### Robot Perception and Learning

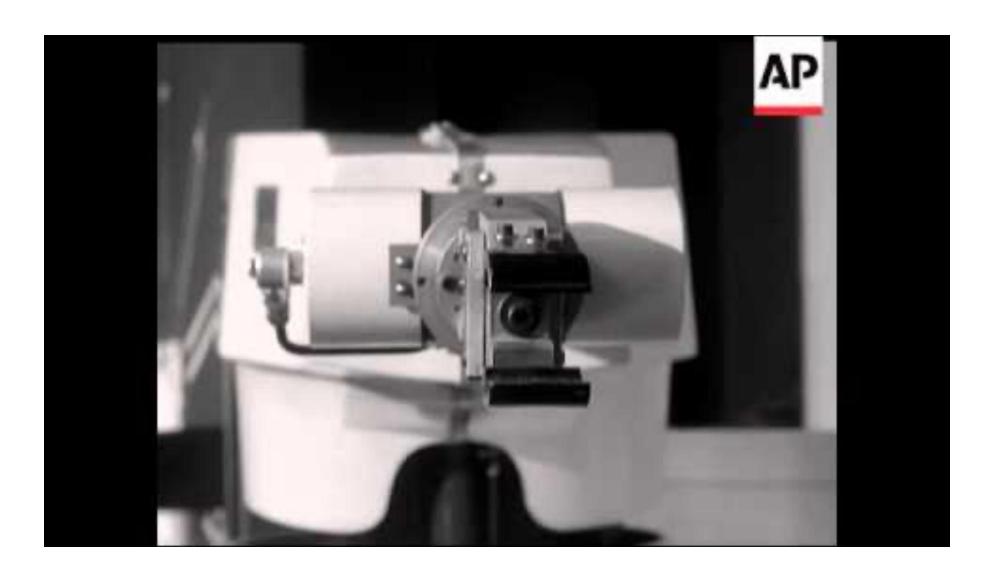
**Robot Kinematics** 

Tsung-Wei Ke

Fall 2025

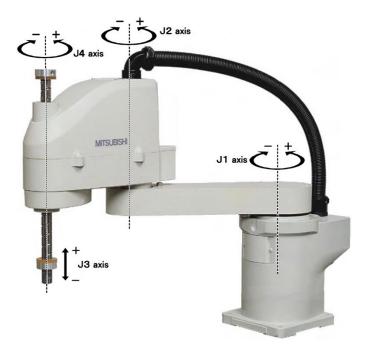


#### We want a Robot that can See and Move





The Stanford Arm. 1969



SCARA Robot. 1978



PR2 Robot. 2008



Franka Emika Panda Robot. 2017

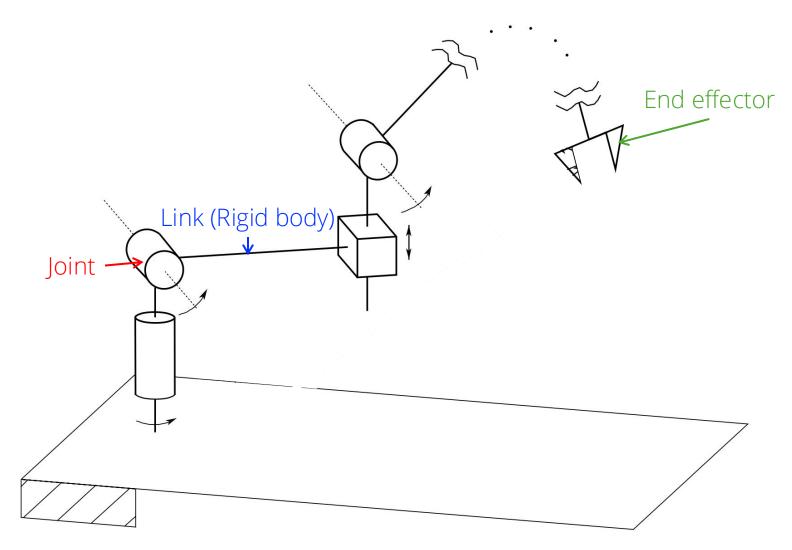


Clone Synthetic Hand. 2023



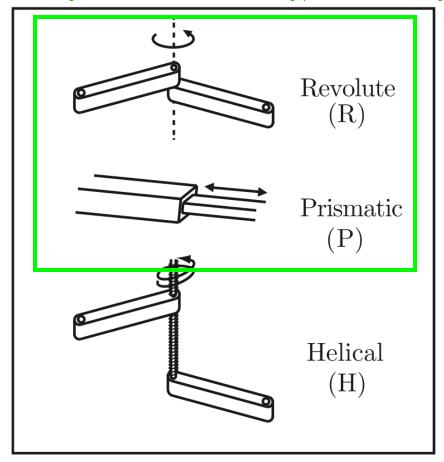
Active entanglement enables stochastic, topological grasping. Becker et al

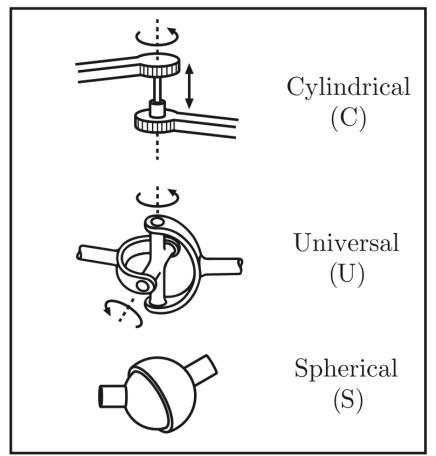
### Anatomy of Rigid Multi-Link Robots



### Typical Robot Joints

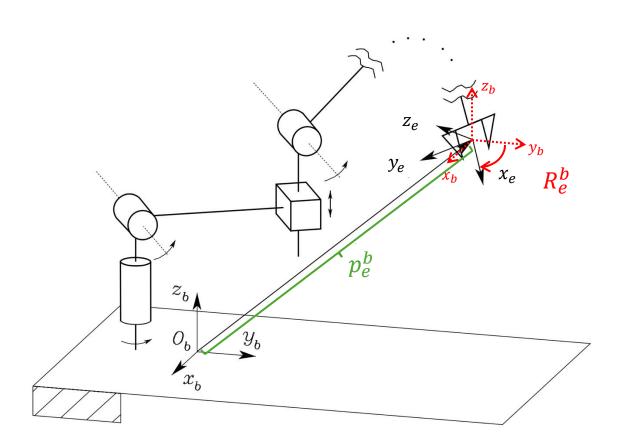
We will only discuss these two types of robot joints





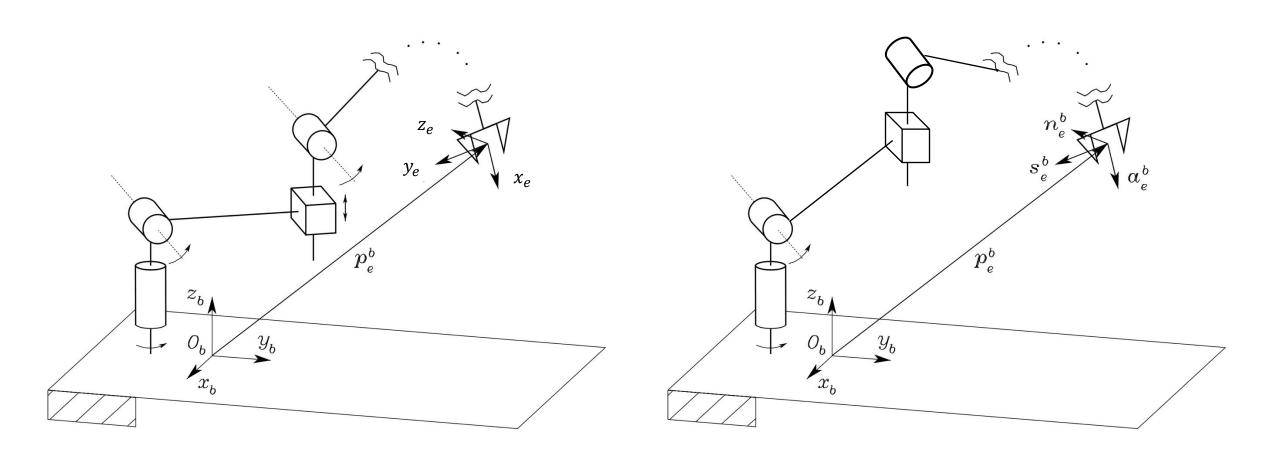
### Where is the Robot?

Idea: Specify the end-effector pose (location  $p_e^b$  and rotation  $R_e^b$ )

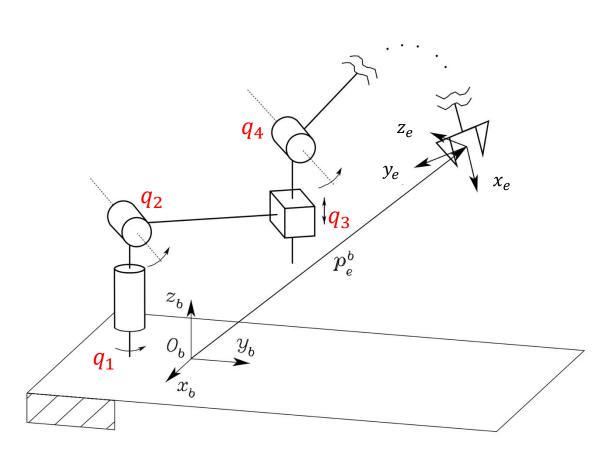


### Where is the Robot?

However, these two configurations end up in the same end-effector pose



### Configuration Space vs. Task (Operational) Space

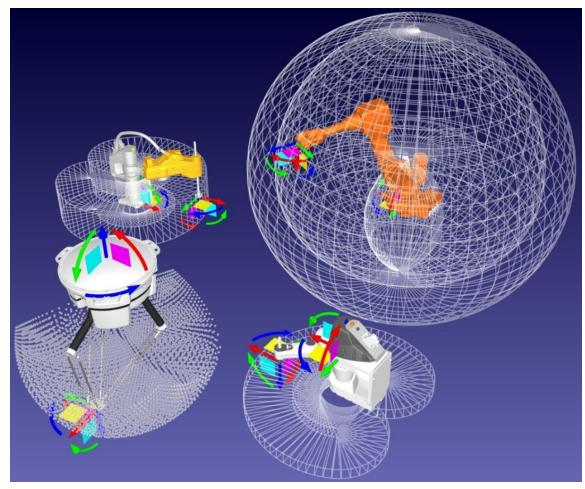


Configuration: a complete specification of the position of every point of the robot (e.g. angle of a revolute joint or displacement of a prismatic joint).

Configuration space (C-space): the n-dimensional space containing all possible configurations of the robot.

**Task space**: the space in which the robot's task is naturally expressed.

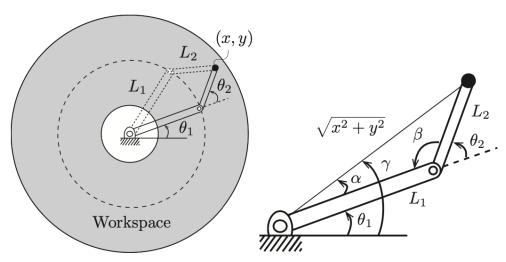
### Task (Operational) Space vs. Work space



https://robodk.com/blog/robot-workspace-visualization/

**Task space**: the space in which the robot's task is naturally expressed.

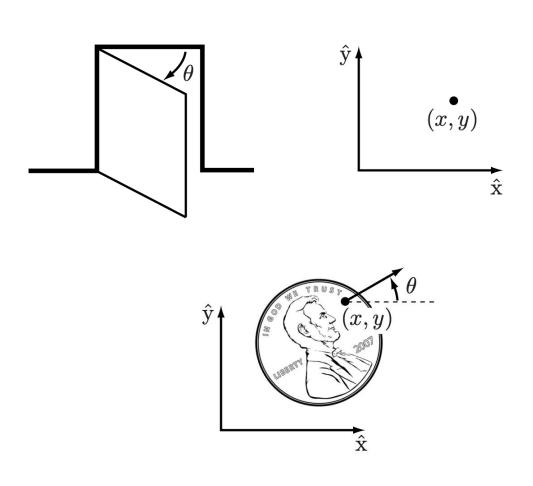
**Work space**: the space in which the robot's end-effector can reach.



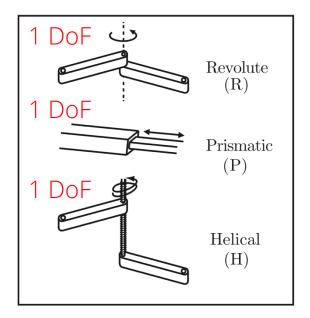
(a) A workspace, and lefty and righty configurations.

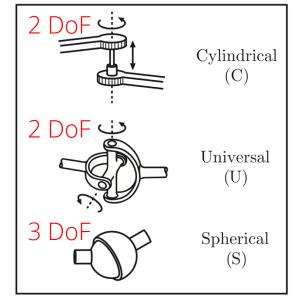
(b) Geometric solution.

### Degree of Freedom



Degree of Freedom (DoF): The minimum number n of real-valued coordinates needed to represent the configuration.

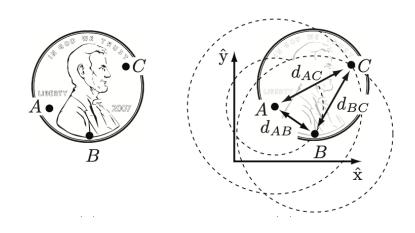




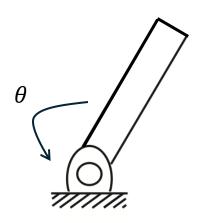
### Degree of Freedom

**Degree of Freedom:** sum of freedoms of the bodies - #. of independent constraints or

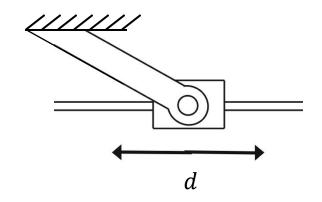
#. of variables - #. of independent equations







#. of variables = 6 (X, Y, Z, pitch, roll, yaw) #. of independent equations = 5 DoF = 1 ( $\theta$ )



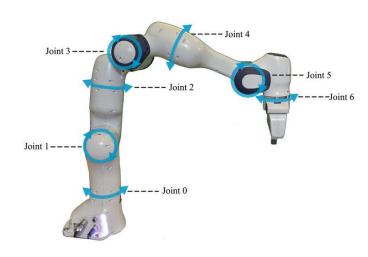
```
#. of variables = 6 (X,Y,Z,pitch,roll,yaw)#. of independent equations = 5DoF = 1 (d)
```

A robot is kinematically redundant if it has more DoF than the dimension of the task space, which provides more solutions to reach a pose.

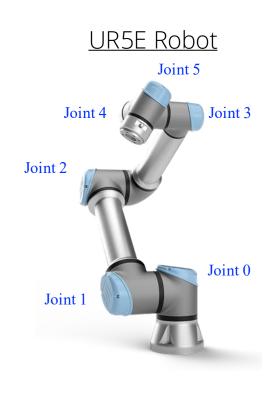
Grübler's formula for the number of degrees of freedom of the robot is

$$ext{dof} = \underbrace{m(N-1)}_{ ext{rigid body freedoms}} - \sum_{i=1}^{J} c_i$$

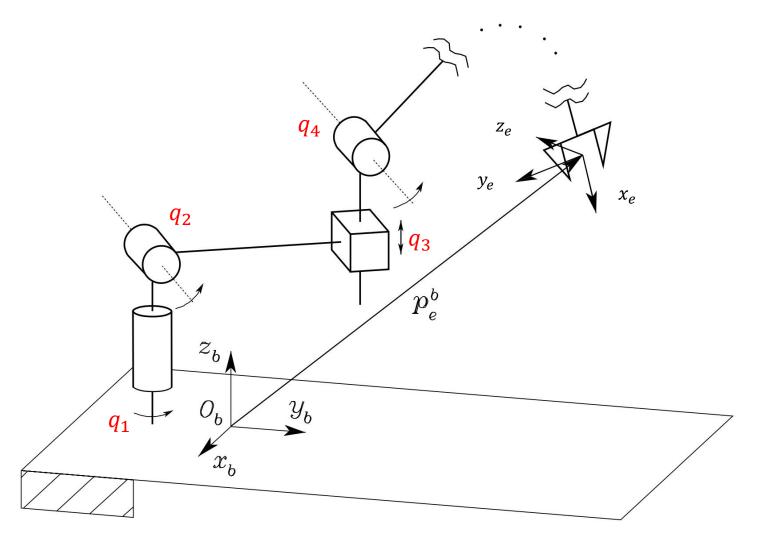
#### Franka Emika Panda Robot



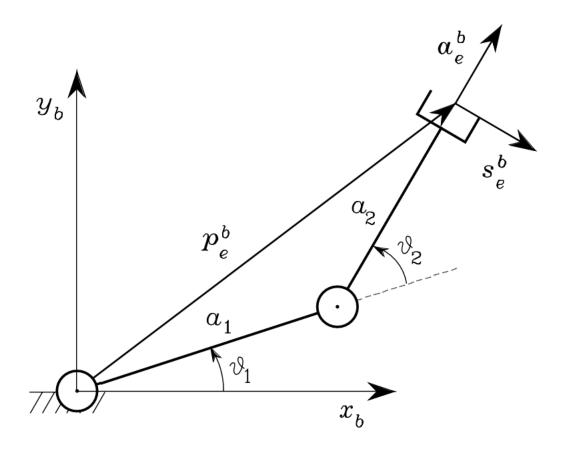
$$DoF = 6 * (8 - 1) - \sum_{i=0}^{6} 5 = 7$$



# What is the Pose of a Robot's End Effector given Its Configuration?



### Forward Kinematics: Calculate the Pose of a Robot End-Effector given the Configuration

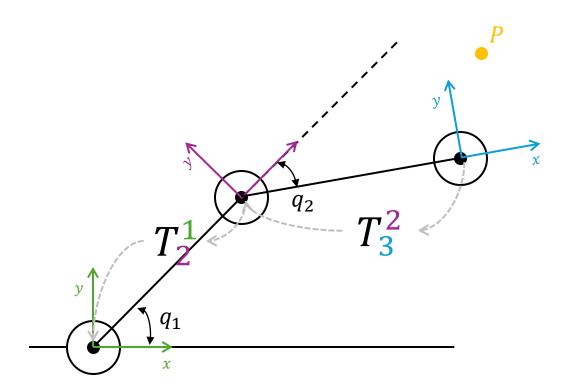


- We can calculate by Euclidean geometry, but is there any more general formulation?
- Let  $c_1$  denote  $\cos \vartheta_1$  and  $s_1$  denote  $\sin \vartheta_1$

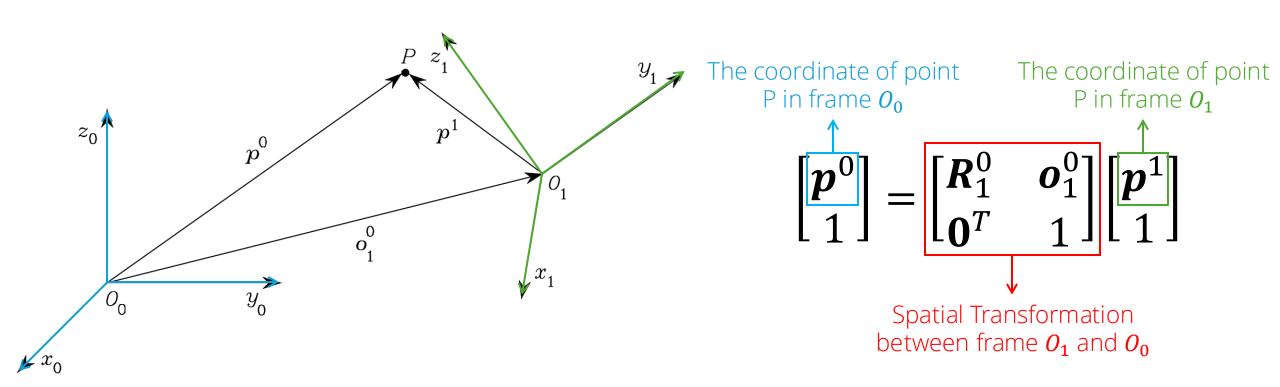
$$m{T}_e^b(m{q}) = egin{bmatrix} 0 & s_{12} & c_{12} & a_1c_1 + a_2c_{12} \ 0 & -c_{12} & s_{12} & a_1s_1 + a_2s_{12} \ 1 & 0 & 0 & 0 \ 0 & 0 & 1 \end{bmatrix}$$

### Forward Kinematics: Calculate the Pose of a Robot End-Effector given the Configuration

We can consider each joint applies coordinate transformation

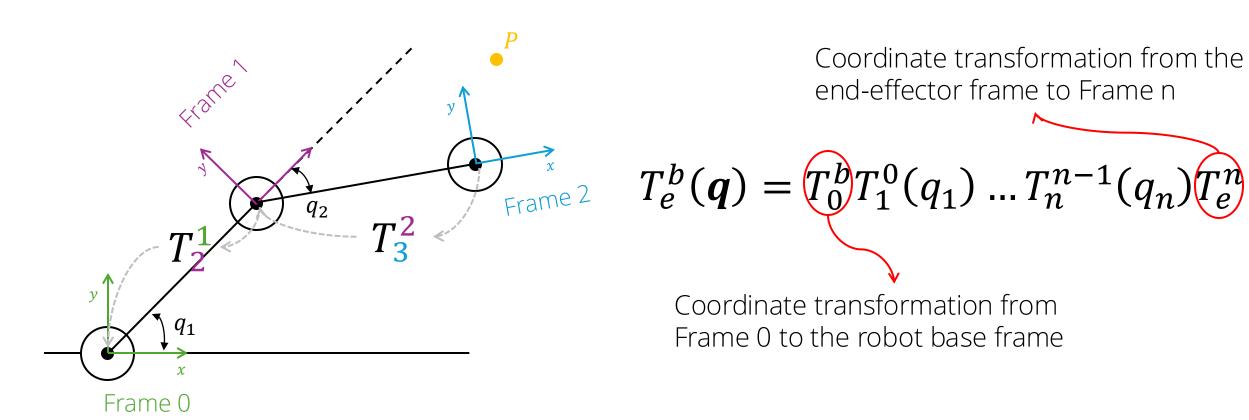


### Rigid-Body Transformation

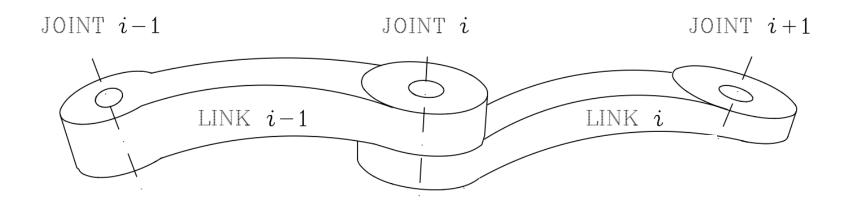


### Forward Kinematics: Calculate the Pose of a Robot End-Effector given the Configuration

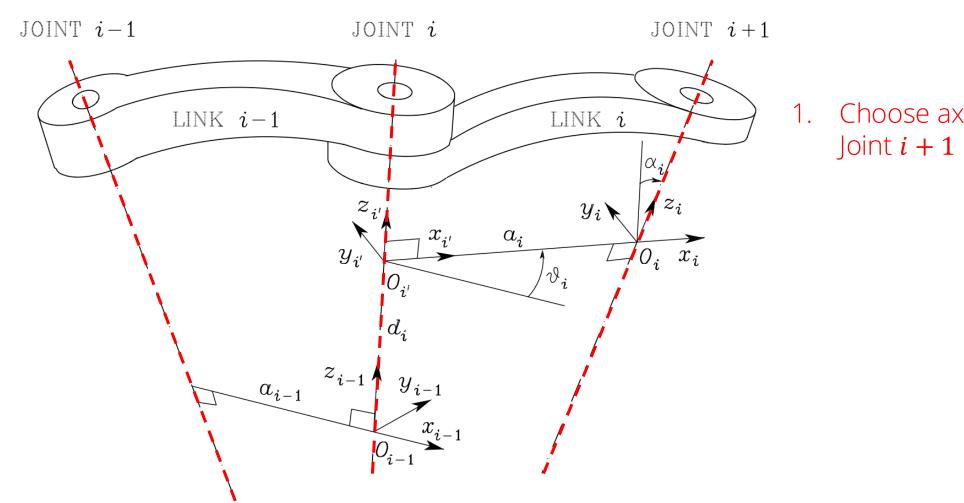
We can consider each joint applies coordinate transformation



#### How to Determine Frames Attached to the Two Links?

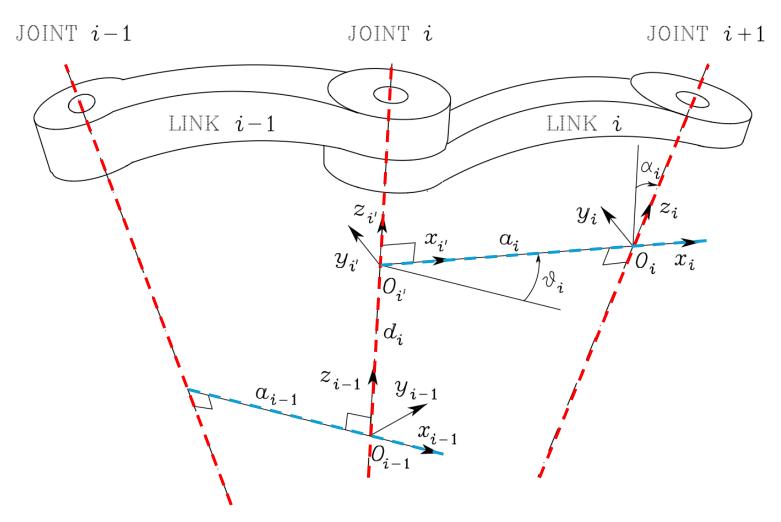


#### Decide Frames with Denavit-Hartenberg Convention



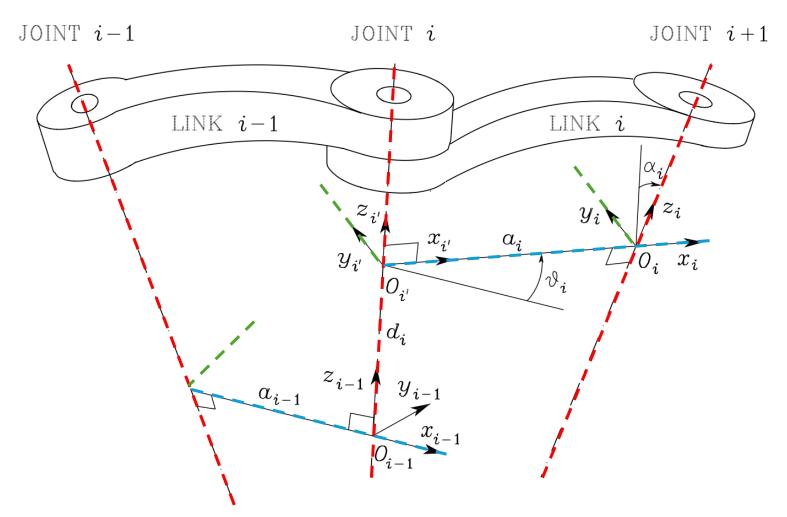
1. Choose axis  $z_i$  along the axis of joint i + 1

#### Decide Frames with Denavit-Hartenberg Convention

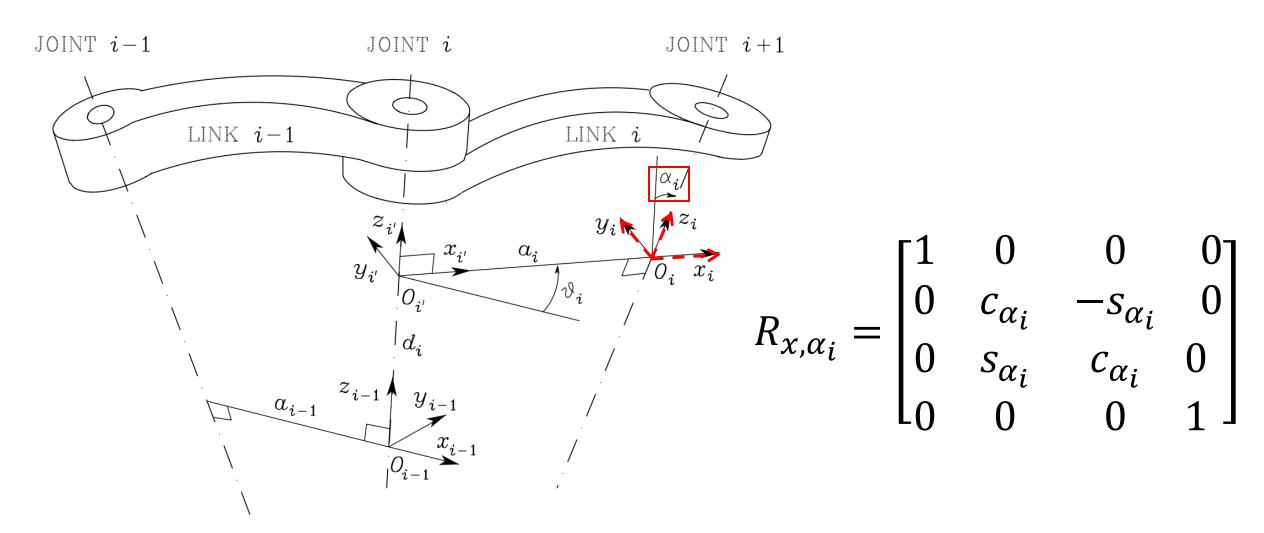


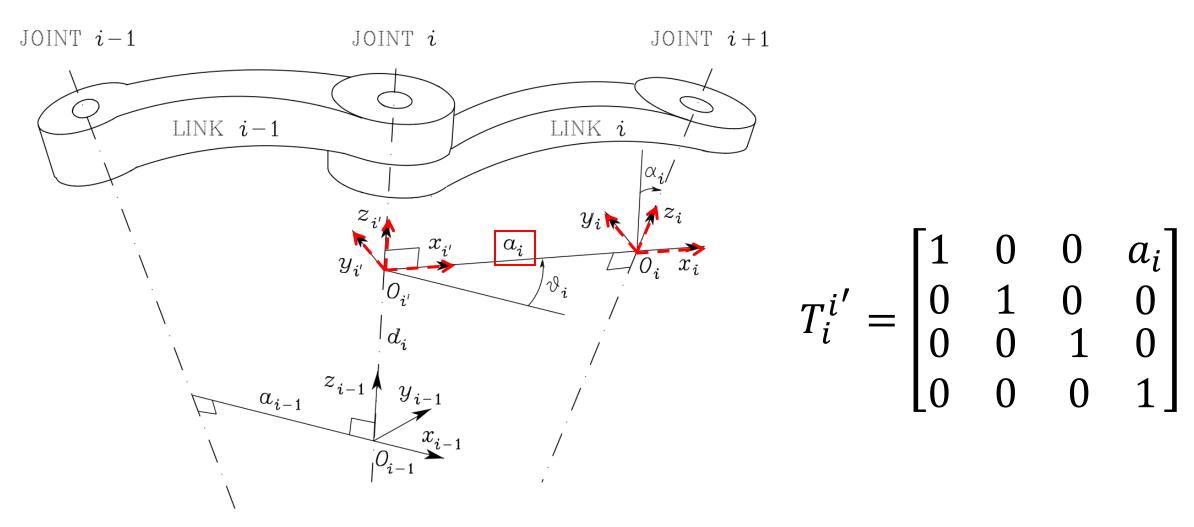
- 1. Choose axis  $z_i$  along the axis of Joint i+1
- 2. Choose axis  $x_i$  along the direction of the common normal (vector of minimum distance between axis  $z_i$  and  $z_{i-1}$ )

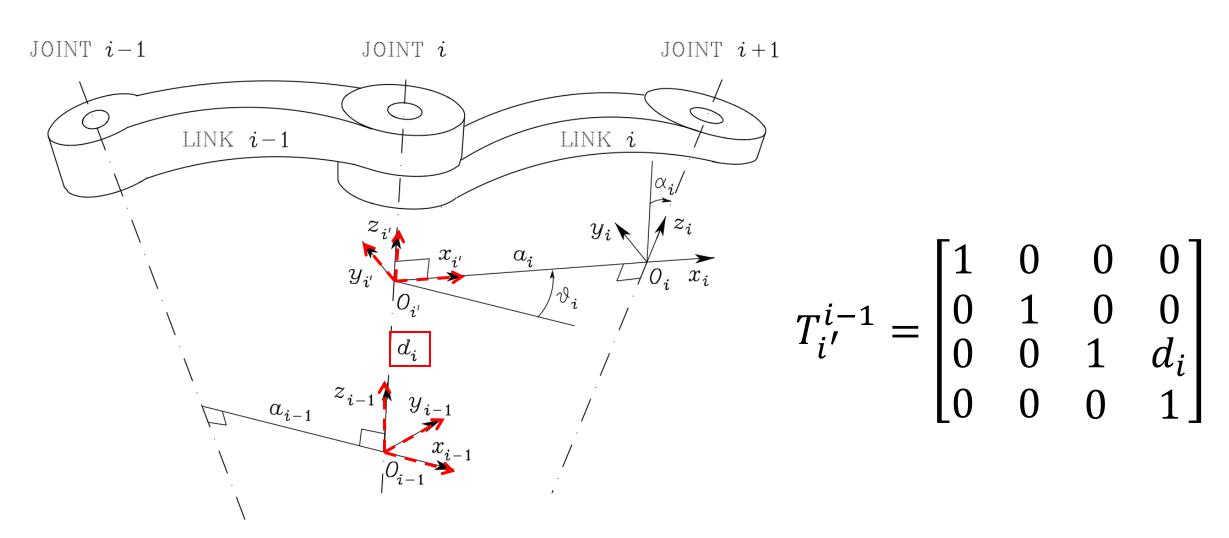
#### Decide Frames with Denavit-Hartenberg Convention

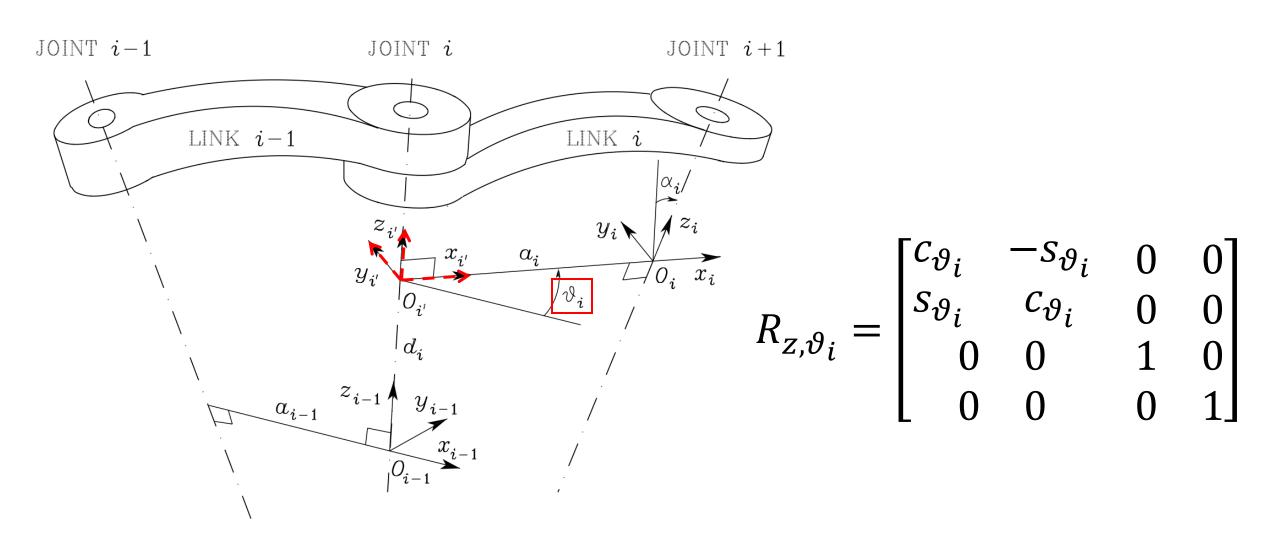


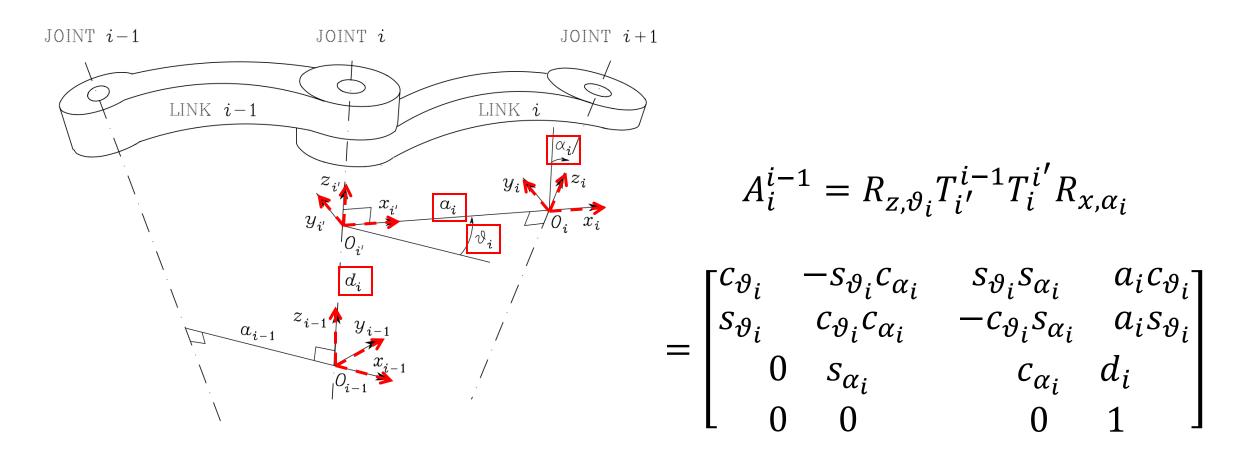
- 1. Choose axis  $z_i$  along the axis of Joint i+1
- 2. Choose axis  $x_i$  along the direction of the common normal (vector of minimum distance between axis  $z_i$  and  $z_{i-1}$ )
- 3. Axis  $y_i$  is decided by right-hand rule











### Forward Kinematics: Calculate the Pose of a Robot End-Effector given the Configuration

We known:

Transformation from joint 
$$i$$
 to frame  $i-1$  
$$A_i^{i-1} = \begin{bmatrix} c_{\vartheta_i} & -s_{\vartheta_i} c_{\alpha_i} & s_{\vartheta_i} s_{\alpha_i} & a_i c_{\vartheta_i} \\ s_{\vartheta_i} & c_{\vartheta_i} c_{\alpha_i} & -c_{\vartheta_i} s_{\alpha_i} & a_i s_{\vartheta_i} \\ 0 & s_{\alpha_i} & c_{\alpha_i} & d_i \\ 0 & 0 & 1 \end{bmatrix}$$
 Transformation from the endeffector to the robot base 
$$A_e^b(q) = A_0^b A_1^0(q_1) \dots A_n^{n-1}(q_n) A_e^n$$
 Transformation from the endeffector to joint  $n$  Transformation from the endeffector  $n$ 

• Since the end-effector pose at the end-effector frame is constant, we can rewrite the end-effector pose at the robot base frame as a function of q: f(q)

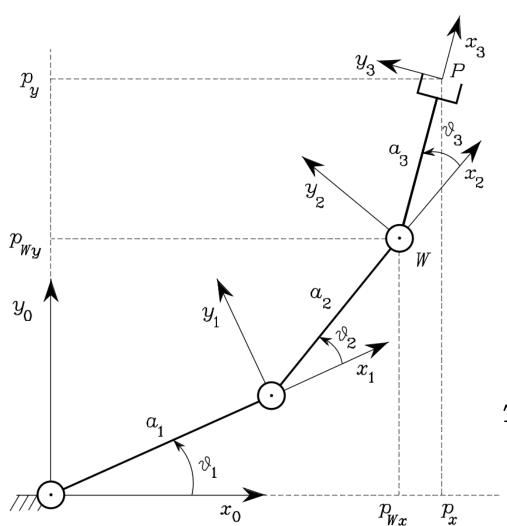
### Inverse Kinematics: Calculate the Robot Configuration given a Pose of the End-Effector

Forward kinematic:

end-effector pose = 
$$f(q)$$

Inverse kinematic:

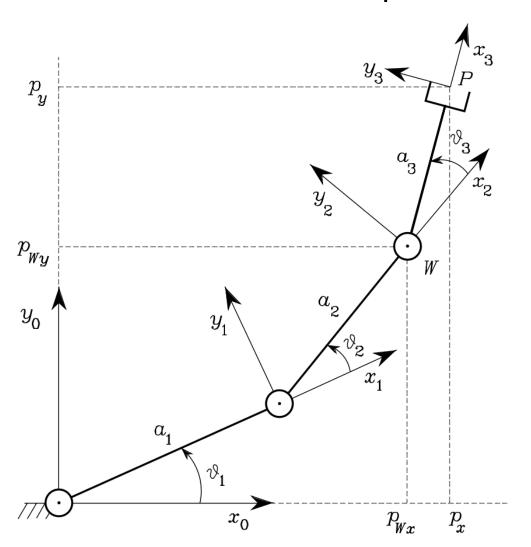
$$q = f^{-1}$$
(end–effector pose)



|      | •     |          | •     |                        |
|------|-------|----------|-------|------------------------|
| Link | $a_i$ | $lpha_i$ | $d_i$ | $\overline{artheta_i}$ |
| 1    | $a_1$ | 0        | 0     | $\overline{artheta_1}$ |
| 2    | $a_2$ | 0        | 0     | $artheta_2$            |
| 3    | $a_3$ | 0        | 0     | $\vartheta_3$          |

$$m{A}_i^{i-1}(artheta_i) = egin{bmatrix} c_i & -s_i & 0 & a_i c_i \ s_i & c_i & 0 & a_i s_i \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix} \qquad i = 1, 2, 3.$$

$$m{T}_3^0(m{q}) = m{A}_1^0 m{A}_2^1 m{A}_3^2 = egin{bmatrix} c_{123} & -s_{123} & 0 & a_1 c_1 + a_2 c_{12} + a_3 c_{123} \ s_{123} & c_{123} & 0 & a_1 s_1 + a_2 s_{12} + a_3 s_{123} \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

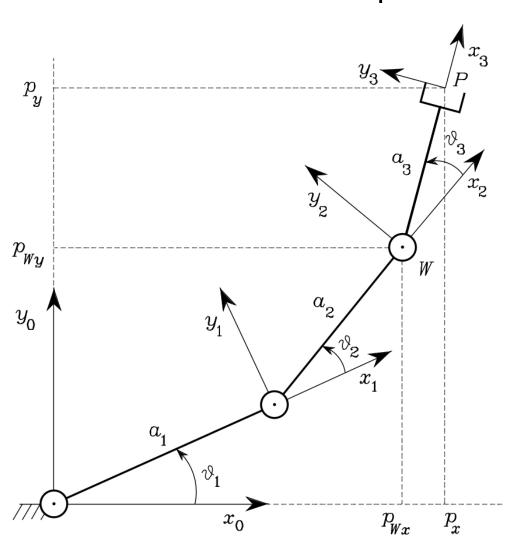


$$egin{pmatrix} x_3 \ x_3 \ y_3 \ y_4 \ y_5 \ y$$

$$m{T}_e^3 = egin{bmatrix} 0 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 \ -1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

end-effector pose = 
$$T_3^0 T_e^3 \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 Origin of the end-effector frame

30



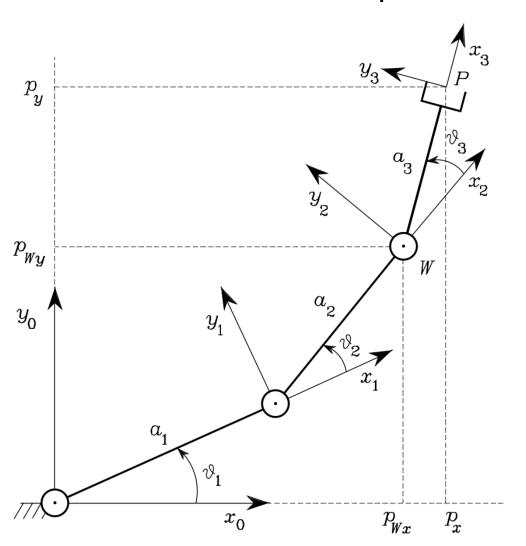
$$m{T}_3^0(m{q}) = m{A}_1^0m{A}_2^1m{A}_3^2 = egin{bmatrix} c_{123} & -s_{123} & 0 & a_1c_1 + a_2c_{12} + a_3c_{123} \ s_{123} & c_{123} & 0 & a_1s_1 + a_2s_{12} + a_3s_{123} \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_e^3 = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$end-effector pose = \begin{bmatrix} p_x \\ p_y \\ \phi \end{bmatrix}$$

$$= \begin{bmatrix} a_1c_1 + a_2c_{12} + a_3c_{123} \\ a_1s_1 + a_2s_{12} + a_3s_{123} \\ \theta_1 + \theta_2 + \theta_3 \end{bmatrix}$$

31



$$\begin{bmatrix} p_x \\ p_y \\ \phi \end{bmatrix} = \begin{bmatrix} a_1c_1 + a_2c_{12} + a_3c_{123} \\ a_1s_1 + a_2s_{12} + a_3s_{123} \\ \theta_1 + \theta_2 + \theta_3 \end{bmatrix}$$

- 1.  $p_{W_x} = p_x a_3 c_\phi = a_1 c_1 + a_2 c_{12}$
- 2.  $p_{W_y} = p_y a_3 s_\phi = a_1 s_1 + a_2 s_{12}$
- 3. From 1. and 2.,  $p_{W_x}^2 + p_{W_y}^2 = a_1^2 + a_2^2 + 2a_1c_1a_2(c_1c_2 s_1s_2) + 2a_1s_1a_2(s_1c_2 + c_1s_2) = a_1^2 + a_2^2 + 2a_1a_2c_2$

We have 
$$c_2 = \frac{{p_W}_x^2 + {p_W}_y^2 - a_1^2 + a_2^2}{2a_1a_2}$$

We have 
$$s_2=\pm\sqrt{1-c_2^2}$$
 and  $\vartheta_2=Atan2~(s_2,c_2)$ 

#### Numerical Solution of Inverse Kinematic

Newton-Raphson Method:

$$x_d = f(\theta_d) = f(\theta^0) + \underbrace{\frac{\partial f}{\partial \theta}\Big|_{\theta^0}}_{J(\theta^0)} \underbrace{(\theta_d - \theta^0)}_{\Delta \theta} + \text{h.o.t.},$$

$$\Delta\theta = J^{-1}(\theta^0) \left( x_d - f(\theta^0) \right).$$

This term include rotation and translation-spatial transformation SE(3)

#### Numerical Solution of Inverse Kinematic

Newton-Raphson Method:

$$x_d = f(\theta_d) = f(\theta^0) + \underbrace{\frac{\partial f}{\partial \theta}}_{J(\theta^0)} \underbrace{(\theta_d - \theta^0)}_{\Delta \theta} + \text{h.o.t.},$$
enavit-Hartenberg

Solving  $J^{-1}$  using Denavit–Hartenberg Convention is overly complex...

$$\Delta \theta = J^{-1}(\theta^0) \left( x_d - f(\theta^0) \right).$$

This term include rotation and translation-spatial transformation SE(3)

### What are Representations of Spatial Transformations?

- Desired properties:
  - ➤ Representing the forward kinematics of an open chain system as a product of transformations
  - Systemic derivation of the Jacobian that connects spatial transformations to joint angles
  - > Unified representations of different types of robot joints
  - ➤ No need for solving inverse Jacobian matrix

## We Can Associate One Representation of Spatial Transformation with Joint Angles in Linear Forms

• The twist coordinate (exponential of a twist is a rigid transformation matrix):

$$\xi^{s} = \xi_{1}\dot{\theta}_{1} + \operatorname{Ad}_{e^{\hat{\xi}_{1}\theta_{1}}}\xi_{2}\dot{\theta}_{2} + \operatorname{Ad}_{e^{\hat{\xi}_{1}\theta_{1}}e^{\hat{\xi}_{2}\theta_{2}}}\hat{\xi}_{3}\dot{\theta}_{3} + \cdots$$

$$J_{\xi_{1}}(\theta) \qquad J_{\xi_{2}}(\theta) \qquad J_{\xi_{3}}(\theta)$$

$$= [J_{\xi_1} \quad J_{\xi_2} \quad J_{\xi_3} \quad \dots] \begin{bmatrix} \theta_1 \\ \dot{\theta}_2 \\ \dot{\theta}_3 \\ \vdots \end{bmatrix} = \mathbf{J}_{\xi} \dot{\boldsymbol{\theta}}$$

# Solve Inverse Kinematic without Calculating the Inverse Jacobian Matrix

Newton-Raphson Method:

$$\Delta \theta = J^{-1}(\theta^0) \left( x_d - f(\theta^0) \right).$$



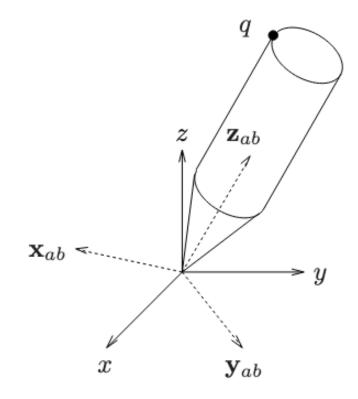
$$\Delta\theta = J_{\xi}^{-1}(\xi^{\Delta})$$
, where  $\xi^{\Delta} = \log(T_{current}^{-1}(\theta)T_{target})$ 

What is Twist?

#### Rotational Motion in $\mathbb{R}^3$

- Rotation matrix:  $R_b^a = [x_{ab}, y_{ab}, z_{ab}]$
- Properties of rotation matrices:
  - $\triangleright$  Orthonormality:  $RR^{\dagger} = R^{\dagger}R = I$
  - $\rightarrow$  det R = +1

Why?



#### Rotational Motion in $\mathbb{R}^3$

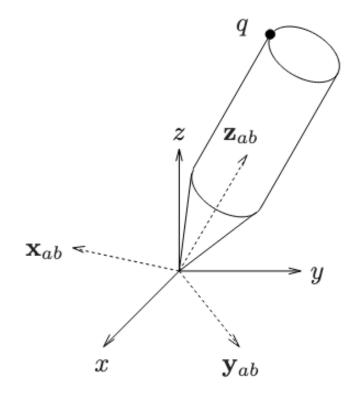
- Rotation matrix:  $R_b^a = [x_{ab}, y_{ab}, z_{ab}]$
- Properties of rotation matrices:
  - $\triangleright$  Orthonormality:  $RR^{\dagger} = R^{\dagger}R = I$
  - $\rightarrow$  det R = +1

$$\det R = r_1^{\mathsf{T}}(r_2 \times r_3) = r_1^{\mathsf{T}}r_1 = 1$$

• Rotation matrices  $\mathbb{R}^{n \times n}$  form a special group:

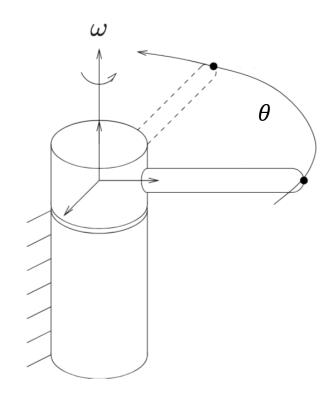
$$SO(n) = {\mathbb{R}^{n \times n} : RR^{\mathsf{T}} = I, \det R = +1}$$

• Composability: $R_1^3 = R_2^3 R_1^2$ 



How to connect rotation matrices with robot joint angles?

- A more geometrical description of "a rotation":
  - $\triangleright$  an axis of rotation  $\omega$  that specifies the direction of rotation
  - $\succ$  the angle of rotation  $\theta$
- Can we derive the rotation matrix from  $\omega$  and  $\theta$ ?

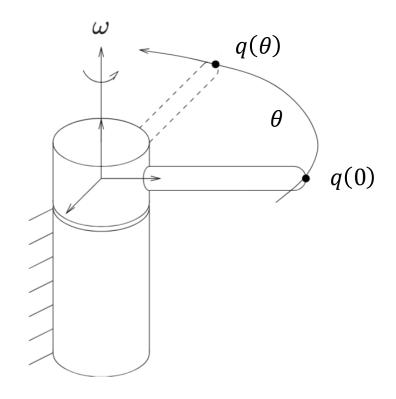


 Prerequisite: cross products can be represented as matrix multiplications

$$\mathbf{a} \times \mathbf{b} = \widehat{\mathbf{a}}\mathbf{b}$$
, where skew matrix  $\widehat{\mathbf{a}} = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix}$ 

 If we rotate the body at constant velocity about the axis ω, the velocity of the point:

$$\dot{q}(\theta) = \boldsymbol{\omega} \times \boldsymbol{q}(\theta) = \hat{\boldsymbol{\omega}} \boldsymbol{q}(\theta)$$
$$\Rightarrow \boldsymbol{q}(\theta) = e^{\hat{\boldsymbol{\omega}}\theta} \boldsymbol{q}(0)$$



- Properties of skew matrix  $\hat{a}$ :
  - $\triangleright$  The set of 3  $\times$  3 real skew-symmetric matrices composes so(3)
  - $\rightarrow a \times b = \hat{a}b$
  - $> a^{\mathsf{T}} = -a$
- We can rewrite  $e^{\hat{\omega}\theta}$ :

The rewrite 
$$e^{\widehat{\boldsymbol{\omega}}\theta}$$
:
$$e^{\widehat{\boldsymbol{\omega}}\theta} = I + \theta \widehat{\boldsymbol{\omega}} + \frac{\theta^2}{2!} \widehat{\boldsymbol{\omega}}^2 + \frac{\theta^3}{3!} \widehat{\boldsymbol{\omega}}^3 + \cdots$$

$$\Rightarrow e^{\widehat{\boldsymbol{\omega}}\theta} = I + \left(\theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \cdots\right) \widehat{\boldsymbol{\omega}} + \left(\frac{\theta^2}{2!} - \frac{\theta^4}{4!} + \cdots\right) \widehat{\boldsymbol{\omega}}^2$$

$$\Rightarrow e^{\widehat{\boldsymbol{\omega}}\theta} = I + \sin\theta \widehat{\boldsymbol{\omega}} + (1 - \cos\theta) \widehat{\boldsymbol{\omega}}^2$$

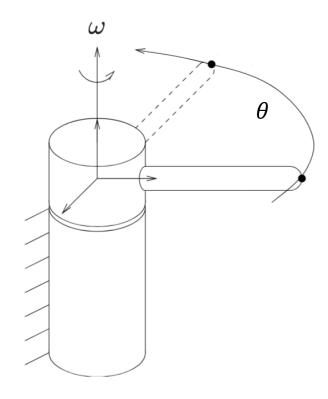
- Given  $\omega$  and  $\theta$ , the exponential  $e^{\widehat{\omega}\theta} \in SO(3)$ 
  - $\geq \left[ e^{\widehat{\boldsymbol{\omega}}\theta} \right]^{-1} = e^{-\widehat{\boldsymbol{\omega}}\theta} = e^{\widehat{\boldsymbol{\omega}}^{\dagger}\theta} = \left[ e^{\widehat{\boldsymbol{\omega}}\theta} \right]^{\dagger}$
  - ightharpoonup det  $e^{\hat{\omega}\theta}=+1$  (based on the continuity of exponential map and the fact that det  $e^0=1$ )
- Given a rotation matrix R, there exists  $\omega \in \mathbb{R}^3$  and  $\theta$ , such that  $R = e^{\widehat{\omega}\theta}$

$$e^{\widehat{\omega}\theta} = \begin{bmatrix} \omega_1^2 v_\theta + c_\theta & \omega_1 \omega_2 v_\theta - \omega_3 s_\theta & \omega_1 \omega_3 v_\theta + \omega_2 s_\theta \\ \omega_1 \omega_2 v_\theta + \omega_3 s_\theta & \omega_2^2 v_\theta + c_\theta & \omega_2 \omega_3 v_\theta - \omega_1 s_\theta \\ \omega_1 \omega_3 v_\theta - \omega_2 s_\theta & \omega_2 \omega_3 v_\theta + \omega_1 s_\theta & \omega_3^2 v_\theta + c_\theta \end{bmatrix} \xrightarrow{\text{all we need is to}} R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$
 find the solution

$$c_{\theta} = \cos \theta$$
 ,  $s_{\theta} = \sin \theta$  ,  $v_{\theta} = 1 - \cos \theta$ 

# Quick summary

- Exponentials provide a more geometrical description of "a rotation":
  - $\triangleright$  an axis of rotation  $\omega$  that specifies the direction of rotation
  - $\triangleright$  the angle of rotation  $\theta$
  - $ightharpoonup e^{\widehat{\omega}\theta} \in SO(3)$
  - ightharpoonup Given a rotation matrix R, there exists  $\omega \in \mathbb{R}^3$  and  $\theta$ , such that  $R = e^{\widehat{\omega}\theta}$
- We can easily represent the revolute joint with such representations



# Rigid Motion in $\mathbb{R}^3$

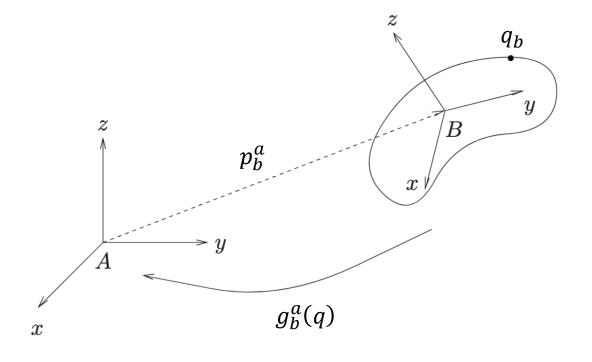
- Rotation matrix:  $R_b^a = [x_{ab}, y_{ab}, z_{ab}]$
- Translation:  $p_b^a$
- Rigid transformation from frame b to a:

$$g_b^a(q) = q_a = p_b^a + R_b^a q_b$$

or in homogeneous representations

$$\begin{bmatrix} q_a \\ 1 \end{bmatrix} = \begin{bmatrix} R_b^a & p_b^a \\ 0 & 1 \end{bmatrix} \begin{bmatrix} q_b \\ 1 \end{bmatrix}$$

$$\frac{\bar{q}_a}{\bar{q}_a} \qquad \frac{\bar{g}_b^a}{\bar{q}_b} \qquad \frac{\bar{q}_b}{\bar{q}_b}$$



# Rigid Motion in $\mathbb{R}^3$

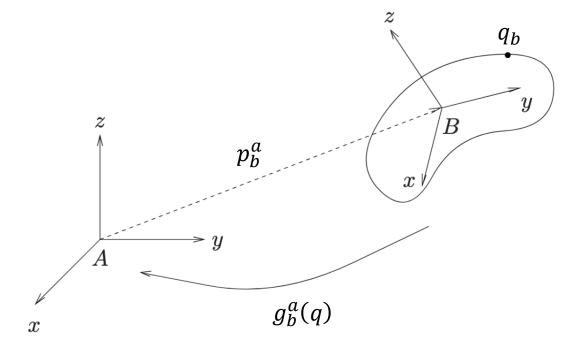
Rigid transformation from frame b to a:

$$\begin{bmatrix} q_a \\ 1 \end{bmatrix} = \begin{bmatrix} R_b^a & p_b^a \\ 0 & 1 \end{bmatrix} \begin{bmatrix} q_b \\ 1 \end{bmatrix}$$

$$\frac{\bar{q}_a}{\bar{q}_a} \qquad \frac{\bar{g}_b^a}{\bar{q}_b} \qquad \frac{\bar{q}_b}{\bar{q}_b}$$

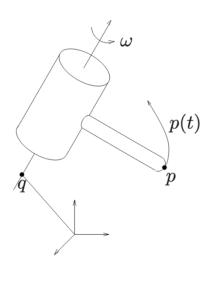
- Rigid transformations form a special group:  $SE(n) = \{(p,R): p \in \mathbb{R}^n, R \in SO(n)\}$
- Composability:  $\bar{g}_1^3 = \bar{g}_2^3 \bar{g}_1^2$
- The inverse of  $g \in SE(3)$  still belongs to SE(3):

$$g^{-1} = \begin{bmatrix} R^{\mathsf{T}} & -R^{\mathsf{T}}p \\ 0 & 1 \end{bmatrix}$$



How to connect rigid transformations with robot configurations?

#### More Geometrical Representations for Rigid Transformation



Pure rotation

$$\dot{p}(\theta) = \boldsymbol{\omega} \times (\boldsymbol{p}(\theta) - \boldsymbol{q})$$

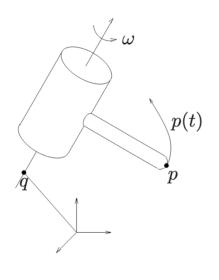
$$\begin{bmatrix} \dot{\boldsymbol{p}} \\ 0 \end{bmatrix} = \begin{bmatrix} \widehat{\boldsymbol{\omega}} & -\boldsymbol{\omega} \times \boldsymbol{q} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{p} \\ 1 \end{bmatrix}$$

$$\dot{\boldsymbol{\xi}} = \begin{bmatrix} \widehat{\boldsymbol{\omega}} & -\boldsymbol{\omega} \times \boldsymbol{q} \\ 0 & 0 \end{bmatrix} \\
\Rightarrow \dot{\boldsymbol{p}} = \hat{\boldsymbol{\xi}} \boldsymbol{\overline{p}} \Rightarrow \boldsymbol{\overline{p}}(\theta) = \boldsymbol{e}^{\hat{\boldsymbol{\xi}}\theta} \boldsymbol{\overline{p}}(\mathbf{0})$$

$$\hat{\xi} = \begin{bmatrix} \widehat{\boldsymbol{\omega}} & -\boldsymbol{\omega} \times \boldsymbol{q} \\ 0 & 0 \end{bmatrix}$$

$$ar{p} = \hat{\xi} \overline{p} \Rightarrow \overline{p}(\theta) = e^{\hat{\xi}\theta} \overline{p}(0)$$

#### Exponential Coordinates for Rigid Transformation



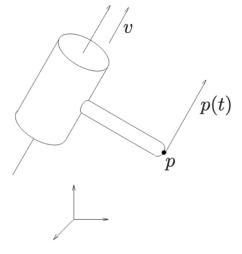
• Pure rotation 
$$\dot{p}(\theta) = \boldsymbol{\omega} \times (\boldsymbol{p}(\theta) - \boldsymbol{q})$$

$$\begin{bmatrix} \dot{\boldsymbol{p}} \\ 0 \end{bmatrix} = \begin{bmatrix} \widehat{\boldsymbol{\omega}} & -\boldsymbol{\omega} \times \boldsymbol{q} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{p} \\ 1 \end{bmatrix}$$

$$\Rightarrow \dot{\overline{\boldsymbol{p}}} = \hat{\boldsymbol{\xi}} \overline{\boldsymbol{p}} \Rightarrow \overline{\boldsymbol{p}}(\boldsymbol{\theta}) = \boldsymbol{e}^{\hat{\boldsymbol{\xi}}\boldsymbol{\theta}} \overline{\boldsymbol{p}}(\mathbf{0})$$

$$\hat{\xi} = \begin{bmatrix} \widehat{\boldsymbol{\omega}} & -\boldsymbol{\omega} \times \boldsymbol{q} \\ 0 & 0 \end{bmatrix}$$

$$\Rightarrow \dot{\overline{p}} = \hat{\xi}\overline{p} \Rightarrow \overline{p}(\theta) = e^{\hat{\xi}\theta}\overline{p}(0)$$



Pure translation

$$\begin{bmatrix} \dot{\boldsymbol{p}} \\ 0 \end{bmatrix} = \begin{bmatrix} 0 & \boldsymbol{v} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{p} \\ 1 \end{bmatrix}$$

$$\dot{\xi} = \begin{bmatrix} \mathbf{0} & \boldsymbol{v} \\ 0 & 0 \end{bmatrix}$$

$$\Rightarrow \dot{\overline{\boldsymbol{p}}} = \dot{\xi} \overline{\boldsymbol{p}} \Rightarrow \overline{\boldsymbol{p}}(\theta) = \boldsymbol{e}^{\hat{\xi}\theta} \overline{\boldsymbol{p}}(\mathbf{0})$$

# The $\hat{\xi}$ Matrix and the Twist

•  $\xi$  matrices form a special group

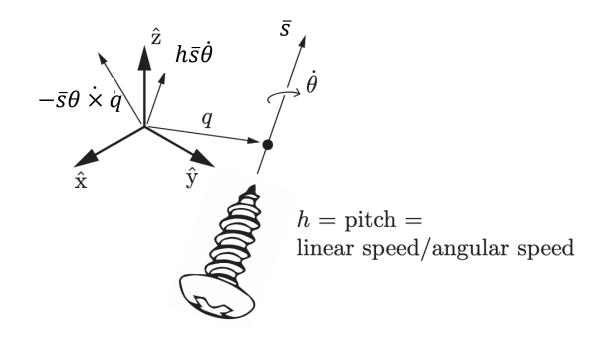
$$se(3) \coloneqq \left\{ \begin{bmatrix} \widehat{\omega} & v \\ 0 & 0 \end{bmatrix} : v \in \mathbb{R}^3, \widehat{\omega} \in so(3) \right\}$$

- We define  $\xi \coloneqq (v, \widehat{\omega})$  as the twist coordinates of  $\widehat{\xi}$
- Given  $\hat{\xi} \in se(3)$  and  $\theta \in \mathbb{R}$ , the exponential  $e^{\hat{\xi}\theta} \in SE(3)$

We'll prove later!

#### The Screw Representation of Rigid Motion

- We can interpret a twist as a screw axis  ${\cal S}$  and an angular velocity  $\dot{ heta}$
- A screw axis  $S = \{q, \bar{s}, h\}$ , where
  - $\triangleright$  q is any point on the axis
  - $ightharpoonup \bar{s}$  is a unit vector in the direction of the axis
  - $\blacktriangleright$  h is the "screw pitch", denoting the ratio of the linear velocity to the angular velocity  $\dot{\theta}$

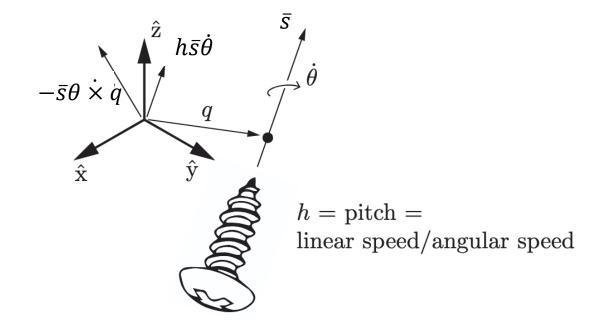


- h = 0, the screw motion denotes pure rotation (e.g. revolute joint)
- $h \to \infty$ , the screw motion denotes pure translation (e.g. prismatic joint)

#### The Screw Representation of Rigid Motion

 $\rightarrow$  With  $S = \{q, \bar{s}, h\}$  and  $\dot{\theta}$ , we define a twist:

$$\xi = \begin{bmatrix} \omega \\ v \end{bmatrix} = \begin{bmatrix} \bar{s}\dot{\theta} \\ -\bar{s}\dot{\theta} \times q + h\bar{s}\dot{\theta} \end{bmatrix}$$



#### The Screw Representation of Rigid Motion

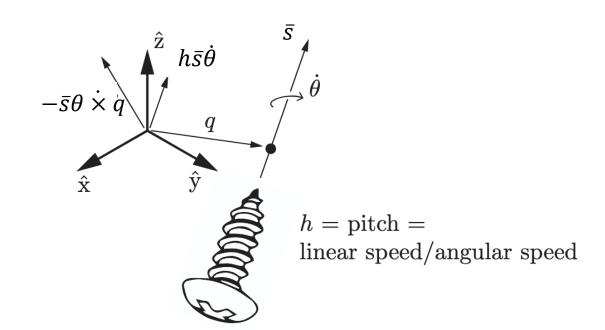
 $\rightarrow$  With  $S = \{q, \bar{s}, h\}$  and  $\dot{\theta}$ , we define a twist:

$$\xi = \begin{bmatrix} \omega \\ v \end{bmatrix} = \begin{bmatrix} \bar{s}\dot{\theta} \\ -\bar{s}\dot{\theta} \times q + h\bar{s}\dot{\theta} \end{bmatrix}$$

 $\leftarrow$  For any twist  $\xi$  where  $\omega \neq 0$ , there exists an equivalent screw axis  $S = \{q, \bar{s}, h\}$  and velocity  $\dot{\theta}$ :

$$\bar{s} = \omega / \|\omega\|$$
$$\dot{\theta} = \|\omega\|$$
$$h = \widehat{\omega}^{\mathsf{T}} v / \dot{\theta}$$

q is chosen accordingly



#### What Do We Need to Show?

- Given  $\hat{\xi} \in se(3)$  and  $\theta \in \mathbb{R}$ , the exponential  $e^{\hat{\xi}\theta} \in SE(3)$
- With  $S = \{q, \bar{s}, h\}$  and  $\dot{\theta}$ , we have a twist:  $\xi = \begin{bmatrix} \omega \\ v \end{bmatrix} = \begin{bmatrix} \bar{s}\dot{\theta} \\ -\bar{s}\dot{\theta} \times q + h\bar{s}\dot{\theta} \end{bmatrix}$

• If  $\omega = \mathbf{0}$ :

$$\hat{\boldsymbol{\xi}} = \begin{bmatrix} \widehat{\omega} & \boldsymbol{v} \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \boldsymbol{v} \\ 0 & 0 \end{bmatrix} \Rightarrow \hat{\boldsymbol{\xi}}^2 = \hat{\boldsymbol{\xi}}^3 = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & 0 \end{bmatrix}$$

• If  $\omega = \mathbf{0}$ :

$$\hat{\boldsymbol{\xi}} = \begin{bmatrix} \widehat{\omega} & \boldsymbol{v} \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \boldsymbol{v} \\ 0 & 0 \end{bmatrix} \Rightarrow \hat{\xi}^2 = \hat{\xi}^3 = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0 & 0 \end{bmatrix}$$

$$e^{\hat{\boldsymbol{\xi}}\theta} = I + \theta\hat{\boldsymbol{\xi}} + \frac{\theta^2}{2!}\hat{\boldsymbol{\xi}}^2 + \frac{\theta^3}{3!}\hat{\boldsymbol{\xi}}^3 + \dots = I + \theta\hat{\boldsymbol{\xi}} = \begin{bmatrix} \boldsymbol{I} & \boldsymbol{v}\theta \\ 0 & 0 \end{bmatrix}$$

• If  $\omega \neq \mathbf{0}$ :

First, we assume  $\|\widehat{\omega}\| = 1$  and we can scale  $\theta$  appropriately

Next, we define a rigid transformation 
$$g = \begin{bmatrix} I & \widehat{\omega}v \\ 0 & 1 \end{bmatrix}$$

#### • If $\omega \neq \mathbf{0}$ :

First, we assume  $\|\widehat{\omega}\| = 1$  and we can scale  $\theta$  appropriately

Next, we define a rigid transformation  $g = \begin{bmatrix} I & \widehat{\omega}v \\ 0 & 1 \end{bmatrix}$ 

Let 
$$\hat{\xi}' = g^{-1}\hat{\xi}g = \begin{bmatrix} I & -\widehat{\omega}v \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \widehat{\omega} & v \\ 0 & 0 \end{bmatrix} \begin{bmatrix} I & \widehat{\omega}v \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} \widehat{\omega} & v \\ 0 & 0 \end{bmatrix} \begin{bmatrix} I & \widehat{\omega}v \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \widehat{\omega} & \widehat{\omega}\widehat{\omega}v + v \\ 0 & 0 \end{bmatrix}$$

#### • If $\omega \neq \mathbf{0}$ :

First, we assume  $\|\widehat{\omega}\| = 1$  and we can scale  $\theta$  appropriately

Next, we define a rigid transformation  $g = \begin{bmatrix} I & \widehat{\omega}v \\ 0 & 1 \end{bmatrix}$ 

Let 
$$\hat{\xi}' = g^{-1}\hat{\xi}g = \begin{bmatrix} I & -\widehat{\omega}v \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \widehat{\omega} & v \\ 0 & 0 \end{bmatrix} \begin{bmatrix} I & \widehat{\omega}v \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} \widehat{\omega} & v \\ 0 & 0 \end{bmatrix} \begin{bmatrix} I & \widehat{\omega}v \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \widehat{\omega} & \widehat{\omega}\widehat{\omega}v + v \\ 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} a \times (b \times c) \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} \widehat{\omega} & \omega\omega^{\mathsf{T}}v - v\omega^{\mathsf{T}}\omega + v \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} \widehat{\omega} & \omega\omega^{\mathsf{T}}v \end{bmatrix}$$

#### • If $\omega \neq \mathbf{0}$ :

First, we assume  $\|\widehat{\omega}\| = 1$  and we can scale  $\theta$  appropriately

Next, we define a rigid transformation  $g = \begin{bmatrix} I & \widehat{\omega}v \\ 0 & 1 \end{bmatrix}$ 

Let 
$$\hat{\xi}' = g^{-1}\hat{\xi}g = \begin{bmatrix} I & -\widehat{\omega}v \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \widehat{\omega} & v \\ 0 & 0 \end{bmatrix} \begin{bmatrix} I & \widehat{\omega}v \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} \widehat{\omega} & v \\ 0 & 0 \end{bmatrix} \begin{bmatrix} I & \widehat{\omega}v \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \widehat{\omega} & \widehat{\omega}\widehat{\omega}v + v \\ 0 & 0 \end{bmatrix}_{h}$$

$$= \begin{bmatrix} a \times (b \times c) \\ b(a \cdot c) - c(a \cdot b) \end{bmatrix} = \begin{bmatrix} \widehat{\omega} & \omega\omega^{\mathsf{T}}v - v\omega^{\mathsf{T}}\omega + v \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} \widehat{\omega} & \omega\omega^{\mathsf{T}}v \end{bmatrix}$$

#### • If $\omega \neq \mathbf{0}$ :

First, we assume  $\|\widehat{\omega}\| = 1$  and we can scale  $\theta$  appropriately

Next, we define a rigid transformation  $g = \begin{bmatrix} I & \widehat{\omega}v \\ 0 & 1 \end{bmatrix}$ 

Let 
$$\hat{\xi}' = g^{-1}\hat{\xi}g = \begin{bmatrix} I & -\widehat{\omega}v \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \widehat{\omega} & v \\ 0 & 0 \end{bmatrix} \begin{bmatrix} I & \widehat{\omega}v \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} \widehat{\omega} & v \\ 0 & 0 \end{bmatrix} \begin{bmatrix} I & \widehat{\omega}v \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \widehat{\omega} & \widehat{\omega}\widehat{\omega}v + v \\ 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} \alpha \times (b \times c) \\ b(a \cdot c) - c(a \cdot b) \end{bmatrix} = \begin{bmatrix} \widehat{\omega} & \omega\omega^{\mathsf{T}}v - v\omega^{\mathsf{T}}\omega + v \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} \widehat{\omega} & \omega\omega^{\mathsf{T}}v \\ 0 & 0 \end{bmatrix}$$

What's next? We are going to derive  $e^{\hat{\xi}\theta}$  from  $e^{g\hat{\xi}'\theta g^{-1}}$ 

• Before continuing the proof, we first show that for any invertible matrix  $g \in \mathbb{R}^{n \times n}$  and a matrix  $\Lambda \in \mathbb{R}^{n \times n}$ , we have  $e^{g\Lambda g^{-1}} = ge^{\Lambda}g^{-1}$ 

- We have  $e^{\hat{\xi}\theta}=e^{g\hat{\xi}'\theta g^{-1}}=ge^{\hat{\xi}'\theta}g^{-1}$
- What's  $e^{\widehat{\xi'}\theta}$ ?

First, we know  $\widehat{\omega}\omega = \omega \times \omega = 0$ 

Second, we know 
$$\hat{\xi}^{\prime 2} = \begin{bmatrix} \widehat{\omega} & \omega \hbar \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \widehat{\omega} & \omega \hbar \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} \widehat{\omega}^2 & \widehat{\omega} \omega \hbar \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} \widehat{\omega}^2 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\hat{\xi}^{\prime 3} = \begin{bmatrix} \widehat{\omega}^3 & 0 \\ 0 & 0 \end{bmatrix} \dots$$

$$e^{\hat{\xi}^{\prime}\theta} = I + \theta \hat{\xi}^{\prime} + \frac{\theta^2}{2!} \hat{\xi}^{\prime 2} + \frac{\theta^3}{3!} \hat{\xi}^{\prime 3} + \dots = \begin{bmatrix} I + \frac{\widehat{\omega}\theta^2}{2!} + \frac{\widehat{\omega}\theta^3}{3!} + \dots & \omega \hbar \theta + 0 + \dots \\ 0 & 1 \end{bmatrix}$$

- We have  $e^{\hat{\xi}\theta}=e^{g\hat{\xi}'\theta g^{-1}}=ge^{\hat{\xi}'\theta}g^{-1}$
- What's  $e^{\hat{\xi}\theta}$ ?

$$e^{\widehat{\xi'}\theta} = \begin{bmatrix} I + \frac{\widehat{\omega}^2}{2!} + \frac{\widehat{\omega}^3}{3!} + \cdots & \omega\hbar\theta + 0 + \cdots \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} e^{\widehat{\omega}\theta} & \omega\hbar\theta \\ 0 & 1 \end{bmatrix}$$

Let's put everything together

$$e^{\widehat{\xi}\theta} = \begin{bmatrix} e^{\widehat{\omega}\theta} & (I - e^{\widehat{\omega}\theta})\widehat{\omega}v + \omega\omega^{\mathsf{T}}v\theta \\ 0 & 1 \end{bmatrix}$$

- We have  $e^{\hat{\xi}\theta}=e^{g\hat{\xi}'\theta g^{-1}}=ge^{\hat{\xi}'\theta}g^{-1}$
- What's  $e^{\hat{\xi}\theta}$ ?

$$e^{\widehat{\xi}'\theta} = \begin{bmatrix} I + \frac{\widehat{\omega}^2}{2!} + \frac{\widehat{\omega}^3}{3!} + \cdots & \omega\hbar\theta + 0 + \cdots \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} e^{\widehat{\omega}\theta} & \omega\hbar\theta \\ 0 & 1 \end{bmatrix}$$

Let's put everything together

$$e^{\hat{\xi}\theta} = \begin{bmatrix} e^{\widehat{\omega}\theta} \\ 0 \end{bmatrix} \left( I - e^{\widehat{\omega}\theta} \right) \widehat{\omega}v + \omega\omega^{\mathsf{T}}v\theta$$

$$1$$

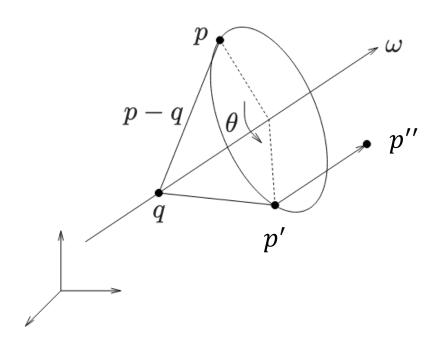
$$SO(3)$$

#### What Do We Need to Show?

- Given  $\hat{\xi} \in se(3)$  and  $\theta \in \mathbb{R}$ , the exponential  $e^{\hat{\xi}\theta} \in SE(3)$
- With  $S = \{q, \bar{s}, h\}$  and  $\dot{\theta}$ , we have a twist:  $\xi = \begin{bmatrix} \omega \\ v \end{bmatrix} = \begin{bmatrix} \bar{s}\dot{\theta} \\ -\bar{s}\dot{\theta} \times q + h\bar{s}\dot{\theta} \end{bmatrix}$

Proof: With  $S = \{q, \bar{s}, h\}$  and  $\dot{\theta}$ , we have a twist:  $\xi = \begin{bmatrix} \omega \\ v \end{bmatrix} = \begin{bmatrix} \bar{s}\dot{\theta} \\ -\bar{s}\dot{\theta} \times q + h\bar{s}\dot{\theta} \end{bmatrix}$ 

• Let's write down the rigid motion from point p to g(p) = p'':



Proof: With  $S = \{q, \bar{s}, h\}$  and  $\dot{\theta}$ , we have a twist:  $\xi = \begin{bmatrix} \omega \\ v \end{bmatrix} = \begin{bmatrix} \bar{s}\dot{\theta} \\ -\bar{s}\dot{\theta} \times q + h\bar{s}\dot{\theta} \end{bmatrix}$ 

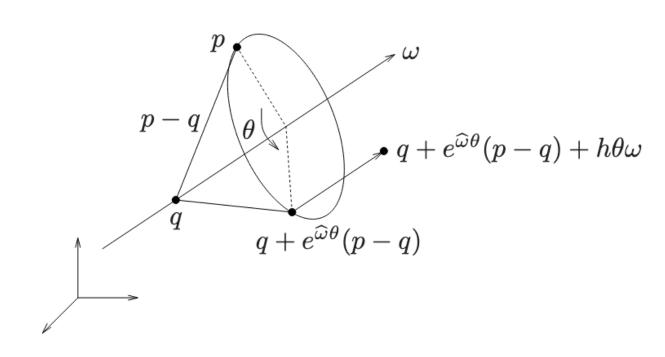
• Let's write down the rigid motion from point p to g(p) = p'':

$$p' = q + e^{\widehat{\omega}\theta}(p - q)$$

$$p'' = p' + \omega h\theta$$

$$g(p) = q + e^{\widehat{\omega}\theta}(p - q) + \omega h\theta$$

$$\Rightarrow g\begin{bmatrix} p \\ 1 \end{bmatrix} = \begin{bmatrix} e^{\widehat{\omega}\theta} & (I - e^{\widehat{\omega}\theta})q + \omega h\theta \\ 0 & 1 \end{bmatrix} \begin{bmatrix} p \\ 1 \end{bmatrix}$$



Proof: With  $S = \{q, \bar{s}, h\}$  and  $\dot{\theta}$ , we have a twist:  $\xi = \begin{bmatrix} \omega \\ v \end{bmatrix} = \begin{bmatrix} \bar{s}\dot{\theta} \\ -\bar{s}\dot{\theta} \times q + h\bar{s}\dot{\theta} \end{bmatrix}$ 

• Let's write down the rigid motion from point p to g(p) = p'':

$$p' = q + e^{\widehat{\omega}\theta}(p - q)$$

$$p'' = p' + \omega h\theta$$

$$g(p) = q + e^{\widehat{\omega}\theta}(p - q) + \omega h\theta$$

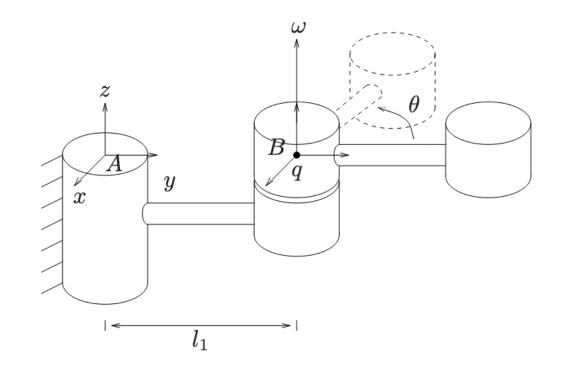
$$\Rightarrow g\begin{bmatrix} p \\ 1 \end{bmatrix} = \begin{bmatrix} e^{\widehat{\omega}\theta} & (I - e^{\widehat{\omega}\theta})q + \omega h\theta \\ 0 & 1 \end{bmatrix} \begin{bmatrix} p \\ 1 \end{bmatrix}$$

We know:

$$e^{\hat{\xi}\theta} = \begin{bmatrix} e^{\hat{\omega}\theta} & (I - e^{\hat{\omega}\theta})\hat{\omega}v + \omega\omega^{\mathsf{T}}v\theta \\ 0 & 1 \end{bmatrix}$$
Equivalent if  $v = -\omega \times q + \omega h$ 

#### Example: Revolute Joint

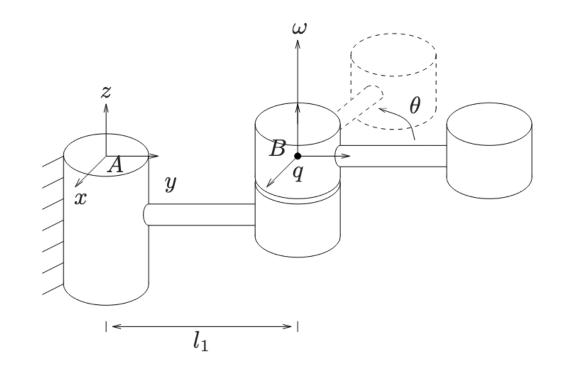
- The joint only rotates (h = 0) at  $q = \begin{bmatrix} 0 \\ l_1 \\ 0 \end{bmatrix}$
- Rotation axis:  $\omega = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$
- We have  $v=-\omega imes q+\omega h=\begin{bmatrix} l_1 \\ 0 \\ 0 \end{bmatrix}$
- We have twist  $\boldsymbol{\xi} = \begin{bmatrix} \omega \\ v \end{bmatrix}$



#### Example: Revolute Joint

The exponential:

$$e^{\hat{\xi}\theta} = \begin{bmatrix} e^{\hat{\omega}\theta} & (I - e^{\hat{\omega}\theta})\hat{\omega}v + \omega\omega^{\mathsf{T}}v\theta \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} \cos\theta & -\sin\theta & 0 & l_1\sin\theta \\ \sin\theta & \cos\theta & 0 & l_1(1 - \cos\theta) \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$



#### Previously, We Discussed Inverse Kinematic

• Connecting a twist and joint angles in linear forms:

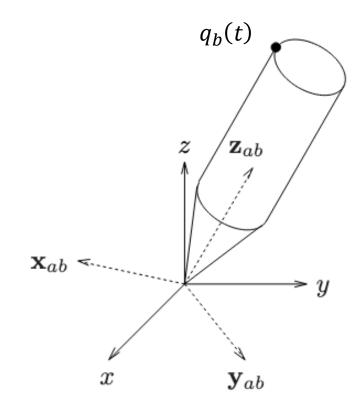
$$\xi_{S} = \underbrace{\mathcal{S}_{1}}_{J_{s1}} \dot{\theta}_{1} + \underbrace{\operatorname{Ad}_{e^{[S_{1}]\theta_{1}}(S_{2})}}_{J_{s2}} \dot{\theta}_{2} + \underbrace{\operatorname{Ad}_{e^{[S_{1}]\theta_{1}}e^{[S_{2}]\theta_{2}}(S_{3})}}_{J_{s3}} \dot{\theta}_{3} + \cdots$$

$$\xi_S = \begin{bmatrix} J_{s1} & J_{s2}(\theta) & \cdots & J_{sn}(\theta) \end{bmatrix} \begin{bmatrix} \theta_1 \\ \vdots \\ \dot{\theta}_n \end{bmatrix}$$

$$= J_s(\theta)\dot{\theta}.$$

• Rotational velocity: we know  $q_a(t) = R_b^a q_b(t)$ 

$$\frac{dq_a(t)}{dt} = \frac{dR_b^a}{\frac{dt}{\dot{R}_b^a}} q_b(t) + R_b^a \frac{dq_b(t)}{dt}$$

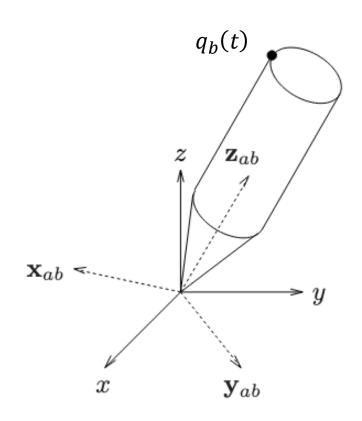


• Rotational velocity: we know  $q_a(t) = R_b^a q_b(t)$ 

$$\frac{dq_a(t)}{dt} = \dot{R}_b^a q_b(t)$$

1. 
$$\frac{dq_a(t)}{dt} = \dot{R}_b^a q_b(t) = \dot{R}_b^a R_b^{a-1} R_b^a q_b(t)$$
$$= \dot{R}_b^a R_b^{a-1} q_a(t)$$

 $\widehat{\omega}_{ab}^{s}$ : instantaneous angular velocity of the object seen from Spatial (A) frame



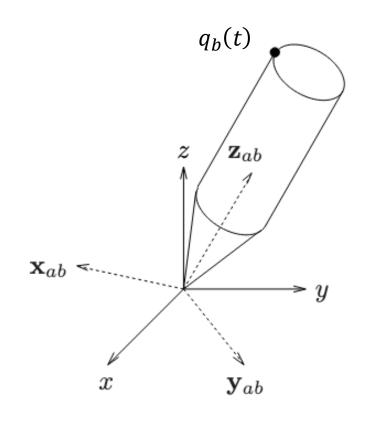
• Rotational velocity: we know  $q_a(t) = R_b^a q_b(t)$ 

$$\frac{dq_a(t)}{dt} = \dot{R}_b^a q_b(t)$$

1. 
$$\frac{dq_a(t)}{dt} = \dot{R}_b^a R_b^{a-1} q_a(t) = \hat{\omega}_{ab}^s q_a(t)$$

2. 
$$\frac{dq_a(t)}{dt} = \dot{R}_b^a q_b(t) = R_b^a R_b^{a-1} \dot{R}_b^a q_b(t)$$

 $\widehat{\omega}_{ab}^{b}$ : instantaneous angular velocity of the object seen from instantaneous body frame coincided with B frame at time t



• Rotational velocity: we know  $q_a(t) = R_b^a q_b(t)$ 

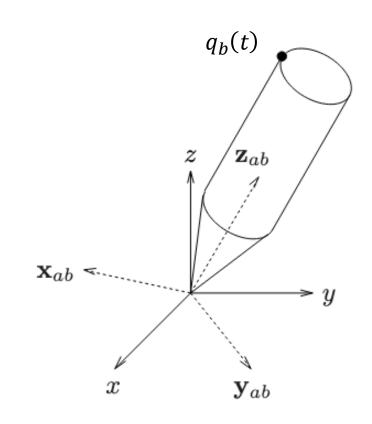
$$\frac{dq_a(t)}{dt} = \dot{R}_b^a q_b(t)$$

1. 
$$\frac{dq_a(t)}{dt} = \dot{R}_b^a R_b^{a-1} q_a(t) = \hat{\omega}_{ab}^s q_a(t)$$

2. 
$$\frac{dq_a(t)}{dt} = R_b^a R_b^{a-1} \dot{R}_b^a q_b(t) = R_b^a \widehat{\omega}_{ab}^b q_b(t)$$

• We can associate angular velocity observed at the spatial and body frame:

$$\widehat{\omega}_{ab}^b = R_b^{a-1} \widehat{\omega}_{ab}^s R_b^a$$



Rigid body velocity:

rigid motion: 
$$g_b^a = \begin{bmatrix} R_b^a & p_b^a \\ 0 & 1 \end{bmatrix}$$
 we know  $\begin{bmatrix} q_a(t) \\ 1 \end{bmatrix} = g_b^a \begin{bmatrix} q_b(t) \\ 1 \end{bmatrix} \Rightarrow \tilde{q}_a(t) = g_b^a \tilde{q}_b(t)$ 

we obtain twist observed at the spatial frame:

$$\frac{d\tilde{q}_a(t)}{dt} = \dot{g}_b^a \tilde{q}_b(t)$$

Rigid body velocity:

rigid motion: 
$$g_b^a = \begin{bmatrix} R_b^a & p_b^a \\ 0 & 1 \end{bmatrix}$$

we know 
$$\begin{bmatrix} q_a(t) \\ 1 \end{bmatrix} = g_b^a \begin{bmatrix} q_b(t) \\ 1 \end{bmatrix} \Rightarrow \tilde{q}_a(t) = g_b^a \tilde{q}_b(t)$$

we obtain twist observed at the spatial frame:

$$\frac{d\tilde{q}_a(t)}{dt} = \dot{g}_b^a \tilde{q}_b(t) = \dot{g}_b^a g_b^{a-1} g_b^a \tilde{q}_b(t) = \dot{g}_b^a g_b^{a-1} \tilde{q}_a(t)$$

 $\hat{\xi}_{ab}^{s}$ : instantaneous twist of the object seen from spatial (A) frame at time t

Rigid body velocity:

rigid motion: 
$$g_b^a = \begin{bmatrix} R_b^a & p_b^a \\ 0 & 1 \end{bmatrix}$$

The twist observed at the spatial frame:

$$\hat{\xi}_{ab}^{s} = \dot{g}_{b}^{a} g_{b}^{a-1} = \begin{bmatrix} \dot{R}_{b}^{a} R_{b}^{a-1} & -\dot{R}_{b}^{a} R_{b}^{a-1} p_{b}^{a} + \dot{p}_{b}^{a} \\ 0 & 0 \end{bmatrix}$$

Rigid body velocity:

rigid motion: 
$$g_b^a = \begin{bmatrix} R_b^a & p_b^a \\ 0 & 1 \end{bmatrix}$$

The twist observed at the spatial frame:

$$\hat{\xi}_{ab}^s = \dot{g}_b^a g_b^{a-1} = \begin{bmatrix} \dot{R}_b^a R_b^{a-1} \\ 0 \end{bmatrix} \begin{bmatrix} -\dot{R}_b^a R_b^{a-1} p_b^a + \dot{p}_b^a \\ 0 \end{bmatrix}$$

$$v_{ab}^s : \text{not the velocity of the support of the support$$

$$-\dot{R}_b^a R_b^{a-1} p_b^a + \dot{p}_b^a$$

 $v_{ab}^{s}$ : not the velocity of the body frame, but the instantaneous velocity of the point on an infinitely large body currently at the origin of the spatial (A) frame

Rigid body velocity:

rigid motion: 
$$g_b^a = \begin{bmatrix} R_b^a & p_b^a \\ 0 & 1 \end{bmatrix}$$

The twist observed at the body frame:

$$\hat{\xi}_{ab}^{b} = g_{b}^{a-1} \dot{g}_{b}^{a} = \begin{bmatrix} R_{b}^{a-1} \dot{R}_{b}^{a} & R_{b}^{a-1} \dot{p}_{b}^{a} \\ 0 & 0 \end{bmatrix}$$

Rigid body velocity:

rigid motion: 
$$g_b^a = \begin{bmatrix} R_b^a & p_b^a \\ 0 & 1 \end{bmatrix}$$

The twist observed at the body frame:

$$\hat{\xi}_{ab}^{b} = g_{b}^{a-1} \dot{g}_{b}^{a} = \begin{bmatrix} R_{b}^{a-1} \dot{R}_{b}^{a} \\ 0 \end{bmatrix} \begin{matrix} R_{b}^{a-1} \dot{p}_{b}^{a} \\ 0 \end{matrix}$$

$$v_{ab}^{b} : \text{the instantaneous velocity at the body frame}$$

- The twist observed at the body frame:  $\hat{\xi}^b_{ab}$
- The twist observed at the spatial frame:  $\hat{\xi}^s_{ab}$
- The association of twist between these two frames:  $\hat{\xi}_{ab}^s = g_b^a \hat{\xi}_{ab}^b g_b^{a-1}$

- The twist observed at the body frame:  $\hat{\xi}^b_{ab}$
- The twist observed at the spatial frame:  $\hat{\xi}^s_{ab}$
- The association of twist between these two frames:  $\hat{\xi}_{ab}^s = g_b^a \hat{\xi}_{ab}^b g_b^{a-1}$

$$\Rightarrow \begin{bmatrix} \widehat{\omega}_{ab}^{s} & v_{ab}^{s} \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} R_{b}^{a} & p_{b}^{a} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \widehat{\omega}_{ab}^{b} & v_{ab}^{b} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} R_{b}^{a-1} & -R_{b}^{a-1} p_{b}^{a} \\ 0 & 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \widehat{\omega}_{ab}^{s} & v_{ab}^{s} \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} R_{b}^{a} \widehat{\omega}_{ab}^{b} R_{b}^{a-1} & -R_{b}^{a} \widehat{\omega}_{ab}^{b} R_{b}^{a-1} p_{b}^{a} + R_{b}^{a} v_{ab}^{b} \end{bmatrix}$$

• We have:

$$\widehat{\omega}_{ab}^{s} = R_b^a \widehat{\omega}_{ab}^b R_b^{a-1}$$

$$v_{ab}^s = -R_b^a \widehat{\omega}_{ab}^b R_b^{a-1} p_b^a + R_b^a v_{ab}^b$$

• First, we know given any  $u \in \mathbb{R}^3$  and  $R \in SO(3)$ , the following always holds:

$$R\hat{u}R^{-1} = \widehat{Ru}$$

Proof. Letting  $r_i^{\mathsf{T}}$  denotes the *i*-th row of *R* 

$$R\widehat{u}R^{-1} = \begin{bmatrix} r_{1}^{\mathsf{T}}(u \times r_{1}) & r_{1}^{\mathsf{T}}(u \times r_{2}) & r_{1}^{\mathsf{T}}(u \times r_{3}) \\ r_{2}^{\mathsf{T}}(u \times r_{2}) & r_{2}^{\mathsf{T}}(u \times r_{2}) & r_{2}^{\mathsf{T}}(u \times r_{3}) \\ r_{3}^{\mathsf{T}}(u \times r_{3}) & r_{3}^{\mathsf{T}}(u \times r_{2}) & r_{3}^{\mathsf{T}}(u \times r_{3}) \end{bmatrix} \begin{bmatrix} a^{\mathsf{T}}(b \times c) = b^{\mathsf{T}}(c \times a) \\ r_{2}^{\mathsf{T}}(u \times r_{3}) & r_{2}^{\mathsf{T}}(u \times r_{3}) \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -r_{3}^{\mathsf{T}}u & r_{2}^{\mathsf{T}}u \\ r_{3}^{\mathsf{T}}u & 0 & -r_{1}^{\mathsf{T}}u \\ -r_{2}^{\mathsf{T}}u & r_{1}^{\mathsf{T}}u & 0 \end{bmatrix} = \widehat{Ru}$$

As a result:

$$\widehat{\omega}_{ab}^{s} = R_b^a \widehat{\omega}_{ab}^b R_b^{a-1} \Rightarrow \widehat{\omega}_{ab}^{s} = \widehat{R_b^a \omega_{ab}^a} \Rightarrow \omega_{ab}^{s} = R_b^a \omega_{ab}^a$$

• As a result:

$$\widehat{\omega}_{ab}^{s} = R_b^a \widehat{\omega}_{ab}^b R_b^{a-1} \Rightarrow \widehat{\omega}_{ab}^{s} = \widehat{R_b^a \omega_{ab}^a} \Rightarrow \widehat{\omega}_{ab}^{s} = R_b^a \omega_{ab}^a$$

Also:

$$v_{ab}^{s} = -R_{b}^{a} \widehat{\omega}_{ab}^{b} R_{b}^{a^{-1}} p_{b}^{a} + R_{b}^{a} v_{ab}^{b} = -\widehat{\omega}_{ab}^{s} p_{b}^{a} + R_{b}^{a} v_{ab}^{b}$$

• As a result:

$$\widehat{\omega}_{ab}^{s} = R_b^a \widehat{\omega}_{ab}^b R_b^{a-1} \Rightarrow \widehat{\omega}_{ab}^{s} = \widehat{R_b^a \omega_{ab}^a} \Rightarrow \omega_{ab}^{s} = R_b^a \omega_{ab}^a$$

Also:

$$v_{ab}^{s} = -R_{b}^{a} \widehat{\omega}_{ab}^{b} R_{b}^{a-1} p_{b}^{a} + R_{b}^{a} v_{ab}^{b} = -\widehat{\omega}_{ab}^{s} p_{b}^{a} + R_{b}^{a} v_{ab}^{b}$$
$$= \widehat{p}_{ab}^{s} \omega_{b}^{a} + R_{b}^{a} v_{ab}^{b} = \widehat{p}_{ab}^{s} R_{b}^{a} \omega_{ab}^{a} + R_{b}^{a} v_{ab}^{b}$$

$$\begin{array}{c}
a \times b \\
= -b \times a \\
\Rightarrow \hat{a}b = -\hat{b}a
\end{array}$$

• We have:

$$\omega_{ab}^{s} = R_b^a \omega_{ab}^a$$
$$v_{ab}^{s} = \hat{p}_{ab}^{s} R_b^a \omega_{ab}^a + R_b^a v_{ab}^b$$

Rewrite in a matrix form:

$$\begin{bmatrix} \omega_{ab}^s \\ v_{ab}^s \end{bmatrix} = \begin{bmatrix} R_b^a & 0 \\ \hat{p}_{ab}^s R_b^a & R_b^a \end{bmatrix} \begin{bmatrix} \omega_{ab}^b \\ v_{ab}^b \end{bmatrix}$$

 $\mathrm{Ad}_g$ : adjoint transformation for  $g_{ab}$ 

- We have  $\hat{\xi} = \begin{bmatrix} \widehat{\omega} & v \\ 0 & 0 \end{bmatrix} \in se(3)$  with the twist coordinate  $\xi = \begin{bmatrix} \omega \\ v \end{bmatrix}$
- We have:

$$g\hat{\xi}g^{-1} = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \widehat{\omega} & \nu \\ 0 & 0 \end{bmatrix} \begin{bmatrix} R^{-1} & -R^{-1}p \\ 0 & 1 \end{bmatrix}$$

• We have:

$$g\hat{\xi}g^{-1} = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \widehat{\omega} & v \\ 0 & 0 \end{bmatrix} \begin{bmatrix} R^{-1} & -R^{-1}p \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} R\widehat{\omega} & Rv \\ 0 & 0 \end{bmatrix} \begin{bmatrix} R^{-1} & -R^{-1}p \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} R\widehat{\omega}R^{-1} & -R\widehat{\omega}R^{-1}p + Rv \\ 0 & 0 \end{bmatrix}$$

• We have:

$$g\hat{\xi}g^{-1} = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \widehat{\omega} & v \\ 0 & 0 \end{bmatrix} \begin{bmatrix} R^{-1} & -R^{-1}p \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} R\widehat{\omega} & Rv \\ 0 & 0 \end{bmatrix} \begin{bmatrix} R^{-1} & -R^{-1}p \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} R\widehat{\omega}R^{-1} & -R\widehat{\omega}R^{-1}p + Rv \\ 0 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} \widehat{R}\widehat{\omega} & -\widehat{R}\widehat{\omega}p + Rv \\ 0 & 0 \end{bmatrix} \in se(3)$$

- We have  $\hat{\xi} = \begin{bmatrix} \widehat{\omega} & v \\ 0 & 0 \end{bmatrix} \in se(3)$  with the twist coordinate  $\xi = \begin{bmatrix} \omega \\ v \end{bmatrix}$
- We have:  $g\hat{\xi}g^{-1} = \begin{bmatrix} \widehat{R\omega} & -\widehat{R\omega}p + Rv \\ 0 & 0 \end{bmatrix} \in se(3)$
- The twist coordinate:

$$\begin{bmatrix} R\omega \\ -\widehat{R\omega}p + Rv \end{bmatrix} = \begin{bmatrix} R\omega \\ \widehat{p}R\omega + Rv \end{bmatrix} = \begin{bmatrix} R & 0 \\ \widehat{p}R & R \end{bmatrix} \begin{bmatrix} \omega \\ v \end{bmatrix} = \operatorname{Ad}_{g}\xi$$

### Previously, We Discussed Inverse Kinematic

• Connecting a twist and joint angles in linear forms:

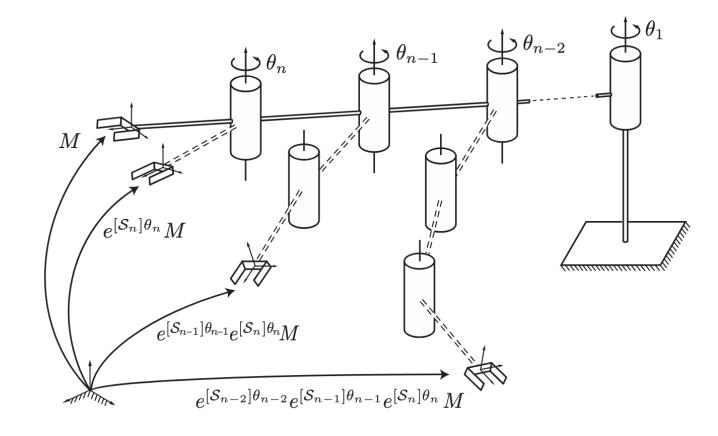
$$\xi_{S} = \underbrace{\mathcal{S}_{1}}_{J_{s1}} \dot{\theta}_{1} + \underbrace{\operatorname{Ad}_{e^{[S_{1}]\theta_{1}}(S_{2})}}_{J_{s2}} \dot{\theta}_{2} + \underbrace{\operatorname{Ad}_{e^{[S_{1}]\theta_{1}}e^{[S_{2}]\theta_{2}}(S_{3})}}_{J_{s3}} \dot{\theta}_{3} + \cdots$$

$$\xi_S = \begin{bmatrix} J_{s1} & J_{s2}(\theta) & \cdots & J_{sn}(\theta) \end{bmatrix} \begin{bmatrix} \theta_1 \\ \vdots \\ \dot{\theta}_n \end{bmatrix}$$

$$= J_s(\theta)\dot{\theta}.$$

Spatial transformation of the open chain:

$$T(\theta_1, \theta_2, \dots, \theta_n) = e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} \dots e^{\hat{\xi}_n \theta_n} M$$

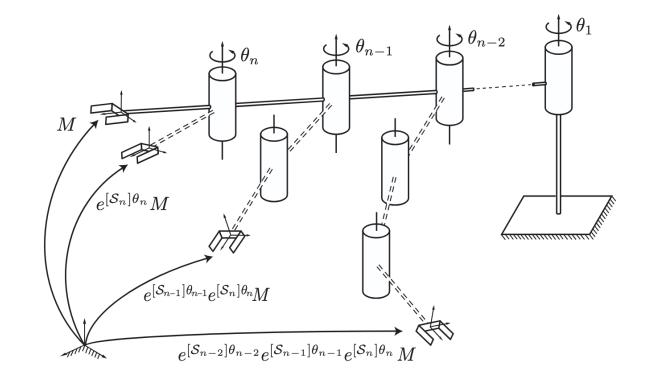


• Spatial transformation of the open chain:

$$T(\theta_1, \theta_2, \dots, \theta_n) = e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} \dots e^{\hat{\xi}_n \theta_n} M$$

• The twist of the spatial transformation (check page 78):

$$\hat{\xi}^{s} = \dot{T}T^{-1}$$



• The inverse of the spatial transformation:

$$T^{-1} = M^{-1}e^{-\hat{\xi}_n\theta_n} \dots e^{-\hat{\xi}_2\theta_2}e^{-\hat{\xi}_1\theta_1}$$

The derivative of the transformation:

$$\begin{split} \dot{T} &= \left(\frac{de^{\hat{\xi}_{1}\theta_{1}}}{dt}\right)e^{\hat{\xi}_{2}\theta_{2}}\dots e^{\hat{\xi}_{n}\theta_{n}}M + e^{\hat{\xi}_{1}\theta_{1}}\left(\frac{de^{\hat{\xi}_{2}\theta_{2}}}{dt}\right)\dots e^{\hat{\xi}_{n}\theta_{n}}M + \cdots \\ &= \hat{\xi}_{1}\dot{\theta}_{1}e^{\hat{\xi}_{1}\theta_{1}}e^{\hat{\xi}_{2}\theta_{2}}\dots e^{\hat{\xi}_{n}\theta_{n}}M + e^{\hat{\xi}_{1}\theta_{1}}\hat{\xi}_{2}\dot{\theta}_{2}e^{\hat{\xi}_{2}\theta_{2}}\dots e^{\hat{\xi}_{n}\theta_{n}}M + \cdots \end{split}$$

• The inverse of the spatial transformation:

$$T^{-1} = M^{-1}e^{-\hat{\xi}_n\theta_n} \dots e^{-\hat{\xi}_2\theta_2}e^{-\hat{\xi}_1\theta_1}$$

The derivative of the transformation:

$$\begin{split} \dot{T} &= \left(\frac{de^{\hat{\xi}_{1}\theta_{1}}}{dt}\right)e^{\hat{\xi}_{2}\theta_{2}}\dots e^{\hat{\xi}_{n}\theta_{n}}M + e^{\hat{\xi}_{1}\theta_{1}}\left(\frac{de^{\hat{\xi}_{2}\theta_{2}}}{dt}\right)\dots e^{\hat{\xi}_{n}\theta_{n}}M + \cdots \\ &= \hat{\xi}_{1}\dot{\theta}_{1}e^{\hat{\xi}_{1}\theta_{1}}e^{\hat{\xi}_{2}\theta_{2}}\dots e^{\hat{\xi}_{n}\theta_{n}}M + e^{\hat{\xi}_{1}\theta_{1}}\hat{\xi}_{2}\dot{\theta}_{2}e^{\hat{\xi}_{2}\theta_{2}}\dots e^{\hat{\xi}_{n}\theta_{n}}M + \cdots \end{split}$$

The twist of the spatial transformation (check page 78):

$$\hat{\xi}^{s} = \dot{T}T^{-1} = \hat{\xi}_{1}\dot{\theta}_{1} + e^{\hat{\xi}_{1}\theta_{1}}\hat{\xi}_{2}\dot{\theta}_{2}e^{-\hat{\xi}_{1}\theta_{1}} + e^{\hat{\xi}_{1}\theta_{1}}e^{\hat{\xi}_{2}\theta_{2}}\hat{\xi}_{3}\dot{\theta}_{3}e^{-\hat{\xi}_{2}\theta_{2}}e^{-\hat{\xi}_{1}\theta_{1}} + \cdots$$

The twist of the spatial transformation:

$$\hat{\xi}^{S} = \dot{T}T^{-1} = \hat{\xi}_{1}\dot{\theta}_{1} + e^{\hat{\xi}_{1}\theta_{1}}\hat{\xi}_{2}\dot{\theta}_{2}e^{-\hat{\xi}_{1}\theta_{1}} + e^{\hat{\xi}_{1}\theta_{1}}e^{\hat{\xi}_{2}\theta_{2}}\hat{\xi}_{3}\dot{\theta}_{3}e^{-\hat{\xi}_{2}\theta_{2}}e^{-\hat{\xi}_{1}\theta_{1}} + \cdots$$

$$= \hat{\xi}_{1}\dot{\theta}_{1} + e^{\hat{\xi}_{1}\theta_{1}}\hat{\xi}_{2}e^{-\hat{\xi}_{1}\theta_{1}}\dot{\theta}_{2} + e^{\hat{\xi}_{1}\theta_{1}}e^{\hat{\xi}_{2}\theta_{2}}\hat{\xi}_{3}e^{-\hat{\xi}_{2}\theta_{2}}e^{-\hat{\xi}_{1}\theta_{1}}\dot{\theta}_{3} + \cdots$$

For any  $g \in SE(3)$  and  $\hat{\xi} \in se(3)$ ,  $g\hat{\xi}g^{-1} \in se(3)$  is a twist with twist coordinate  $\mathrm{Ad}_{g}\xi$ 

• The twist of the spatial transformation:

$$\begin{split} \hat{\xi}^{s} &= \dot{T}T^{-1} = \hat{\xi}_{1}\dot{\theta}_{1} + e^{\hat{\xi}_{1}\theta_{1}}\hat{\xi}_{2}\dot{\theta}_{2}e^{-\hat{\xi}_{1}\theta_{1}} + e^{\hat{\xi}_{1}\theta_{1}}e^{\hat{\xi}_{2}\theta_{2}}\hat{\xi}_{3}\dot{\theta}_{3}e^{-\hat{\xi}_{2}\theta_{2}}e^{-\hat{\xi}_{1}\theta_{1}} + \cdots \\ &= \hat{\xi}_{1}\dot{\theta}_{1} + e^{\hat{\xi}_{1}\theta_{1}}\hat{\xi}_{2}e^{-\hat{\xi}_{1}\theta_{1}}\dot{\theta}_{2} + e^{\hat{\xi}_{1}\theta_{1}}e^{\hat{\xi}_{2}\theta_{2}}\hat{\xi}_{3}e^{-\hat{\xi}_{2}\theta_{2}}e^{-\hat{\xi}_{1}\theta_{1}}\dot{\theta}_{3} + \cdots \end{split}$$

For any  $g\in SE(3)$  and  $\hat{\xi}\in se(3)$ ,  $g\hat{\xi}g^{-1}\in se(3)$  is a twist with twist coordinate  $\mathrm{Ad}_g\xi$ 

The twist coordinate:

$$\xi^{s} = \xi_{1}\dot{\theta}_{1} + \operatorname{Ad}_{e^{\hat{\xi}_{1}\theta_{1}}}\xi_{2}\dot{\theta}_{2} + \operatorname{Ad}_{e^{\hat{\xi}_{1}\theta_{1}}e^{\hat{\xi}_{2}\theta_{2}}}\hat{\xi}_{3}\dot{\theta}_{3} + \cdots$$

$$J_{\xi_{1}}(\theta) \qquad J_{\xi_{2}}(\theta) \qquad J_{\xi_{3}}(\theta)$$

The twist coordinate:

$$\xi^{s} = J_{\xi_{1}}(\theta)\dot{\theta}_{1} + J_{\xi_{2}}(\theta)\dot{\theta}_{2} + J_{\xi_{3}}(\theta)\dot{\theta}_{3} + \cdots$$

$$= [J_{\xi_{1}} \quad J_{\xi_{2}} \quad J_{\xi_{3}} \quad \cdots]\begin{bmatrix} \dot{\theta}_{1} \\ \dot{\theta}_{2} \\ \dot{\theta}_{3} \\ \vdots \end{bmatrix} = J_{\xi}\dot{\theta}$$

#### Inverse Kinematic

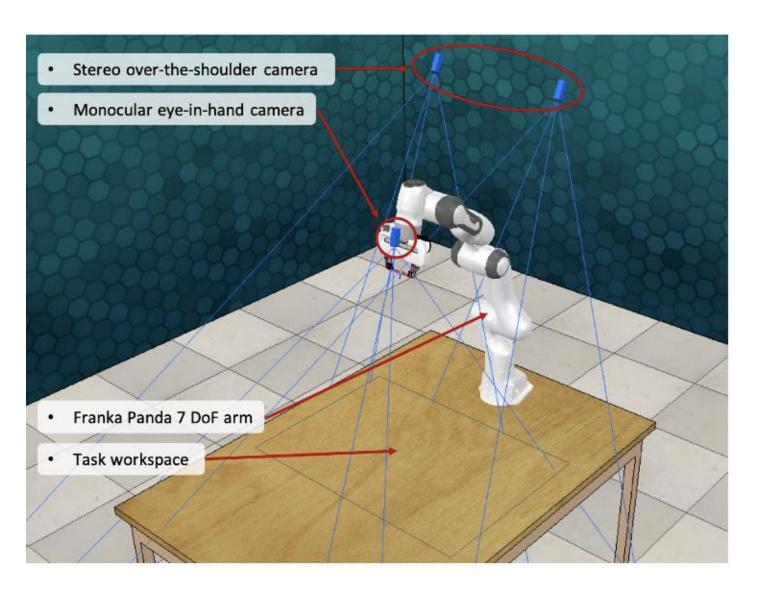
Newton-Raphson Method:

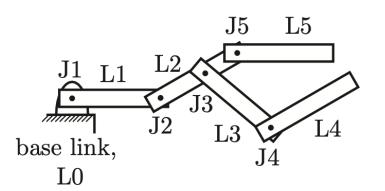
$$\Delta \theta = J^{-1}(\theta^0) \left( x_d - f(\theta^0) \right).$$



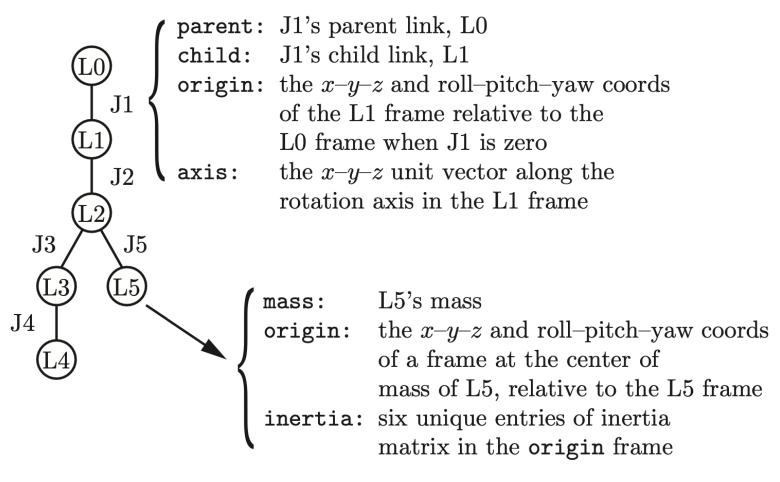
$$\Delta\theta = J_{\xi}^{-1}(\xi^{\Delta})$$
, where  $\xi^{\Delta} = \log(T_{current}^{-1}(\theta)T_{target})$ 

### How to Build a Robot in the Simulator?





#### Represent a Robot as a Tree



#### The Robot's URDF File

```
<?xml version="1.0" ?>
<robot name="panda">
 <material name="aluminum">
    <color rgba="0.5 0.5 0.5 1"/>
 </material>
 <link name="panda_link0">
    <visual>
                   The mesh of the link for visualization
      <geometry>
        <mesh
filename="franka description/meshes/visual/link0.glb"/>
      </geometry>
   </visual>
    <collision>
      <geometry>
                 The mesh of the link for collision checking
filename="franka description/meshes/collision/link0.stl"/>
      </geometry>
    </collision>
    <inertial>
      <origin rpy="0 0 0" xyz="-0.041018 -0.00014 0.049974"/>
     <mass value="0.629769"/>
     <inertia ixx="0.00315" ixy="8.2904e-07" ixz="0.00015"</pre>
iyy="0.00388" iyz="8.2299e-06" izz="0.004285"/>
   </inertial>
                     Physical properties of the link
  </link>
```

```
<link name="panda link1">
    <visual>
      <geometry>
        <mesh
filename="franka description/meshes/visual/link1.glb"/>
      </geometry>
    </visual>
    <collision>
      <geometry>
        <mesh
filename="franka description/meshes/collision/link1.stl"/>
      </geometry>
    </collision>
    <inertial>
      <origin rpy="0 0 0" xyz="0.003875 0.002081 -0.04762"/>
      <mass value="4.970684"/>
      <inertia ixx="0.70337" ixy="-0.000139" ixz="0.006772"</pre>
iyy="0.70661" iyz="0.019169" izz="0.009117"/>
    </inertial>
  </link>
  <joint name="panda joint1" type="revolute">
    <safety controller k position="100.0" k velocity="40.0"</pre>
soft lower limit="-2.8973" soft upper limit="2.8973"/>
    <origin rpy="0 0 0" xyz="0 0 0.333"/>
    <parent link="panda link0"/>
    <child link="panda link1"/>
    <axis xyz="0 0 1"/>
    <limit effort="87" lower="-2.8973" upper="2.8973"</pre>
velocity="2.1750"/>
    <dynamics D="1" K="7000" damping="0.003" friction="0.0"</pre>
mu coulomb="0" mu viscous="16"/>
  </joint>
```