
Robot Perception and Learning

Tsung-Wei Ke

Task planning and Motion planning

Fall 2025

1

𝑥𝑒
𝑦𝑒

𝑧𝑒

𝑞1

𝑞2
𝑞3

𝑞4

Recap: Robotic Kinematics

2Robotics: Modeling, Planning and Control. Siciliano et al.

But We want a Robot that can See and Act

Video credit Pieter Abbeel 3

Action Requires Deciding a Goal, Planning to Achieve the
Goal, and Controlling Motion to Follow the Plan

Sensor

State
Estimation

Goal
Prediction

Motion
Planning

Actuator

Motion Control

Low-level
Controller

Decision Making

Perception

4

Goal
Motion

Planning
Low-level
Controller

𝑥

𝑦

𝑃𝑦 > 0

5

How to Define Goals?

Language instruction Object configuration Robot pose

Neural Descriptor Fields: SE(3)-Equivariant Object
Representations for Manipulation. Simeonov et al.

VoxPoser: Composable 3D Value Maps for Robotic
Manipulation with Language Models. Huang et al

Image

Depth

R
o

b
o

t P
o

licy

Language
Encoder

“Sweep the

dust into a

dustpan”

3D Diffuser Actor: Policy Diffusion with 3D Scene
Representations. Ke et al.

A Robot’s End-Effector Poses are Common
Representations of Goals

6

Motion Planning

Goal
Motion

Planning
Low-level
Controller

• Task: Find a feasible (and optimal) path/motion from the current
configuration/pose of the robot to the goal configuration/pose

• Feasibility: The proposed plan should follow the given constraints

➢ Environmental constraints (obstacles)

➢ Efficiency constraints (dynamics/kinematics)

• Completeness: Report whether or not a feasible path exist in finite time

• Optimality: Return the best solution in finite time that minimizes the
cost: time, energy, risk …

7

https://vimeo.com/58686590

Motion Planning: Piano Mover’s Problem

8

Video credit ccuRobo from Nvidia

https://vimeo.com/58709484 https://vimeo.com/58686593

Video credit J.J. Kuffner

https://vimeo.com/58686594 https://vimeo.com/587095899

Toy Example: 2D Path Planning with Point Robot

The robot is a point, that can only translate in 2D without rotation.
How can it reach for the red location from the green location?

obstacle

start

goal

10Image adapted from K. Hauser

• Discretize the 2D space into grids.
• Robot can only travel to neighboring grids

➢ cost=1 to horizontal/vertical neighbors

➢ cost= 2 to diagonal neighbors
➢ cost=∞ to neighbors including obstacles

11

Solution 1: Roadmap Planner Algorithm

Image credit K. Hauser

• Discretize the 2D space into grids.
• Robot can only travel to neighboring grids

➢ cost=1 to horizontal/vertical neighbors

➢ cost= 2 to diagonal neighbors
➢ cost=∞ to neighbors including obstacles

• Search the best path (e.g. Dijkstra's algorithm)

12

Solution 1: Roadmap Planner Algorithm

Image credit K. Hauser

Roadmap Planner Algorithm Has Resolution Problems

Coarse-resolution grids:
• Computationally efficient
• May not be optimal

13Image credit K. Hauser

Roadmap Planner Algorithm Has Resolution Problems

Coarse-resolution grids:
• Computationally efficient
• May not be optimal

Fine-resolution grids:
• Computationally inefficient
• More likely to be optimal

14Image credit K. Hauser

Solution 2: Visibility Graph Algorithm

We don’t need grids, but vertices of the start location, goal location and obstacle corners

1. Let 𝑉 be the union of the start, the goal and all obstacle vertices.
2. 𝐸 ←
3. for all pairs of distinct vertices 𝑢, 𝑣 𝜖𝑉
4. if 𝑢𝑣 is an obstacle edge
5. Add (𝑢, 𝑣) to 𝐸
6. else if 𝑢𝑣 is collision free
7. Add (𝑢, 𝑣) to 𝐸
8. Search 𝐺=(𝑉,𝐸), with Cartesian distance as the edge cost, to connect the start and goal
9. return the path if one is found.

15Image credit K. Hauser

Solution 3: Cell Decomposition Algorithm

1

2

3

4

Segment the free space into cells by vertices

Connect neighboring free-space cells

Search a path that traverses from the start cell
to the goal cell

16Image Credit S. M. LaValle

A General Framework for Motion/Path Planning

Slide adapted from Sanjiban Choudhury

Create a graph Search the graph Densify the graph

17

But Planning is Hard…

18Slide adapted from Sanjiban Choudhury

• Previously, we only consider 2D point robots. What if the robot shape is
triangle that can both translate and rotate in 2D?

• What if the robot is a car which cannot make pure left/right movement?
• What if the robot is a 2-joint planar arm?

19

But Planning is Hard…

• Previously, we only consider 2D point robots. What if the robot shape is
triangle that can both translate and rotate in 2D?

• What if the robot is a car which cannot make pure left/right movement?
• What if the robot is a 2-joint planar arm?

• Previously, we only consider 2D point robots. What if the robot shape is
triangle that can both translate and rotate in 2D?

• What if the robot is a car which cannot make pure left/right movement?
• What if the robot is a 2-joint planar arm?
• What if the robot is a 7-joint planar arm?
• What if the robot works in 3D?
What is the unified planning formulation for robots with different mechanisms?

20

But Planning is Hard…

Slide adapted from Sanjiban Choudhury

The Configuration Space
• The configuration of of a robot is a complete specification of the position of every

point of the robot
• Configuration space (C-space) is the n-dimensional space containing all possible

configurations of the robot. In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

ℝ2

21

ℝ2

We can represent it with coordinates 𝑥, 𝑦

C-space

𝑥

𝑦

• The configuration of of a robot is a complete specification of the position of every
point of the robot

• Configuration space (C-space) is the n-dimensional space containing all possible
configurations of the robot. In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

22

The Configuration Space

ℝ2

We can represent it with coordinates 𝑥, 𝑦

C-space

𝑥

𝑦

𝑥

𝑦

workspace

The configuration that
the robot can reach

• The configuration of of a robot is a complete specification of the position of every
point of the robot

• Configuration space (C-space) is the n-dimensional space containing all possible
configurations of the robot. In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

The Configuration Space

23

ℝ2

We can represent it with coordinates 𝑥, 𝑦

C-space

𝑥

𝑦

𝑥

𝑦

workspace

The configuration that
the robot can reach

• The configuration of of a robot is a complete specification of the position of every
point of the robot

• Configuration space (C-space) is the n-dimensional space containing all possible
configurations of the robot. In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

The Configuration Space

24

• The configuration of of a robot is a complete specification of the position of every
point of the robot

• Configuration space (C-space) is the n-dimensional space containing all possible
configurations of the robot. In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

ℝ2 𝕊1×

The Configuration Space

25

• The configuration of of a robot is a complete specification of the position of every
point of the robot

• Configuration space (C-space) is the n-dimensional space containing all possible
configurations of the robot. In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

We can represent it with coordinates 𝑥, 𝑦

ℝ2 𝕊1×
We can represent it with angle 𝜃

C-space

𝜃

𝑦

𝑥

The Configuration Space

26

• The configuration of of a robot is a complete specification of the position of every
point of the robot

• Configuration space (C-space) is the n-dimensional space containing all possible
configurations of the robot. In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

We can represent it with coordinates 𝑥, 𝑦

ℝ2 𝕊1×
We can represent it with angle 𝜃

𝜃

𝑥

𝑦

𝑥

𝑦

C-space workspace

The Configuration Space

27

• The configuration of of a robot is a complete specification of the position of every
point of the robot

• Configuration space (C-space) is the n-dimensional space containing all possible
configurations of the robot. In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

We can represent it with coordinates 𝑥, 𝑦

ℝ2 𝕊1×
We can represent it with angle 𝜃

𝜃

𝑥

𝑦

𝑥

𝑦

C-space workspace

The Configuration Space

28

• The configuration of of a robot is a complete specification of the position of every
point of the robot

• Configuration space (C-space) is the n-dimensional space containing all possible
configurations of the robot. In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

We can represent it with coordinates 𝑥, 𝑦

ℝ2 𝕊1×
We can represent it with angle 𝜃

𝜃

𝑥

𝑦

𝑥

𝑦

C-space workspace

The Configuration Space

29

• The configuration of of a robot is a complete specification of the position of every
point of the robot

• Configuration space (C-space) is the n-dimensional space containing all possible
configurations of the robot. In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

ℝ2 𝕊1× ℝ2 𝕊1×

We can represent it with coordinates 𝑥, 𝑦

We can represent it with angle 𝜃

The Configuration Space

30

• The configuration of of a robot is a complete specification of the position of every
point of the robot

• Configuration space (C-space) is the n-dimensional space containing all possible
configurations of the robot. In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

ℝ2 𝕊1×

We can represent it with angle 𝜃1, 𝜃2

ℝ2 𝕊1× 𝕊1 × 𝕊1

The Configuration Space

31

• The configuration of of a robot is a complete specification of the position of every
point of the robot

• Configuration space (C-space) is the n-dimensional space containing all possible
configurations of the robot. In other words, C-space includes the set of all rigid-
body transformations that can be applied to the robot.

ℝ2 𝕊1×

We can represent it with angle 𝜃1, 𝜃2, … 𝜃𝑛

ℝ2 𝕊1× 𝕊1 × 𝕊1 𝕊1 ×⋯× 𝕊1

𝑛 joints

The Configuration Space

32

How to Specify Obstacles in the Configuration Space?

33Slide credit Sanjiban Choudhury

Image credit H. Choset

Robot

Obstacle 𝒪

𝐶𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒

𝑞: 𝐴(𝑞) ∩ 𝒪 ≠ ∅

Example: Rotational Motion

34

𝑞: 𝐴(𝑞) ∩ 𝒪 ≠ ∅
Obstacle 𝒪

𝐶𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒

Robot

Example: Rotational Motion

Image credit H. Choset 35

36

Example: 2-Link Planar Arm

Image credit T. Bhattacharya 37

https://www.youtube.com/watch?v=SBFwgR4K1Gk

Motion Planning is Hard….

38

Slide credit Sanjiban Choudhury 39

Image credit S. LaValle

We can apply previous techniques (e.g. grid-search,
visibility graph, cell decomposition) here!

40

• n-joint robot has n-dim C-space
• Assume we have 𝑀 vertices per dim. The n-dim C-

space has 𝑀𝑛 vertices…
• In high dimensions:

➢ Computing the C-space obstacle is hard
➢ Planning is hard

10 vertices per dim

41

Motion Planning is Hard….

• n-joint robot has n-dim C-space
• Assume we have 𝑀 vertices per dim. The n-dim C-

space has 𝑀𝑛 vertices…
• In high dimensions:

➢ Computing the C-space obstacle is hard
Solution: Don’t compute 𝐶𝑜𝑏𝑠 explicitly, instead we
query a collision detector

➢ Planning is hard
Solution: Don’t search a path from all vertices, but
sampled vertices

• Idea: Don’t compute until being queried!

10 vertices per dim

Motion Planning is Hard….

42

Implicit C-Obstacle Representations

• Feasibility query:

𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑞 = ቊ
1 , 𝑖𝑓 𝑞 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑟𝑒𝑒 𝑠𝑝𝑎𝑐𝑒
0, 𝑖𝑓 𝑞 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑠𝑝𝑎𝑐𝑒

43

• Feasibility query:

𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑞 = ቊ
1 , 𝑖𝑓 𝑞 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑟𝑒𝑒 𝑠𝑝𝑎𝑐𝑒
0, 𝑖𝑓 𝑞 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑠𝑝𝑎𝑐𝑒

• Visibility query:

𝑉𝑖𝑠𝑖𝑏𝑙𝑒 𝑞1, 𝑞2 = ቊ
1 , 𝑖𝑓 𝑞1𝑞2 𝑖𝑠 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑙𝑦 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑟𝑒𝑒 𝑠𝑝𝑎𝑐𝑒
0, 𝑖𝑓𝑞1𝑞2 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑠 𝑡ℎ𝑒 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑠𝑝𝑎𝑐𝑒

𝑞1 𝑞2

𝑞1𝑞2[𝑖]

Chunk segment 𝑞1𝑞2 into parts, check feasibility of each part

44

Implicit C-Obstacle Representations

Probabilistic Roadmaps (PRM)

We don’t’ have an explicit feasibility
map. Just for reference…

RPM Algorithm:

Slide adapted from K. Hauser 45

RPM Algorithm:
1. Sample random N configurations from

the C-space and query their feasibilities

𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑞

Probabilistic Roadmaps (PRM)

Slide adapted from K. Hauser 46

𝑔

𝑠

RPM Algorithm:
1. Sample random N configurations from

the C-space and query their feasibilities
2. Add milestones (all feasible, the start

and the goal configurations).

We don’t’ have an explicit feasibility
map. Just for reference…

Probabilistic Roadmaps (PRM)

Slide adapted from K. Hauser 47

𝑔

𝑠

𝑔

𝑠

𝑔

𝑠

RPM Algorithm:
1. Sample random N configurations from

the C-space and query their feasibilities
2. Add milestones (all feasible, the start

and the goal configurations).
3. Connect pairs of neighboring

milestones if they are visible

We don’t’ have an explicit feasibility
map. Just for reference…

𝑉𝑖𝑠𝑖𝑏𝑙𝑒 𝑞, 𝑝

Probabilistic Roadmaps (PRM)

Slide adapted from K. Hauser 48

𝑔

𝑠

𝑔

𝑠

𝑔

𝑠

𝑔

𝑠

RPM Algorithm:
1. Sample random N configurations from

the C-space and query their feasibilities
2. Add milestones (all feasible, the start

and the goal configurations).
3. Connect pairs of neighboring

milestones if they are visible
4. Search for a path from the start to the

goal

We don’t’ have an explicit feasibility
map. Just for reference…

Probabilistic Roadmaps (PRM)

Slide adapted from K. Hauser 49

Probabilistic Roadmaps (PRM)

Slide adapted from K. Hauser 50

Is Uniformly Randomly Sampling Good Enough?

51Slide credit Sanjiban Choudhury

The narrow passage: We need more samples here

The narrow passage: We need more samples here

Solutions:
1. Sample near obstacle surface
2. Add samples that are in between two

obstacles
3. Train a learner to detect the narrow passages

Is Uniformly Randomly Sampling Good Enough?

52Slide credit Sanjiban Choudhury

Quick summary of PRM

𝑔

𝑠

𝑔

𝑠

𝑔

𝑠

𝑔

𝑠

• PRM randomly samples configurations to
build a roadmap, hoping to cover the free
space

• PRM is great when we want to reuse the
graph. For example, plan many times
with different start/goal pairs

• What if we just need to plan once? For
example, a robot only needs to pick up
the object once

We don’t’ have an explicit feasibility
map. Just for reference…

53

Rapidly Exploring Random Trees (RRTs)

𝑠 𝑠

𝑔

𝑠

Grow a tree of feasible paths from the start to the goal
configuration, instead of building a graph.

54

RRT-Connect: An Efficient Approach to Single-Query Path
Planning. J. Kuffner and S. LaValle.

Sample random configuration with probability
𝑝, and the goal with probability 1 − 𝑝

Slide adapted from M. Likhachev55

Rapidly Exploring Random Trees (RRTs)

Select the closest
configuration in the tree

How to expand the tree? Expand from the
node that is the closest to the configured q

RRT-Connect: An Efficient Approach to Single-Query Path
Planning. J. Kuffner and S. LaValle. Slide adapted from M. Likhachev56

Rapidly Exploring Random Trees (RRTs)

Move by at most 𝜀 from
𝑞𝑛𝑒𝑎𝑟 to 𝑞

Select the closest
configuration in the tree

RRT-Connect: An Efficient Approach to Single-Query Path
Planning. J. Kuffner and S. LaValle. Slide adapted from M. Likhachev57

Rapidly Exploring Random Trees (RRTs)

Expansion Strategy

Image credit D. Fox

Randomly uniformly sampling
Biased sampling toward

unexplored regions

Sample random configuration with probability
𝑝, and the goal with probability 1 − 𝑝

58

Voronoi Diagram
Voronoi diagram: nearest-neighbor segmentation. Assign each pixel to the nearest
node. We can check the area of each region and explore more in the large ones.

59

Voronoi Bias Strategy

Sample random configuration with
probability 𝑝, which is proportional to
the volume of its Voronoi cell.
• Bias sampling toward unexplored

areas.

Voronoi diagram: nearest-
neighbor segmentation

60
RRT-Connect: An Efficient Approach to Single-Query Path
Planning. J. Kuffner and S. LaValle.

RRT-Connect: Bi-direction RRTs

new configuration is added

Greedily move from 𝑞𝑛𝑒𝑎𝑟 to 𝑞𝑟𝑎𝑛𝑑

Grow two trees, one from the start
and another from the goal

61
RRT-Connect: An Efficient Approach to Single-Query Path
Planning. J. Kuffner and S. LaValle.

Single Tree vs. Double Trees

Image credit D. Fox 62

RRT Still Has Problems…

Slide adapted from K. Hauser

• The “bugtrap” problem: due to the Voronoi bias, RRT frequently attempts infeasible
extensions

• To escape the mouth of a bugtrap, we need to sample a very carefully chosen
sequence of milstones within the general area that it has already explored

• A tradeoff between exploring new regions and refine the roadmap of explored areas

63

Slide credit Abhishek Gupta; Image credit T. Chinenov 64

RRT Still Has Problems…

RRT*: RRT + Re-Wiring

Integrating Rigidity Analysis into the Exploration of Protein
Conformational Pathways Using RRT* and MC. F. Afrasiabi et al.

• Can we find more optimal path passing through 𝑞𝑛𝑒𝑤 ?
• Can we find more optimal path to 𝑞𝑛𝑒𝑤 ?

65

66

RRT*: RRT + Re-Wiring

Slide credit K. Hauser

Slide credit K. Hauser 67

RRT*: RRT + Re-Wiring

Sampling-based Algorithms for Optimal Motion Planning. S.
Karaman and E. Frazzoli.

RRT

RRT*

RRT vs. RRT*

68

RRT vs. RRT*

RRT RRT*

69
Sampling-based Algorithms for Optimal Motion Planning. S.
Karaman and E. Frazzoli.

RRT*

Image credit T. Chinenov 70

Virtual Potential Fields

• From physics we know that a potential field 𝑃(𝑞) defined over 𝐶 induces a force

𝐹 = −𝜕𝑃

𝜕𝑞
that drives an object from high to low potential.

• In robotics, we can define a potential field and derive the corresponding force, with
which we drive the configuration 𝒒 from high to low potential.

• The potential field of reaching a goal:

• The potential field induced by a 𝐶-obstacle 𝛽

71

Pushing configuration
to regions with low
potential

𝑞𝑡+1 = 𝑞𝑡 +
∆𝑡
𝑚Σ𝐹

72

Non-Linear Optimization
• We can consider path planning as an optimization problem

• We can parametrize control 𝑢(𝑡) and path 𝑞 𝑡 with the coefficients of (1) a
polynomial, (2) a truncated Fourier series, (3) spline, (4) wavelet, or (5)piecewise
constant acceleration segments in time.

73

For more on Motion Planning, check
“Planning Algorithms” by Steven M. LaValle

74

Sensor

State
Estimation

Goal
Prediction

Motion
Planning

Actuator

Motion Control

Low-level
Controller

Decision Making

Perception

Trajectory
Generation

Action Requires Deciding a Goal, Planning to Achieve the
Goal, and Controlling Motion to Follow the Plan

75

Sensor

State
Estimation

Goal
Prediction

Motion
Planning

Actuator

Low-level
Controller

Decision Making

Decision Making is in fact Hierarchical

Sensor

State
Estimation

Actuator

Low-level
Controller

Oversimplified!

goal 1

Final goal

goal 2

Subgoal 1.a Subgoal 1.n…
…

Motion
Planning

Decision Making

76

Sensor

State
Estimation

Goal
Prediction

Motion
Planning

Actuator

Low-level
Controller

Decision Making is in fact Hierarchical

Sensor

State
Estimation

Actuator

Low-level
Controller

goal 1

Final goal

goal 2

Subgoal 1.a Subgoal 1.n…
…

Cook Egg

Find egg

Grasp egg
from Y

Goto fridge
at X

Motion
Planning

Decision Making

77

Decision Making

Oversimplified!

https://youtu.be/tNHjpXP8RFo?si=Sokgfvgef0T18Tuy

Decision Making Should be Adaptive w.r.t the Kinematic
and Geometric Feasibility

78

https://youtu.be/VndjJtzl7ho?si=Uqc5rLSI2rPLbMIe 79

Decision Making Should be Adaptive w.r.t the Kinematic
and Geometric Feasibility

We Need to Decide What are the Tasks, the Order of the Tasks,
the Goal per Task, the Motion/Path to Achieve the Goal

Task: Put the mustard in the blue region SubTask1: Grasp the mustard
• Subgoal configuration of the gripper pose

➢ Motion planning for the trajectory
SubTask2: Lift up the mustard

• Subgoal configuration of the gripper pose
➢ Motion planning for the trajectory

SubTask3: Carry the mustard above the blue region
• Subgoal configuration of the gripper pose

➢ Motion planning for the trajectory
SubTask4: Put down the mustard

• Subgoal configuration of the gripper pose
➢ Motion planning for the trajectory

80

The plan is not feasible, since the robot can‘t
reach the occluded mustard

Task: Put the mustard in the blue region SubTask1: Grasp the mustard
• Subgoal configuration of the gripper pose

➢ Motion planning for the trajectory
SubTask2: Lift up the mustard

• Subgoal configuration of the gripper pose
➢ Motion planning for the trajectory

SubTask3: Carry the mustard above the blue region
• Subgoal configuration of the gripper pose

➢ Motion planning for the trajectory
SubTask4: Put down the mustard

• Subgoal configuration of the gripper pose
➢ Motion planning for the trajectory

We Need to Decide What are the Tasks, the Order of the Tasks,
the Goal per Task, the Motion/Path to Achieve the Goal

81

We Need to Replan Based on Kinematic and
Geometric Feasibility

Task: Put the mustard in the blue region
SubTask 1: Grasp the Cheezit

⋮
SubTask N: Grasp the mustard

• Subgoal configuration of the gripper pose
➢ Motion planning for the trajectory

SubTask N+1: Lift up the mustard
• Subgoal configuration of the gripper pose

➢ Motion planning for the trajectory
SubTask N+2: Carry the mustard above the blue region

• Subgoal configuration of the gripper pose
➢ Motion planning for the trajectory

SubTask N+3: Put down the mustard
• Subgoal configuration of the gripper pose

➢ Motion planning for the trajectory

82

Classical Task Planning: Decide Which Tasks
and the Ordering of the Tasks

Task: Put the mustard in the blue region

SubTask 1: Grasp the Cheezit
⋮

SubTask N: Grasp the mustard
• Precondition
• Effect

SubTask N+1: Lift up the mustard
• Precondition
• Effect

SubTask N+2: Carry the mustard above the blue region
• Precondition
• Effect

SubTask N+3: Put down the mustard
• Precondition
• Effect ← leads to the final goal (mustard in the

blue region)

83

• The world is abstracted into a discrete space with many variables (e.g. A, B, C, D, E)

Slide adapted from C. R. Garrett and C. Paxton

State Representations of Objects

84

• The world is abstracted into a discrete space with many variables (e.g. A, B, C, D, E)

• State representations of objects:
➢ Predicate: Boolean function (On ?b1 ?b2)=True/False
➢ Facts (literals): instantiated predicates (On D C)
➢ States: set of facts {¬(On A B),(On D C), …}

State Representations of Objects

85Slide adapted from C. R. Garrett and C. Paxton

Actions Lead to Transitions between States

D

• Action:
➢ Preconditions test feasibility of the

action
➢ Effects describe changes to a set of

states
➢ Parameters show the set of states

involved in the action

86Slide adapted from C. R. Garrett and C. Paxton

Task Planning: Search a sequence of actions
that convert the initial states to the goal states

(On D C)

(On D B)

D

Unstack(D C) Stack(D B)⋮

Stack(E A)

Stack(A B)

⋮

(On D C)

(On E A)

(On D C)

(On A B)

⋮

87

Forward Best-First Search

Video credit https://en.wikipedia.org/wiki/A*_search_algorithm88Slide adapted from C. Paxton

How close to the goal

Classical Task Planning

• Initial states: (On D C)
• Goal states: {(On E C),(On C A),(On B D)}
• Actions:

1. Unstack(D, C)

2. Stack(D, B)

3. Stack(C, A)

4. Stack(E, C)

5. Unstack(D, B)

6. Stack(B, D)
89Slide adapted from C. R. Garrett and C. Paxton

However, Discretized States and Actions Oversimplify the
World and Robot-Object Interaction

D

D

Abstract states

(On D B)

(On D B)

Continuous object
configurations

(On D B, px=0.0, py=1.0)

(On D B, px=0.2, py=1.0)

90

D

D

Abstract action

Unstack(D B)

Unstack(D B)

Continuous object
configurations

Unstack(D B)

pgripper=<0.0, 1.0, 0°>
trajectory=τ

Unstack(D B)

pgripper=<0.2, 1.0, 30°>
trajectory=τ

91

However, Discretized States and Actions Oversimplify the
World and Robot-Object Interaction

Parameterize States with Continuous Variables

(:derived (On ?b1 ?b2)

(exists (?p1) (?p2) (and (Above ?p2 ?p1)

(AtPose ?b1 ?p1)

(AtPose ?b2 ?p2))))

?b: block
?p: 6DoF object pose

Parameters:

AtPose: is block ?b at pose ?p
Above: is pose ?p1 above pose ?p2

Static Predicates:

92

(:action pick

:parameters (?b ?p ?g ?q)

:precondition (and (Kin ?b ?p ?g ?q)

(AtPose ?b ?p)

(Empty)

(AtConf ?q))

:effect (and (Holding ?b ?g)

(not (AtPose ?b ?p)

(not (Empty))))

?b: block
?p: 6DoF object pose
?g: 6DoF robot’s end-effector pose
?q: Robot’s configuration

Parameters:

Kin: Are a grasp ?g and robot configuration ?q valid
when block ?b is at pose ?p
AtPose: is block ?b at pose ?p
Empty: is the robot’s end-effector is empty
Holding: is block ?b hold by a grasp ?g
AtConf: is the robot at configuration ?q

Static Predicates:

93

Parameterize States with Continuous Variables

Task and Motion Planning: Plan a sequence of
Actions and their Continuous Parameters

Task: Put block A in the red region

94Slide adapted from C. R. Garrett

Task: Put block A in the red region

We need to decide the discrete action class and its continuous
parameters!

Task and Motion Planning: Plan a sequence of
Actions and their Continuous Parameters

95Slide adapted from C. R. Garrett

◼ Action classes: pick, move, place …

◼ Planner needs to find:

96Slide credit C. R. Garrett

97Slide credit C. R. Garrett

Obtain Continuous Action Parameters by Sampling

98Slide credit C. R. Garrett

99Slide credit C. R. Garrett

100Slide credit C. R. Garrett

101Slide credit C. R. Garrett

102Slide credit C. R. Garrett

103Slide credit C. R. Garrett

104Slide credit C. R. Garrett

STRIP: a formal language for
expressing planning problems105Slide credit C. R. Garrett

Obtain Continuous Action Parameters by Sampling

Off-the-shelf AI planner
(e.g. FastDownward)

Sample from streams

106

107Slide credit C. R. Garrett

108Slide credit C. R. Garrett

109Slide credit C. R. Garrett

110Slide credit C. R. Garrett

111Slide credit C. R. Garrett

112Slide credit C. R. Garrett

What are the Assumptions / Limitations?

• Limitations:
➢ TAMP needs to hand craft samplers for (sub)goal

configurations. How to generalize to novel objects /
scene.

➢ TAMP needs to pre-define action classes. How to
generalize to unseen tasks?

➢ TAMP assumes deterministic actions, which produce the
same intended effect all the time

➢ TAMP assumes perfect perception. Robots know the
perfect object states.

➢ TAMP has heavy computational overhead.

• What are the modern ways to do TAMP?

113

Manipulate Anything: Automating Real-World Robots using Vision-
Language Models. Duan et al.

Automate TAMP with VLM

114

LLMs that Perceive, Plan Subtasks, Determine the
Motion, Monitor the Progress

Manipulate Anything: Automating Real-World Robots using Vision-
Language Models. Duan et al. 115

LLMs that Perceive, Plan Subtasks, Determine the
Motion, Monitor the Progress

Manipulate Anything: Automating Real-World Robots using Vision-
Language Models. Duan et al. 116

LLMs that Perceive, Plan Subtasks, Determine the
Motion, Monitor the Progress

Manipulate Anything: Automating Real-World Robots using Vision-
Language Models. Duan et al. 117

LLMs that Perceive, Plan Subtasks, Determine the
Motion, Monitor the Progress

Manipulate Anything: Automating Real-World Robots using Vision-
Language Models. Duan et al. 118

Manipulate Anything: Automating Real-World Robots using Vision-
Language Models. Duan et al. 119

Manipulate Anything: Automating Real-World Robots using Vision-
Language Models. Duan et al. 120

	Slide 1: Robot Perception and Learning
	Slide 2
	Slide 3: But We want a Robot that can See and Act
	Slide 4
	Slide 5: How to Define Goals?
	Slide 6: A Robot’s End-Effector Poses are Common Representations of Goals
	Slide 7: Motion Planning
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71: Virtual Potential Fields
	Slide 72
	Slide 73: Non-Linear Optimization
	Slide 74: For more on Motion Planning, check “Planning Algorithms” by Steven M. LaValle
	Slide 75
	Slide 76: Decision Making is in fact Hierarchical
	Slide 77: Decision Making is in fact Hierarchical
	Slide 78: Decision Making Should be Adaptive w.r.t the Kinematic and Geometric Feasibility
	Slide 79
	Slide 80: We Need to Decide What are the Tasks, the Order of the Tasks, the Goal per Task, the Motion/Path to Achieve the Goal
	Slide 81: We Need to Decide What are the Tasks, the Order of the Tasks, the Goal per Task, the Motion/Path to Achieve the Goal
	Slide 82: We Need to Replan Based on Kinematic and Geometric Feasibility
	Slide 83: Classical Task Planning: Decide Which Tasks and the Ordering of the Tasks
	Slide 84: State Representations of Objects
	Slide 85: State Representations of Objects
	Slide 86: Actions Lead to Transitions between States
	Slide 87: Task Planning: Search a sequence of actions that convert the initial states to the goal states
	Slide 88: Forward Best-First Search
	Slide 89: Classical Task Planning
	Slide 90: However, Discretized States and Actions Oversimplify the World and Robot-Object Interaction
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120

