-first search: w =00 = f(s) = h(s)
How do we estimate h(sR
No obvious metric (no metric-space embedding)

88
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Classical Task Planning
— :

C B
C

Initial State Goal State

B

« |nitial states: (On D C)
« (Goalstates: { (On E C), (On C A), (On B D)}
« Actions:
1. Unstack (D, C)
. Stack (D, B)
. Stack(C, A)
. Stack(E, C)
. Unstack (D, B)
. Stack (B, D)

oY U x W N
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However, Discretized States and Actions Oversimplify the
World and Robot-Object Interaction

Continuous object

Abstract states . .
configurations

B| | C (On D B) (on D B, p,=0.0, p,=1.0)

B CL (On D B) (On D B, p,=0.2, p,=1.0)
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However, Discretized States and Actions Oversimplify the
World and Robot-Object Interaction

————————

Continuous object

Abstract action | _
configurations

Unstack (D B)
pgripper:<o .0, 1.0, 0°>
trajectory=t

Unstack (D B)

Unstack (D B)
pgripper:<o .2, 1.0, 30°>
trajectory=t

Unstack (D B)
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Parameterize States with Continuous Variables

(:derived (On ?bl ?b2)
(exists (?pl) (?p2) (and (Above ?p2 ?pl)
(AtPose ?bl 7?pl)
(AtPose ?b2 ?p2))))

Parameters:

?b: block
?p: 6DOF object pose

Static Predicates:

AtPose: isblock ?b at pose ?p
Above: iSpOSe ?pl above pose ?p2
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Parameterize States with Continuous Variables

(:action pick

:parameters (?b ?p ?g ?Qq)
:precondition (and (Kin ?b ?p ?2g ?2Q)
(AtPose ?b ?p)
(Empty)
(AtConf ?q))

:effect (and (Holding ?b ?qg)
(not (AtPose ?b ?p)

(not (Empty))))

Parameters: Static Predicates:

?b: block

Kin: Are agrasp ?g and robot configuration 2q valid

?p: 6DOF object pose
?g: 6DOoF robot's end-effector pose
?g: Robot's configuration

when block ?b is at pose ?p

AtPose: isblock ?b at pose ?p

Empty: isthe robot's end-effector is empty
Holding: is block ?b hold by a grasp ?g
AtConf: isthe robot at configuration 2g
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Task and Motion Planning: Plan a sequence of
Actions and their Continuous Parameters

Static initial facts - value is constant over time
Task: Put block A in the red region

o |

Robot Vacuum Gripper . . Fluent initial facts - value changes over time
- (AtConf, [-7.5 5.]), (HandEmpty),
N — (AtPose, A, [0. 0.]), (AtPose, B, [7.5 0.])

Placement Regions

(Block, A), (Block, B), (Region, red), (Region, grey),

Goal formula: (exists (?p) (and (Contained A ?p red)
(AtPose A ?p)))
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Task and Motion Planning: Plan a sequence of
Actions and their Continuous Parameters

We need to decide the discrete action class and its
|
(AtConf, [0. 2.5])

Task: Put block A in the red region (AtPose, A, [0. 0.])
(AtPose, B, [7.5 0.])
move][-7.5 5.], 7, [0. 2.5]) (HandEmpty) fpick, A}[[0. 0], [0. -2.5], [0. 2.5])
QI Movable Blocks / \
Initial (AtConf, [-7.5 5.]) (AtConf, [0. 2.5])
I (AtPose, A, [0. 0.]) (AtGrasp, A, [0. -2.5]) ===l 0 @ @
Robot Vacuum Gripper n State (AtPose, B, [7.5 0.]) (AtPose, B, [7.5 0.])
# FeneEmen)
Y [-5. 5.], T3, [0. 2.5])
Placement Regions movej|[-7.5 5.], 12, [-5. 5.]]  (AtConf, [-5. 5.])

(AtPose, A, [0. 0.])
(AtPose, B, [7.5 0.]) ——————————- ® © ©

(HandEmpty)
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No a Priori Discretization

Values given at start:
1 initial configuration: (Conf, [-7.5 5.])
2 initial poses: (Pose, A, [0. 0.]), (Pose, B, [7.5 0.])
2 grasps: (Grasp, A, [0. -2.5]), (Grasp, B, [0. -2.5])
Planner needs to find:
Action classes: pick, move, place ...
1 pose within a region: (contain A ?p red)
1 collision-free pose: (crree A 2p ? B 2p2)
4 grasping configurations: (kin ?b ?p 2g 2q)
4 robot trajectories: (Motion ?ql 2t ?q2)
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Decoupled vs Integrated TAMP

Decoupled: discrete (task) planning then continuous
(motion) planning

Requires a strong downward refinement assumption

Every correct discrete plan can be refined into a
correct continuous plan (from hierarchal planning)

Integrated: simultaneous discrete & continuous planning

[ Discrete Planning ] /\
v

J [Discrete Planning] [Continuous Planning

~_

Decoupled o Integrated

[Continuous Planning




Obtain Continuous Action Parameters by Sampling

Slide credit C. R. Garrett

= Qutputs of one conditional
sampler are the inputs to
another

= Directed acyclic graph (DAG)

of conditional samplers

Pose

Trajectory 71, 72, ...

Config g2
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What Samplers Do We Need?

]
= Low-dimensional placement stability constraint (Contain)
= i.e. 1D manifold embedded in 2D pose space
= Directly sample values that satisfy the constraint
» May need arbitrarily many samples
= Gradually enumerate an infinite sequence

I
. .

99




Intersection of Constraints

= Kinematic constraint (Kin) involves poses, grasps,
and configurations

« Conditional samplers - samplers with inputs

Pose p

*—» Config g1, g2, ...
Grasp g

Slide credit C. R. Garrett 100




Stream: a function to a generator

Advantages def stream(x1l, x2, x3):
i=0
Programmatic implementation  while True:
yl = ix(x1 + x2)

Compositional y2 = i*(x2 + x3)
. . [] ie.Ld ( 1, 2)
Supports infinite sequences Tem "

Stream - function from an input object tuple (x1, x2, x3)
to a (potentially infinite) sequence of output object

tuples [(y1, y2), (Y1, Y'2), ...]

ﬁ [Kaelbling 201 1][Srivastava 2014]

Input x1 [Garrett 2018a][Garrett 2018b]

Input x2 Outputs [(y1, y2), (Y1, ¥'2), --.]

Input x3
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Sampling Contained Poses
| 72

(:stream sample-region
:inputs (?b ?r)
:domain (and (Block ?b) (Region ?r))
:outputs (?p)
:certified (and (Pose ?b ?p) (Contain ?b ?p ?r)))

def sample_region(b, r):

x_min, x_max = REGIONSI|r]

w = BLOCKS[b].width

while True:
X = random.uniform(x_min + w/2,

X_max — w/2)

p = np.array([x, 0.])
YiE].d (p; )

Block b
L
Regionr

102




Sampling IK Solutions

= Inverse kinematics (IK) to produce robot grasping
configuration

= Trivial in 2D, non-trial in general (e.g. 7 DOF arm)

(:stream sample-ik
:inputs (?b ?p ?9)
:domain (and (Pose ?b ?p) (Grasp ?b ?9g))
:outputs (?2q)
:certified (and (Conf ?qg) (Kin ?b ?p 29 ?q)))

Block b
~-

Pose p :m Conf [(d'), (9")]

Grasp g

Slide credit C. R. Garrett 103



Calling a Motion Planner

B
= “Sample” (e.g. via a PRM) multi-waypoint trajectories

 Include joint limits & fixed obstacle collisions, but not

movable object collisions
(:stream sample-motion
:inputs (?gl ?g2)
:domain (and (Conf ?gl) (Conf ?2g2))
:outputs (?t)
:certified (and (Traj ?t) (Motion ?gl ?t ?2g2)))

sample-motion Trajectory [(t)]

Slide credit C. R. Garrett 104



STRIPStream = STRIPS + Streams

|77
» Domain dynamics (domain.pddl): declares actions
= Stream properties (stream.pddl)
= Declares stream inputs, outputs, and certified facts
= Problem and stream implementation (problem.py)
= |nitial state, Python constants, & goal formula
= Stream implementation using Python generators

Domain
Plan
. STRIPStream
User provides
Planner )
Supporting
Init & Goal Facts

[Garrett 2018b] STRIP: a formal language for
Slide credit C. R Garrett 105 expressing planning problems



Obtain Continuous Action Parameters by Sampling

Oft-the-shelf Al planner
(e.g. FastDownward)

=
[Discre're Planning] N\
v

J [Discrete Planning] [Conﬁnuous Planning

~

Decoupled Integrated

[Conﬁnuous Planning
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Incremental Algorithm

I
= Incrementally construct all possible initial facts

= Periodically check if a solution exists
= Repeat:

1. Compose and evaluate a finite number of streams
to unveil more facts in the initial state

2. Search the current PDDL problem for plan
3. Terminate when a plan is found

FastDownward No plan = Sample
Start =&
Search Streams

Plan found N fact [Garrett 2018al]
Donel ew racts [Garrett 2018b]

107



Incremental: Sampling lteration 1

[ 81
lteration 1 - 14 stream evaluations

= Sampled:
= 2 new robot configurations: v

= 4 new block poses: A ‘

= 2 new trajectories: =)

Slide credit C. R. Garrett 108




Incremental: Search lteration 1

(e2 |
= Pass current discretization to FastDownward
= If infeasible, the current set of samples is insufficient

FastDownward

Slide credit C. R. Garrett 109



Incremental: Sampling lteration 2

lteration 2 - 54 stream evaluations

Sampled:
4 new robot configurations: v

4 new block poses: ‘ A

10 new trajectories: =———p

er Sy
AL NE A LK

110




Slide credit C. R. Garrett

Incremental: Search lteration 2

(ea |
= Pass current discretization to FastDownward
= If infeasible, the current set of samples is insufficient

FastDownward
Still infeasible!
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Incremental Example: lterations 3-4

lteration 3 - 118 stream evaluations
lteration 4 - 182 stream evaluations

Solution:
1) move [-7.5 5.][[-7.5 5.),[-7.5 5.],[7.55.],[7.5 2.5]] [7.5 2.5]

2) pick B[7.5 0.][0. -2.5] [7.5 2.5]

3) move [7.5 2.5] [[7.5 2.5],[7.5 5.],[10.97 5. 1,[10.97 2.5]][10.97 2.5]
4) place B[10.97 0. ][0.-2.5][10.97 2.5]

5) move [10.97 2.5][[10.97 2.5],[10.97 5. ],[0.5.],[0. 2.5]]1 [0. 2.5]

6) pick A [0. 0.] [0. -2.5] [0. 2.5]

7) move [0. 2.5][[0. 2.5],[0.5.],[7.65 5. 1,[7.65 2.51][7.65 2.5]

8) place A [7.65 0. ]1[0.-2.5][7.65 2.5 ]

Drawback - many unnecessary samples produced
Computationally expensive to generate

Induces large discrete-planning problems
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What are the Assumptions / Limitations?

 Limitations:

» TAMP needs to hand craft samplers for (sub)goal
configurations. How to generalize to novel objects /
scene.

» TAMP needs to pre-define action classes. How to
generalize to unseen tasks?

» TAMP assumes deterministic actions, which produce the
same intended effect all the time

» TAMP assumes perfect perception. Robots know the
perfect object states.

» TAMP has heavy computational overhead.

« What are the modern ways to do TAMP?
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Automate TAMP with VLM

Task Plan Generation
Sub-task 2: Sub-task 3: Data generation

it the drawer handle Check for success Trajectory

F aen?

“"Open the top drawer”

Pull o

Collected

Successful task trajector i
Verification condition: 'Did the robot Verification condition: "Did the robot B Ry demonstrations
LS gripper pull out the top drawer? open the top drawer?'

-

~ - Sub-task 2

<Pull><drawer handle>

Action Sub-task

: . : Action Sub-task
» Generanon* Verification » Generation* Verification
Module ! "N Module 0%
¢ I— | " Module Module
- o @ \ Temporary Goal State ¢ @ [ ] @ @
Verification condition: ‘Didtherobor = S e mmemmmm-— Verification condition: Did the robot

gripper grasp the top drawer handle?’ \

gripper pull out the top drower” /

Foundatign  § e -y s
Grasp i o f a , i -
Model < &k % ¢

A 2 y

Action
Categorization

Agent-centric

Q =

Verification candition:
d "INd the robar gripper pufl
ant the rop drawer?'

Sub-t.;lsk: Succeed/Failed
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L LMs that Perceive, Plan Subtasks, Determine the
Motion, Monitor the Progress

Task Plan Generation

Sub-task 1: Sub-task 2: Sub-task 3:
i rawer handl Pull out the drawer handle Check for success
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L LMs that Perceive, Plan Subtasks, Determine the
Motion, Monitor the Progress

Task Plan Generation

Sub-task 1: Sub-task 2: Sub-task 3:
| wer hanai Pull out the drawer handle

"Open the top drawer"

Collected
demonstrations




L LMs that Perceive, Plan Subtasks, Determine the
Motion, Monitor the Progress

Action Generation Module

Foundation Task-specific grasp pose

Grasp
Model

Action
Categorization

Generated action code
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L LMs that Perceive, Plan Subtasks, Determine the
Motion, Monitor the Progress

Sub-task Verification

Temporary Goal State

Verification condition:
'Did the robot gripper pull
out the top drawer?"

Sub-tas-k: Succeed/Failed
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"Reasoning task"
= £

"Correct all the dices to 6 [front-facing" '‘Uncap thekar "Correct all the dices to 6 front-facing"

Manipulate Anything: Automating Real-World Robots using Vision-
Language Models. Duan et al.




'Put objects on their colored mat' o) 'Close the laptop'

.
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