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https://youtu.be/hxsWeVtb-JQ?si=1vDmFKZn8ZdZ9rZ2

We want a Robot that can See and Move

2



The Stanford Arm. 1969

SCARA Robot.  1978

PR2 Robot. 2008

Franka Emika Panda Robot.  2017

Clone Synthetic Hand. 2023

Active entanglement enables stochastic, topological 
grasping. Becker et al3



Anatomy of Rigid Multi-Link Robots

Robotics: Modeling, Planning and Control. Siciliano et al.

Link (Rigid body)

Joint

End effector

4



Typical Robot Joints

We will only discuss these two types of robot joints

5Modern Robotics. K. M. Lynch and F. C. Park.



Where is the Robot?

𝑥𝑒
𝑦𝑒

𝑧𝑒

Idea: Specify the end-effector pose (location 𝑝𝑒
𝑏 and rotation 𝑅𝑒

𝑏)
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𝑦𝑏

𝑥𝑏

𝑧𝑏

𝑅𝑒
𝑏

𝑝𝑒
𝑏



However, these two configurations end up in the same end-effector pose

𝑥𝑒
𝑦𝑒

𝑧𝑒

Where is the Robot?
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Configuration Space vs. Task (Operational) Space

𝑥𝑒
𝑦𝑒

𝑧𝑒

Configuration: a complete specification of 
the position of every point of the robot (e.g. 
angle of a revolute joint or displacement of 
a prismatic joint).

Configuration space (C-space): the 𝑛-
dimensional space containing all possible 
configurations of the robot.

Task space: the space in which the robot’s 
task is naturally expressed.
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𝑞1

𝑞2
𝑞3

𝑞4



Task (Operational) Space vs. Work space

Task space: the space in which the robot’s 
task is naturally expressed.

Work space: the space in which the robot’s 
end-effector can reach.

https://robodk.com/blog/robot-workspace-visualization/
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Degree of Freedom (DoF): The minimum 
number 𝑛 of real-valued coordinates 
needed to represent the configuration.

Modern Robotics. K. M. Lynch and F. C. Park.

Degree of Freedom
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1 DoF

1 DoF

1 DoF

2 DoF

2 DoF

3 DoF



Degree of Freedom: sum of freedoms of the bodies - #. of independent constraints
or

#. of variables - #. of independent equations

#. of variables = 2 (coordinates) * 3 (points)
#. of independent equations = 3 (𝑑𝐴𝐶 , 𝑑𝐴𝐵, 𝑑𝐵𝐶)
DoF = 3 (𝑥, 𝑦, 𝜃)

#. of variables = 6 (𝑋, 𝑌, 𝑍, 𝑝𝑖𝑡𝑐ℎ, 𝑟𝑜𝑙𝑙, 𝑦𝑎𝑤)
#. of independent equations = 5
DoF = 1 (𝜃)

#. of variables = 6 (𝑋, 𝑌, 𝑍, 𝑝𝑖𝑡𝑐ℎ, 𝑟𝑜𝑙𝑙, 𝑦𝑎𝑤)
#. of independent equations = 5
DoF = 1 (𝑑)

𝜃

𝑑

Degree of Freedom

11Modern Robotics. K. M. Lynch and F. C. Park.



𝐷𝑜𝐹 = 6 ∗ 8 − 1 − σ𝑖=0
6 5 = 7

Why?

Joint 0

Joint 1

Joint 2

Joint 3Joint 4

Joint 5

Franka Emika Panda Robot UR5E Robot

A robot is kinematically redundant if it has more DoF than the dimension 
of the task space, which provides more solutions to reach a pose.
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#. links



𝑥𝑒
𝑦𝑒

𝑧𝑒

𝑞1

𝑞2
𝑞3

𝑞4

What is the Pose of a Robot’s End Effector 
given Its Configuration?

13Robotics: Modeling, Planning and Control. Siciliano et al.



Forward Kinematics:  Calculate the Pose of a 
Robot End-Effector given the Configuration

• We can calculate by Euclidean 
geometry, but is there any more 
general formulation?

• Let 𝑐1 denote cos 𝜗1 and 𝑠1
denote 𝑠𝑖𝑛 𝜗1
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𝑥

𝑦

𝑞2

𝑞1

𝑇3
2

𝑇2
1

• We can consider each joint applies coordinate transformation

𝑃

Forward Kinematics:  Calculate the Pose of a 
Robot End-Effector given the Configuration
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𝒑0

1
=

𝑹1
0 𝒐1

0

𝟎𝑇 1

𝒑1

1

Rigid-Body Transformation

The coordinate of point 
P in frame 𝑂1

The coordinate of point 
P in frame 𝑂0

Spatial Transformation 
between frame 𝑂1 and 𝑂0
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𝑥

𝑦

𝑞2

𝑞1

𝑇3
2

𝑇2
1

𝑃

𝑇𝑒
𝑏 𝒒 = 𝑇0

𝑏𝑇1
0 𝑞1 …𝑇𝑛

𝑛−1 𝑞𝑛 𝑇𝑒
𝑛

Coordinate transformation from 
Frame 0 to the robot base frame

Frame 0

Coordinate transformation from the 
end-effector frame to Frame n
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Forward Kinematics:  Calculate the Pose of a 
Robot End-Effector given the Configuration

• We can consider each joint applies coordinate transformation



How to Determine Frames Attached to the Two Links?

18Robotics: Modeling, Planning and Control. Siciliano et al.



Decide Frames with Denavit–Hartenberg Convention

1. Choose axis 𝑧𝑖 along the axis of 
Joint 𝑖 + 1
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1. Choose axis 𝑧𝑖 along the axis of 
Joint 𝑖 + 1

2. Choose axis 𝑥𝑖 along the 
direction of  the common 
normal (vector of minimum 
distance between axis 𝑧𝑖 and 
𝑧𝑖−1)
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Decide Frames with Denavit–Hartenberg Convention



1. Choose axis 𝑧𝑖 along the axis of 
Joint 𝑖 + 1

2. Choose axis 𝑥𝑖 along the 
direction of  the common 
normal (vector of minimum 
distance between axis 𝑧𝑖 and 
𝑧𝑖−1)

3. Axis 𝑦𝑖 is decided by right-hand 
rule 

21

Decide Frames with Denavit–Hartenberg Convention



What are the Spatial Transformations under 
Denavit–Hartenberg Convention?

𝑅𝑥,𝛼𝑖 =

1 0
0 𝑐𝛼𝑖

0 0
−𝑠𝛼𝑖 0

0 𝑠𝛼𝑖
0 0

𝑐𝛼𝑖 0

0 1
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What are the Spatial Transformations under 
Denavit–Hartenberg Convention?

𝑇𝑖
𝑖′ =

1 0
0 1

0 𝑎𝑖
0 0

0 0
0 0

1 0
0 1
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What are the Spatial Transformations under 
Denavit–Hartenberg Convention?

𝑇𝑖′
𝑖−1 =

1 0
0 1

0 0
0 0

0 0
0 0

1 𝑑𝑖
0 1
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What are the Spatial Transformations under 
Denavit–Hartenberg Convention?

𝑅𝑧,𝜗𝑖 =

𝑐𝜗𝑖 −𝑠𝜗𝑖
𝑠𝜗𝑖 𝑐𝜗𝑖

0 0
0 0

0 0
0 0

1 0
0 1



𝐴𝑖
𝑖−1 = 𝑅𝑧,𝜗𝑖𝑇𝑖′

𝑖−1𝑇𝑖
𝑖′𝑅𝑥,𝛼𝑖

=

𝑐𝜗𝑖 −𝑠𝜗𝑖𝑐𝛼𝑖
𝑠𝜗𝑖 𝑐𝜗𝑖𝑐𝛼𝑖

𝑠𝜗𝑖𝑠𝛼𝑖 𝑎𝑖𝑐𝜗𝑖
−𝑐𝜗𝑖𝑠𝛼𝑖 𝑎𝑖𝑠𝜗𝑖

0 𝑠𝛼𝑖
0 0

𝑐𝛼𝑖 𝑑𝑖
0 1

26

What are the Spatial Transformations under 
Denavit–Hartenberg Convention?



• We known:

𝐴𝑖
𝑖−1 =

𝑐𝜗𝑖 −𝑠𝜗𝑖𝑐𝛼𝑖
𝑠𝜗𝑖 𝑐𝜗𝑖𝑐𝛼𝑖

𝑠𝜗𝑖𝑠𝛼𝑖 𝑎𝑖𝑐𝜗𝑖
−𝑐𝜗𝑖𝑠𝛼𝑖 𝑎𝑖𝑠𝜗𝑖

0 𝑠𝛼𝑖
0 0

𝑐𝛼𝑖 𝑑𝑖
0 1

𝐴𝑒
𝑏 𝒒 = 𝐴0

𝑏𝐴1
0 𝑞1 …𝐴𝑛

𝑛−1 𝑞𝑛 𝐴𝑒
𝑛

𝒑𝑏 = 𝐴0
𝑏𝐴1

0 𝑞1 …𝐴𝑛
𝑛−1 𝑞𝑛 𝐴𝑒

𝑛𝒑𝑒

• Since the end-effector pose at the end-effector frame is constant, we can re-
write the end-effector pose at the robot base frame as a function of 𝒒: 𝑓(𝒒)

27

Forward Kinematics:  Calculate the Pose of a 
Robot End-Effector given the Configuration

Transformation from 
joint 𝑖 to frame 𝑖 − 1

Transformation from the end-
effector to the robot base

Configuration of joint 𝑛

Transformation from the 
end-effector to joint 𝑛

Transformation from joint 
𝑛 to the robot base



Inverse Kinematics:  Calculate the Robot 
Configuration given a Pose of the End-Effector

• Forward kinematic:

end−effector pose = 𝑓(𝒒)

• Inverse kinematic:

𝒒 = 𝑓−1(end−effector pose)

28



Analytical Solution of Inverse Kinematic: An 
Example of 3-link Planar Arm

cos(𝜗1 + 𝜗2 + 𝜗3)

29Robotics: Modeling, Planning and Control. Siciliano et al.



end−effector pose = 𝑇3
0𝑇𝑒

3

0
0
0
1

Origin of the 
end-effector 
frame

30

Analytical Solution of Inverse Kinematic: An 
Example of 3-link Planar Arm

Robotics: Modeling, Planning and Control. Siciliano et al.



end−effector pose =

𝑝𝑥
𝑝𝑦
𝜙

=

𝑎1𝑐1 + 𝑎2𝑐12 + 𝑎3𝑐123
𝑎1𝑠1 + 𝑎2𝑠12 + 𝑎3𝑠123

𝜗1 + 𝜗2 + 𝜗331Robotics: Modeling, Planning and Control. Siciliano et al.

Analytical Solution of Inverse Kinematic: An 
Example of 3-link Planar Arm



𝑝𝑥
𝑝𝑦
𝜙

=

𝑎1𝑐1 + 𝑎2𝑐12 + 𝑎3𝑐123
𝑎1𝑠1 + 𝑎2𝑠12 + 𝑎3𝑠123

𝜗1 + 𝜗2 + 𝜗3

1. 𝑝𝑊𝑥
= 𝑝𝑥 − 𝑎3𝑐𝜙 = 𝑎1𝑐1 + 𝑎2𝑐12

2. 𝑝𝑊𝑦
= 𝑝𝑦 − 𝑎3𝑠𝜙 = 𝑎1𝑠1 + 𝑎2𝑠12

3. From 1. and 2.,  𝑝𝑊𝑥
2 + 𝑝𝑊𝑦

2 = 𝑎1
2 + 𝑎2

2 +

2𝑎1𝑐1𝑎2(𝑐1𝑐2 − 𝑠1𝑠2) + 2𝑎1𝑠1𝑎2(𝑠1𝑐2 + 𝑐1𝑠2) = 𝑎1
2 +

𝑎2
2 + 2𝑎1𝑎2𝑐2

We have 𝑐2 =
𝑝𝑊𝑥

2+𝑝𝑊𝑦
2−𝑎1

2+𝑎2
2

2𝑎1𝑎2

We have 𝑠2 = ± 1 − 𝑐2
2 and 𝜗2 = 𝐴𝑡𝑎𝑛2 (𝑠2, 𝑐2)

Robotics: Modeling, Planning and Control. Siciliano et al. 32

Analytical Solution of Inverse Kinematic: An 
Example of 3-link Planar Arm



Numerical Solution of Inverse Kinematic

• Newton-Raphson Method:

33Modern Robotics. K. M. Lynch and F. C. Park.

This term include rotation and translation--
spatial transformation SE(3)

?



Numerical Solution of Inverse Kinematic

• Newton-Raphson Method:

34Modern Robotics. K. M. Lynch and F. C. Park.

This term include rotation and translation--
spatial transformation SE(3)

Solving 𝐽−1 using Denavit–Hartenberg
Convention is overly complex…



What are Representations of Spatial 
Transformations?

• Desired properties:
➢ Representing the forward kinematics of an open chain system as a 

product of transformations
➢ Systemic derivation of the Jacobian that connects spatial 

transformations to joint angles 
➢ Unified representations of different types of robot joints
➢ No need for solving inverse Jacobian matrix

35



We Can Associate One Representation of Spatial 
Transformation with Joint Angles in Linear Forms

36Modern Robotics. K. M. Lynch and F. C. Park.

• The twist coordinate (exponential of a twist is a rigid transformation matrix):

𝜉𝑠 = 𝜉1 ሶ𝜃1 + Ad
𝑒
෡𝜉1𝜃1

𝜉2 ሶ𝜃2 + Ad
𝑒
෡𝜉1𝜃1𝑒

෡𝜉2𝜃2
መ𝜉3 ሶ𝜃3 +⋯

= J𝜉1 J𝜉2 J𝜉3 …

ሶ𝜃1
ሶ𝜃2
ሶ𝜃3
⋮

= J𝝃 ሶ𝜽

J𝜉1 𝜃 J𝜉2 𝜃 J𝜉3 𝜃



Solve Inverse Kinematic without Calculating 
the Inverse Jacobian Matrix

• Newton-Raphson Method:

Modern Robotics. K. M. Lynch and F. C. Park. 37

∆𝜃 = 𝑱𝝃
−1 𝜉∆ , where 𝜉∆ = log 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡

−1 𝜃 𝑇𝑡𝑎𝑟𝑔𝑒𝑡



What is Twist?

38



• Rotation matrix:  𝑅𝑏
𝑎 = 𝒙𝑎𝑏, 𝒚𝑎𝑏, 𝒛𝑎𝑏

• Properties of rotation matrices:
➢ Orthonormality: 𝑅𝑅⊺ = 𝑅⊺𝑅 = 𝐼
➢ det𝑅 = +1

39

Rotational Motion in ℝ3

A Mathematical Introduction to Robotic Manipulation.  Murray, Li and Sastry.

Why?



• Rotation matrix:  𝑅𝑏
𝑎 = 𝒙𝑎𝑏, 𝒚𝑎𝑏, 𝒛𝑎𝑏

• Properties of rotation matrices:
➢ Orthonormality: 𝑅𝑅⊺ = 𝑅⊺𝑅 = 𝐼
➢ det𝑅 = +1

• Rotation matrices ℝ𝑛×𝑛 form a special 
group:
𝑆𝑂 𝑛 = ℝ𝑛×𝑛: 𝑅𝑅⊺ = 𝐼, det𝑅 = +1

• Composability:𝑅1
3 = 𝑅2

3𝑅1
2

40

Rotational Motion in ℝ3

A Mathematical Introduction to Robotic Manipulation.  Murray, Li and Sastry.

det 𝑅 = 𝑟1
⊺ 𝑟2 × 𝑟3 = 𝑟1

⊺𝑟1 = 1

How to connect rotation matrices 
with robot joint angles?  



• A more geometrical description of “a 
rotation”:
➢ an axis of rotation 𝝎 that specifies 

the direction of rotation
➢ the angle of rotation 𝜃

• Can we derive the rotation matrix 
from 𝝎 and 𝜃 ?

41A Mathematical Introduction to Robotic Manipulation.  Murray, Li and Sastry.

𝑞 𝜃

𝑞 0

𝜃

Exponential Coordinates for Rotation



• Prerequisite: cross products can be 
represented as matrix multiplications

• If we rotate the body at constant 
velocity about the axis 𝝎, the velocity 
of the point:

42A Mathematical Introduction to Robotic Manipulation.  Murray, Li and Sastry.

𝑞 𝜃

𝑞 0

𝜃𝒂 × 𝒃 = ෝ𝒂𝒃, where skew matrix ෝ𝒂 =

0 −𝑎3 𝑎2
𝑎3 0 −𝑎1
−𝑎2 𝑎1 0

ሶ𝒒 𝜃 = 𝝎 × 𝒒 𝜃 = ෝ𝝎𝒒 𝜃

⇒ 𝒒 𝜃 = 𝑒 ෝ𝝎𝜃𝒒 0

Exponential Coordinates for Rotation



43A Mathematical Introduction to Robotic Manipulation.  Murray, Li and Sastry.

• Properties of skew matrix ෝ𝒂 :

➢ The set of 3 × 3 real skew-symmetric matrices composes 𝑠𝑜 3

➢ 𝒂 × 𝒃 = ෝ𝒂𝒃

➢ 𝒂⊺ = −𝒂

• We can rewrite 𝑒 ෝ𝝎𝜃:

𝑒 ෝ𝝎𝜃 = 𝐼 + 𝜃ෝ𝝎 +
𝜃2

2!
ෝ𝝎2 +

𝜃3

3!
ෝ𝝎3 +⋯

⇒ 𝑒 ෝ𝝎𝜃 = 𝐼 + 𝜃 −
𝜃3

3!
+
𝜃5

5!
− ⋯ ෝ𝝎+

𝜃2

2!
−
𝜃4

4!
+ ⋯ ෝ𝝎2

⇒ 𝑒 ෝ𝝎𝜃 = 𝐼 + sin 𝜃 ෝ𝝎+ 1 − cos 𝜃 ෝ𝝎2

If 𝝎 = 1:

ෝ𝝎2 = 𝝎𝝎⊺ − 𝝎 𝟐𝐼

ෝ𝝎3 = − 𝝎 𝟐ෝ𝝎

Exponential Coordinates for Rotation



• Given 𝝎 and 𝜃, the exponential 𝑒 ෝ𝝎𝜽 ∈ 𝑆𝑂(3)

➢ 𝑒 ෝ𝝎𝜃
−1

= 𝑒−ෝ𝝎𝜃 = 𝑒 ෝ𝝎
⊺𝜃 = 𝑒 ෝ𝝎𝜃

⊺

➢ det 𝑒 ෝ𝝎𝜃 = +1 (based on the continuity of exponential map and the 
fact that det 𝑒0 = 1)

• Given a rotation matrix 𝑅, there exists 𝝎 ∈ ℝ3 and 𝜃, such that 𝑅 = 𝑒 ෝ𝝎𝜃

44A Mathematical Introduction to Robotic Manipulation.  Murray, Li and Sastry.

𝑒 ෝ𝝎𝜃 =

𝜔1
2𝑣𝜃 + 𝑐𝜃 𝜔1𝜔2𝑣𝜃 − 𝜔3𝑠𝜃 𝜔1𝜔3𝑣𝜃 + 𝜔2𝑠𝜃

𝜔1𝜔2𝑣𝜃 + 𝜔3𝑠𝜃 𝜔2
2𝑣𝜃 + 𝑐𝜃 𝜔2𝜔3𝑣𝜃 − 𝜔1𝑠𝜃

𝜔1𝜔3𝑣𝜃 − 𝜔2𝑠𝜃 𝜔2𝜔3𝑣𝜃 + 𝜔1𝑠𝜃 𝜔3
2𝑣𝜃 + 𝑐𝜃

𝑅 =

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33all we need is to 

find the solution

𝑐𝜃 = cos 𝜃 , 𝑠𝜃 = sin 𝜃 , 𝑣𝜃 = 1 − cos 𝜃

Exponential Coordinates for Rotation



• Exponentials provide a more geometrical 
description of “a rotation”:
➢ an axis of rotation 𝝎 that specifies the 

direction of rotation
➢ the angle of rotation 𝜃
➢ 𝑒 ෝ𝝎𝜽 ∈ 𝑆𝑂(3)
➢ Given a rotation matrix 𝑅, there exists 𝝎 ∈

ℝ3 and 𝜃, such that 𝑅 = 𝑒 ෝ𝝎𝜃

• We can easily represent the revolute joint with 
such representations

45

Quick summary

A Mathematical Introduction to Robotic Manipulation.  Murray, Li and Sastry.

𝑞 𝜃

𝑞 0

𝜃



• Rotation matrix:  𝑅𝑏
𝑎 = 𝒙𝑎𝑏, 𝒚𝑎𝑏, 𝒛𝑎𝑏

• Translation: 𝑝𝑏
𝑎

• Rigid transformation from frame b to a:

𝑔𝑏
𝑎 𝑞 = 𝑞𝑎 = 𝑝𝑏

𝑎 + 𝑅𝑏
𝑎𝑞𝑏

or in homogeneous representations

𝑞𝑎
1

=
𝑅𝑏
𝑎 𝑝𝑏

𝑎

0 1

𝑞𝑏
1

46

Rigid Motion in ℝ3

A Mathematical Introduction to Robotic Manipulation.  Murray, Li and Sastry.

𝑞𝑏

𝑔𝑏
𝑎 𝑞

𝑝𝑏
𝑎

𝑞𝑎 𝑞𝑏ҧ𝑔𝑏
𝑎



• Rigid transformation from frame b to a:

𝑞𝑎
1

=
𝑅𝑏
𝑎 𝑝𝑏

𝑎

0 1

𝑞𝑏
1

• Rigid transformations form a special group:

𝑆𝐸 𝑛 = 𝑝, 𝑅 : 𝑝 ∈ ℝ𝑛, 𝑅 ∈ 𝑆𝑂(𝑛)

• Composability:  ҧ𝑔1
3 = ҧ𝑔2

3 ҧ𝑔1
2

• The inverse of 𝑔 ∈ 𝑆𝐸(3) still belongs to 
𝑆𝐸(3):

𝑔−1 = 𝑅⊺ −𝑅⊺𝑝
0 1

47

Rigid Motion in ℝ3

A Mathematical Introduction to Robotic Manipulation.  Murray, Li and Sastry.

𝑞𝑏

𝑔𝑏
𝑎 𝑞

𝑝𝑏
𝑎

𝑞𝑎 𝑞𝑏ҧ𝑔𝑏
𝑎

How to connect rigid transformations 
with robot configurations?  
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More Geometrical Representations for Rigid 
Transformation

• Pure rotation
ሶ𝒑 𝜃 = 𝝎 × 𝒑 𝜃 − 𝒒

ሶ𝒑
0

=
ෝ𝝎 −𝝎 × 𝒒
0 0

𝒑
1

⇒ ሶഥ𝒑 = መ𝜉ഥ𝒑 ⇒ ഥ𝒑 𝜃 = 𝒆
෠𝜉𝜃ഥ𝒑 𝟎

መ𝜉 =
ෝ𝝎 −𝝎 × 𝒒
0 0



49A Mathematical Introduction to Robotic Manipulation.  Murray, Li and Sastry.

𝑞 0

Exponential Coordinates for Rigid Transformation

• Pure rotation
ሶ𝒑 𝜃 = 𝝎 × 𝒑 𝜃 − 𝒒

ሶ𝒑
0

=
ෝ𝝎 −𝝎 × 𝒒
0 0

𝒑
1

⇒ ሶഥ𝒑 = መ𝜉ഥ𝒑 ⇒ ഥ𝒑 𝜃 = 𝒆
෠𝜉𝜃ഥ𝒑 𝟎

መ𝜉 =
ෝ𝝎 −𝝎 × 𝒒
0 0

• Pure translation
ሶ𝒑 𝜃 = 𝒗

ሶ𝒑
0

=
0 𝒗
0 0

𝒑
1

⇒ ሶഥ𝒑 = መ𝜉ഥ𝒑 ⇒ ഥ𝒑 𝜃 = 𝒆
෠𝜉𝜃ഥ𝒑 𝟎

መ𝜉 =
𝟎 𝒗
0 0
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The መ𝜉 Matrix and the Twist

• መ𝜉 matrices form a special group

𝑠𝑒 3 ≔
ෝ𝜔 𝑣
0 0

: 𝑣 ∈ ℝ3, ෝ𝜔 ∈ 𝑠𝑜 3

• We define 𝜉 ≔ 𝑣, ෝ𝜔 as the twist coordinates of መ𝜉

• Given መ𝜉 ∈ 𝑠𝑒 3 and 𝜃 ∈ ℝ, the exponential 𝑒
෠𝜉𝜃 ∈ 𝑆𝐸 3

We’ll prove later!
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The Screw Representation of Rigid Motion

Modern Robotics. K. M. Lynch and F. C. Park.

• We can interpret a twist as a screw axis 

𝒮 and an angular velocity ሶ𝜃
• A screw axis 𝒮 = 𝑞, ҧ𝑠, ℎ , where

➢ 𝑞 is any point on the axis
➢ ҧ𝑠 is a unit vector in the direction of 

the axis
➢ ℎ is the “screw pitch”, denoting the 

ratio of the linear velocity to the 
angular velocity ሶ𝜃

• ℎ = 0, the screw motion denotes pure rotation (e.g. revolute joint)
• ℎ → ∞, the screw motion denotes pure translation (e.g. prismatic joint)

ҧ𝑠
ℎ ҧ𝑠 ሶ𝜃

− ҧ𝑠 ሶ𝜃 × 𝑞
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The Screw Representation of Rigid Motion

Modern Robotics. K. M. Lynch and F. C. Park.

→With 𝒮 = 𝑞, ҧ𝑠, ℎ and ሶ𝜃, we define a twist:

𝜉 =
𝜔
𝑣

=
ҧ𝑠 ሶ𝜃

− ҧ𝑠 ሶ𝜃 × 𝑞 + ℎ ҧ𝑠 ሶ𝜃

ҧ𝑠
ℎ ҧ𝑠 ሶ𝜃

− ҧ𝑠 ሶ𝜃 × 𝑞
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The Screw Representation of Rigid Motion

Modern Robotics. K. M. Lynch and F. C. Park.

→With 𝒮 = 𝑞, ҧ𝑠, ℎ and ሶ𝜃, we define a twist:

𝜉 =
𝜔
𝑣

=
ҧ𝑠 ሶ𝜃

− ҧ𝑠 ሶ𝜃 × 𝑞 + ℎ ҧ𝑠 ሶ𝜃

← For any twist 𝜉 where 𝜔 ≠ 0, there exists 
an equivalent screw axis 𝒮 = 𝑞, ҧ𝑠, ℎ and 

velocity ሶ𝜃:

ҧ𝑠 = Τ𝜔 𝜔

ሶ𝜃 = 𝜔

ℎ = Τෝ𝜔⊺𝑣 ሶ𝜃

𝑞 is chosen accordingly

ҧ𝑠
ℎ ҧ𝑠 ሶ𝜃

− ҧ𝑠 ሶ𝜃 × 𝑞
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What Do We Need to Show?

• Given መ𝜉 ∈ 𝑠𝑒 3 and 𝜃 ∈ ℝ, the exponential 𝑒
෠𝜉𝜃 ∈ 𝑆𝐸 3

• With 𝒮 = 𝑞, ҧ𝑠, ℎ and ሶ𝜃, we have a twist: 𝜉 =
𝜔
𝑣

=
ҧ𝑠 ሶ𝜃

− ҧ𝑠 ሶ𝜃 × 𝑞 + ℎ ҧ𝑠 ሶ𝜃
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Proof: Given መ𝜉 ∈ 𝑠𝑒 3 and 𝜃 ∈ ℝ, the exponential 𝑒
෠𝜉𝜃 ∈ 𝑆𝐸 3

• If 𝜔 = 𝟎:

෠𝝃 =
ෝ𝜔 𝑣
0 0

=
𝟎 𝑣
0 0

⇒ መ𝜉2 = መ𝜉3 =
𝟎 𝟎
0 0
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Proof: Given መ𝜉 ∈ 𝑠𝑒 3 and 𝜃 ∈ ℝ, the exponential 𝑒
෠𝜉𝜃 ∈ 𝑆𝐸 3

• If 𝜔 = 𝟎:

෠𝝃 =
ෝ𝜔 𝑣
0 0

=
𝟎 𝑣
0 0

⇒ መ𝜉2 = መ𝜉3 =
𝟎 𝟎
0 0

𝑒
෠𝝃𝜃 = 𝐼 + 𝜃෠𝝃 +

𝜃2

2!
෠𝝃2 +

𝜃3

3!
෠𝝃3 +⋯ = 𝐼 + 𝜃෠𝝃 =

𝑰 𝒗𝜃
0 0
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Proof: Given መ𝜉 ∈ 𝑠𝑒 3 and 𝜃 ∈ ℝ, the exponential 𝑒
෠𝜉𝜃 ∈ 𝑆𝐸 3

• If 𝜔 ≠ 𝟎:

First, we assume ෝ𝜔 = 1 and we can scale 𝜃 appropriately

Next, we define a rigid transformation 𝑔 =
𝐼 ෝ𝜔𝑣
0 1
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Proof: Given መ𝜉 ∈ 𝑠𝑒 3 and 𝜃 ∈ ℝ, the exponential 𝑒
෠𝜉𝜃 ∈ 𝑆𝐸 3

• If 𝜔 ≠ 𝟎:

First, we assume ෝ𝜔 = 1 and we can scale 𝜃 appropriately

Next, we define a rigid transformation 𝑔 =
𝐼 ෝ𝜔𝑣
0 1

Let ෡𝜉′ = 𝑔−1 መ𝜉𝑔 =
𝐼 −ෝ𝜔𝑣
0 1

ෝ𝜔 𝑣
0 0

𝐼 ෝ𝜔𝑣
0 1

=
ෝ𝜔 𝑣
0 0

𝐼 ෝ𝜔𝑣
0 1

=
ෝ𝜔 ෝ𝜔ෝ𝜔𝑣 + 𝑣
0 0
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Proof: Given መ𝜉 ∈ 𝑠𝑒 3 and 𝜃 ∈ ℝ, the exponential 𝑒
෠𝜉𝜃 ∈ 𝑆𝐸 3

• If 𝜔 ≠ 𝟎:

First, we assume ෝ𝜔 = 1 and we can scale 𝜃 appropriately

Next, we define a rigid transformation 𝑔 =
𝐼 ෝ𝜔𝑣
0 1

Let ෡𝜉′ = 𝑔−1 መ𝜉𝑔 =
𝐼 −ෝ𝜔𝑣
0 1

ෝ𝜔 𝑣
0 0

𝐼 ෝ𝜔𝑣
0 1

=
ෝ𝜔 𝑣
0 0

𝐼 ෝ𝜔𝑣
0 1

=
ෝ𝜔 ෝ𝜔ෝ𝜔𝑣 + 𝑣
0 0

= ෝ𝜔 𝜔𝜔⊺𝑣 − 𝑣𝜔⊺𝜔 + 𝑣
0 0

= ෝ𝜔 𝜔𝜔⊺𝑣
0 0

𝑎 × 𝑏 × 𝑐
= 𝑏 𝑎 ∙ 𝑐 − 𝑐 𝑎 ∙ 𝑏
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Proof: Given መ𝜉 ∈ 𝑠𝑒 3 and 𝜃 ∈ ℝ, the exponential 𝑒
෠𝜉𝜃 ∈ 𝑆𝐸 3

• If 𝜔 ≠ 𝟎:

First, we assume ෝ𝜔 = 1 and we can scale 𝜃 appropriately

Next, we define a rigid transformation 𝑔 =
𝐼 ෝ𝜔𝑣
0 1

Let ෡𝜉′ = 𝑔−1 መ𝜉𝑔 =
𝐼 −ෝ𝜔𝑣
0 1

ෝ𝜔 𝑣
0 0

𝐼 ෝ𝜔𝑣
0 1

=
ෝ𝜔 𝑣
0 0

𝐼 ෝ𝜔𝑣
0 1

=
ෝ𝜔 ෝ𝜔ෝ𝜔𝑣 + 𝑣
0 0

= ෝ𝜔 𝜔𝜔⊺𝑣 − 𝑣𝜔⊺𝜔 + 𝑣
0 0

= ෝ𝜔 𝜔𝜔⊺𝑣
0 0

𝑎 × 𝑏 × 𝑐
= 𝑏 𝑎 ∙ 𝑐 − 𝑐 𝑎 ∙ 𝑏

ℏ
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Proof: Given መ𝜉 ∈ 𝑠𝑒 3 and 𝜃 ∈ ℝ, the exponential 𝑒
෠𝜉𝜃 ∈ 𝑆𝐸 3

• If 𝜔 ≠ 𝟎:

First, we assume ෝ𝜔 = 1 and we can scale 𝜃 appropriately

Next, we define a rigid transformation 𝑔 =
𝐼 ෝ𝜔𝑣
0 1

Let ෡𝜉′ = 𝑔−1 መ𝜉𝑔 =
𝐼 −ෝ𝜔𝑣
0 1

ෝ𝜔 𝑣
0 0

𝐼 ෝ𝜔𝑣
0 1

=
ෝ𝜔 𝑣
0 0

𝐼 ෝ𝜔𝑣
0 1

=
ෝ𝜔 ෝ𝜔ෝ𝜔𝑣 + 𝑣
0 0

= ෝ𝜔 𝜔𝜔⊺𝑣 − 𝑣𝜔⊺𝜔 + 𝑣
0 0

= ෝ𝜔 𝜔𝜔⊺𝑣
0 0

𝑎 × 𝑏 × 𝑐
= 𝑏 𝑎 ∙ 𝑐 − 𝑐 𝑎 ∙ 𝑏

ℏ

What’s next?  We are going 

to derive 𝑒
෠𝝃𝜃 from 𝑒𝑔

෡𝝃′𝜃𝑔−1
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Proof: Given መ𝜉 ∈ 𝑠𝑒 3 and 𝜃 ∈ ℝ, the exponential 𝑒
෠𝜉𝜃 ∈ 𝑆𝐸 3

• Before continuing the proof, we first show that for any invertible matrix 

𝑔 ∈ ℝ𝑛×𝑛 and a matrix Λ ∈ ℝ𝑛×𝑛, we have 𝑒𝑔Λ𝑔
−1
= 𝑔𝑒Λ𝑔−1

∵ 𝑒Λ = 𝐼 + Λ +
Λ2

2!
+
Λ3

3!
+ ⋯

∴ 𝑒𝑔Λ𝑔
−1
= 𝐼 + 𝑔Λ𝑔−1 +

𝑔Λ𝑔−1𝑔Λ𝑔−1

2!
+
𝑔Λ𝑔−1𝑔Λ𝑔−1𝑔Λ𝑔−1

3!
+ ⋯

= 𝐼 + 𝑔Λ𝑔−1 +
𝑔Λ2𝑔−1

2!
+
𝑔Λ3𝑔−1

3!
+⋯

= 𝑔𝑔−1 + 𝑔Λ𝑔−1 +
𝑔Λ2𝑔−1

2!
+
𝑔Λ3𝑔−1

3!
+ ⋯ = 𝑔𝑒Λ𝑔−1
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Proof: Given መ𝜉 ∈ 𝑠𝑒 3 and 𝜃 ∈ ℝ, the exponential 𝑒
෠𝜉𝜃 ∈ 𝑆𝐸 3

• We have 𝑒
෠𝝃𝜃 = 𝑒𝑔

෡𝝃′𝜃𝑔−1 = 𝑔𝑒
෡𝝃′𝜃𝑔−1

• What’s 𝑒
෡𝝃′𝜃?

First, we know ෝ𝜔𝜔 = 𝜔 × 𝜔 = 0

Second, we know ෡𝝃′
2
=

ෝ𝜔 𝜔ℏ 
0 0

ෝ𝜔 𝜔ℏ 
0 0

= ෝ𝜔2 ෝ𝜔𝜔ℏ 
0 0

= ෝ𝜔2 0 
0 0

෡𝝃′
3
= ෝ𝜔3 0 

0 0
…

𝑒
෡𝝃′𝜃 = 𝐼 + 𝜃෡𝝃′ +

𝜃2

2!
෡𝝃′
2
+
𝜃3

3!
෡𝝃′
3
+⋯ = 𝐼 + ෝ𝜔𝜃2

2!
+ ෝ𝜔𝜃3

3!
+⋯ 𝜔ℏ𝜃 + 0 +⋯  

0 1
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Proof: Given መ𝜉 ∈ 𝑠𝑒 3 and 𝜃 ∈ ℝ, the exponential 𝑒
෠𝜉𝜃 ∈ 𝑆𝐸 3

• We have 𝑒
෠𝝃𝜃 = 𝑒𝑔

෡𝝃′𝜃𝑔−1 = 𝑔𝑒
෡𝝃′𝜃𝑔−1

• What’s 𝑒
෠𝝃𝜃?

𝑒
෡𝝃′𝜃 = 𝐼 + ෝ𝜔2

2!
+ ෝ𝜔3

3!
+⋯ 𝜔ℏ𝜃 + 0 +⋯  

0 1
= 𝑒 ෝ𝜔𝜃 𝜔ℏ𝜃

0 1

Let’s put everything together

𝑒
෠𝝃𝜃 = 𝑒 ෝ𝜔𝜃 𝐼 − 𝑒 ෝ𝜔𝜃 ෝ𝜔𝑣 + 𝜔𝜔⊺𝑣𝜃

0 1
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Proof: Given መ𝜉 ∈ 𝑠𝑒 3 and 𝜃 ∈ ℝ, the exponential 𝑒
෠𝜉𝜃 ∈ 𝑆𝐸 3

• We have 𝑒
෠𝝃𝜃 = 𝑒𝑔

෡𝝃′𝜃𝑔−1 = 𝑔𝑒
෡𝝃′𝜃𝑔−1

• What’s 𝑒
෠𝝃𝜃?

𝑒
෡𝝃′𝜃 = 𝐼 + ෝ𝜔2

2!
+ ෝ𝜔3

3!
+⋯ 𝜔ℏ𝜃 + 0 +⋯  

0 1
= 𝑒 ෝ𝜔𝜃 𝜔ℏ𝜃

0 1

Let’s put everything together

𝑒
෠𝝃𝜃 = 𝑒 ෝ𝜔𝜃 𝐼 − 𝑒 ෝ𝜔𝜃 ෝ𝜔𝑣 + 𝜔𝜔⊺𝑣𝜃

0 1

𝑆𝑂 3
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What Do We Need to Show?

• Given መ𝜉 ∈ 𝑠𝑒 3 and 𝜃 ∈ ℝ, the exponential 𝑒
෠𝜉𝜃 ∈ 𝑆𝐸 3

• With 𝒮 = 𝑞, ҧ𝑠, ℎ and ሶ𝜃, we have a twist: 𝜉 =
𝜔
𝑣

=
ҧ𝑠 ሶ𝜃

− ҧ𝑠 ሶ𝜃 × 𝑞 + ℎ ҧ𝑠 ሶ𝜃



67

Proof: With 𝒮 = 𝑞, ҧ𝑠, ℎ and ሶ𝜃, we have a twist: 𝜉 =
𝜔
𝑣

=
ҧ𝑠 ሶ𝜃

− ҧ𝑠 ሶ𝜃 × 𝑞 + ℎ ҧ𝑠 ሶ𝜃

• Let’s write down the rigid motion 
from point 𝑝 to g 𝑝 = 𝑝′′:

𝑝′

𝑝′′
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Proof: With 𝒮 = 𝑞, ҧ𝑠, ℎ and ሶ𝜃, we have a twist: 𝜉 =
𝜔
𝑣

=
ҧ𝑠 ሶ𝜃

− ҧ𝑠 ሶ𝜃 × 𝑞 + ℎ ҧ𝑠 ሶ𝜃

• Let’s write down the rigid motion 
from point 𝑝 to g 𝑝 = 𝑝′′:

𝑝′ = 𝑞 + 𝑒 ෝ𝜔𝜃 𝑝 − 𝑞

𝑝′′ = 𝑝′ +𝜔ℎ𝜃

g 𝑝 = 𝑞 + 𝑒 ෝ𝜔𝜃 𝑝 − 𝑞 + 𝜔ℎ𝜃

⇒ g
𝑝
1

= 𝑒 ෝ𝜔𝜃 𝐼 − 𝑒 ෝ𝜔𝜃 𝑞 + 𝜔ℎ𝜃

0 1

𝑝
1
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Proof: With 𝒮 = 𝑞, ҧ𝑠, ℎ and ሶ𝜃, we have a twist: 𝜉 =
𝜔
𝑣

=
ҧ𝑠 ሶ𝜃

− ҧ𝑠 ሶ𝜃 × 𝑞 + ℎ ҧ𝑠 ሶ𝜃

• Let’s write down the rigid motion 
from point 𝑝 to g 𝑝 = 𝑝′′:

𝑝′ = 𝑞 + 𝑒 ෝ𝜔𝜃 𝑝 − 𝑞

𝑝′′ = 𝑝′ +𝜔ℎ𝜃

g 𝑝 = 𝑞 + 𝑒 ෝ𝜔𝜃 𝑝 − 𝑞 + 𝜔ℎ𝜃

⇒ g
𝑝
1

= 𝑒 ෝ𝜔𝜃 𝐼 − 𝑒 ෝ𝜔𝜃 𝑞 + 𝜔ℎ𝜃

0 1

𝑝
1

• We know:

𝑒
෠𝝃𝜃 = 𝑒 ෝ𝜔𝜃 𝐼 − 𝑒 ෝ𝜔𝜃 ෝ𝜔𝑣 + 𝜔𝜔⊺𝑣𝜃

0 1

Equivalent if 𝑣 = −𝜔 × 𝑞 + 𝜔ℎ



70

Example: Revolute Joint

• The joint only rotates ℎ = 0 at 𝑞 =
0
𝑙1
0

• Rotation axis: 𝜔 =
0
0
1

• We have 𝑣 = −𝜔 × 𝑞 + 𝜔ℎ =
𝑙1
0
0

• We have twist 𝝃 =
𝜔
𝑣
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Example: Revolute Joint

• The exponential:

𝑒
෠𝝃𝜃 = 𝑒 ෝ𝜔𝜃 𝐼 − 𝑒 ෝ𝜔𝜃 ෝ𝜔𝑣 + 𝜔𝜔⊺𝑣𝜃

0 1

=

cos 𝜃 −sin 𝜃
sin 𝜃 cos 𝜃

0 𝑙1 sin 𝜃

0 𝑙1 1 − cos 𝜃
0 0
0 0

1 0
0 1
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Previously, We Discussed Inverse Kinematic

• Connecting a twist and joint angles in linear forms:

𝜉𝑆

𝜉𝑆
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Association of Velocities of a Rigid Body at 
Different Coordinate Frames

• Rotational velocity: we know 𝑞𝑎 𝑡 = 𝑅𝑏
𝑎𝑞𝑏 𝑡

𝑑𝑞𝑎 𝑡

𝑑𝑡
=
𝑑𝑅𝑏

𝑎

𝑑𝑡
𝑞𝑏 𝑡 + 𝑅𝑏

𝑎 𝑑𝑞𝑏 𝑡

𝑑𝑡

𝑞𝑏 𝑡

ሶ𝑅𝑏
𝑎
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Association of Velocities of a Rigid Body at 
Different Coordinate Frames

𝑞𝑏 𝑡
• Rotational velocity: we know 𝑞𝑎 𝑡 = 𝑅𝑏

𝑎𝑞𝑏 𝑡

𝑑𝑞𝑎 𝑡

𝑑𝑡
= ሶ𝑅𝑏

𝑎𝑞𝑏 𝑡

1.
𝑑𝑞𝑎 𝑡

𝑑𝑡
= ሶ𝑅𝑏

𝑎𝑞𝑏 𝑡 = ሶ𝑅𝑏
𝑎𝑅𝑏

𝑎−1𝑅𝑏
𝑎𝑞𝑏 𝑡

= ሶ𝑅𝑏
𝑎𝑅𝑏

𝑎−1𝑞𝑎 𝑡

ෝ𝜔𝑎𝑏
𝑠 : instantaneous angular velocity of 

the object seen from Spatial (A) frame
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Association of Velocities of a Rigid Body at 
Different Coordinate Frames

𝑞𝑏 𝑡
• Rotational velocity: we know 𝑞𝑎 𝑡 = 𝑅𝑏

𝑎𝑞𝑏 𝑡

𝑑𝑞𝑎 𝑡

𝑑𝑡
= ሶ𝑅𝑏

𝑎𝑞𝑏 𝑡

1.
𝑑𝑞𝑎 𝑡

𝑑𝑡
= ሶ𝑅𝑏

𝑎𝑅𝑏
𝑎−1𝑞𝑎 𝑡 = ෝ𝜔𝑎𝑏

𝑠 𝑞𝑎 𝑡

2.
𝑑𝑞𝑎 𝑡

𝑑𝑡
= ሶ𝑅𝑏

𝑎𝑞𝑏 𝑡 = 𝑅𝑏
𝑎𝑅𝑏

𝑎−1 ሶ𝑅𝑏
𝑎𝑞𝑏 𝑡

ෝ𝜔𝑎𝑏
𝑏 : instantaneous angular velocity of the 

object seen from instantaneous body 
frame coincided with B frame at time t
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Association of Velocities of a Rigid Body at 
Different Coordinate Frames

𝑞𝑏 𝑡
• Rotational velocity: we know 𝑞𝑎 𝑡 = 𝑅𝑏

𝑎𝑞𝑏 𝑡

𝑑𝑞𝑎 𝑡

𝑑𝑡
= ሶ𝑅𝑏

𝑎𝑞𝑏 𝑡

1.
𝑑𝑞𝑎 𝑡

𝑑𝑡
= ሶ𝑅𝑏

𝑎𝑅𝑏
𝑎−1𝑞𝑎 𝑡 = ෝ𝜔𝑎𝑏

𝑠 𝑞𝑎 𝑡

2.
𝑑𝑞𝑎 𝑡

𝑑𝑡
= 𝑅𝑏

𝑎𝑅𝑏
𝑎−1 ሶ𝑅𝑏

𝑎𝑞𝑏 𝑡 = 𝑅𝑏
𝑎 ෝ𝜔𝑎𝑏

𝑏 𝑞𝑏 𝑡

• We can associate angular velocity observed at 
the spatial and body frame:

ෝ𝜔𝑎𝑏
𝑏 = 𝑅𝑏

𝑎−1 ෝ𝜔𝑎𝑏
𝑠 𝑅𝑏

𝑎
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Association of Velocities of a Rigid Body at 
Different Coordinate Frames

• Rigid body velocity: 

rigid motion: 𝑔𝑏
𝑎 =

𝑅𝑏
𝑎 𝑝𝑏

𝑎

0 1

we know 
𝑞𝑎 𝑡
1

= 𝑔𝑏
𝑎 𝑞𝑏 𝑡

1
⇒ ෤𝑞𝑎 𝑡 = 𝑔𝑏

𝑎 ෤𝑞𝑏 𝑡

we obtain twist observed at the spatial frame:

𝑑 ෤𝑞𝑎 𝑡

𝑑𝑡
= ሶ𝑔𝑏

𝑎 ෤𝑞𝑏 𝑡
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Association of Velocities of a Rigid Body at 
Different Coordinate Frames

• Rigid body velocity: 

rigid motion: 𝑔𝑏
𝑎 =

𝑅𝑏
𝑎 𝑝𝑏

𝑎

0 1

we know 
𝑞𝑎 𝑡
1

= 𝑔𝑏
𝑎 𝑞𝑏 𝑡

1
⇒ ෤𝑞𝑎 𝑡 = 𝑔𝑏

𝑎 ෤𝑞𝑏 𝑡

we obtain twist observed at the spatial frame:

𝑑 ෤𝑞𝑎 𝑡

𝑑𝑡
= ሶ𝑔𝑏

𝑎 ෤𝑞𝑏 𝑡 = ሶ𝑔𝑏
𝑎𝑔𝑏

𝑎−1𝑔𝑏
𝑎 ෤𝑞𝑏 𝑡 = ሶ𝑔𝑏

𝑎𝑔𝑏
𝑎−1 ෤𝑞𝑎 𝑡

መ𝜉𝑎𝑏
𝑠 : instantaneous twist of the object 

seen from spatial (A) frame at time t
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Association of Velocities of a Rigid Body at 
Different Coordinate Frames

• Rigid body velocity: 

rigid motion: 𝑔𝑏
𝑎 =

𝑅𝑏
𝑎 𝑝𝑏

𝑎

0 1

The twist observed at the spatial frame:

መ𝜉𝑎𝑏
𝑠 = ሶ𝑔𝑏

𝑎𝑔𝑏
𝑎−1 =

ሶ𝑅𝑏
𝑎𝑅𝑏

𝑎−1 − ሶ𝑅𝑏
𝑎𝑅𝑏

𝑎−1𝑝𝑏
𝑎 + ሶ𝑝𝑏

𝑎

0 0
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Association of Velocities of a Rigid Body at 
Different Coordinate Frames

• Rigid body velocity: 

rigid motion: 𝑔𝑏
𝑎 =

𝑅𝑏
𝑎 𝑝𝑏

𝑎

0 1

The twist observed at the spatial frame:

መ𝜉𝑎𝑏
𝑠 = ሶ𝑔𝑏

𝑎𝑔𝑏
𝑎−1 =

ሶ𝑅𝑏
𝑎𝑅𝑏

𝑎−1 − ሶ𝑅𝑏
𝑎𝑅𝑏

𝑎−1𝑝𝑏
𝑎 + ሶ𝑝𝑏

𝑎

0 0

𝑣𝑎𝑏
𝑠 : not the velocity of the body frame, but the 

instantaneous velocity of the point on an 
infinitely large body currently at the origin of 
the spatial (A) frame

ෝ𝜔𝑎𝑏
𝑠
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Association of Velocities of a Rigid Body at 
Different Coordinate Frames

• Rigid body velocity: 

rigid motion: 𝑔𝑏
𝑎 =

𝑅𝑏
𝑎 𝑝𝑏

𝑎

0 1

The twist observed at the body frame:

መ𝜉𝑎𝑏
𝑏 = 𝑔𝑏

𝑎−1 ሶ𝑔𝑏
𝑎 = 𝑅𝑏

𝑎−1 ሶ𝑅𝑏
𝑎 𝑅𝑏

𝑎−1 ሶ𝑝𝑏
𝑎

0 0
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Association of Velocities of a Rigid Body at 
Different Coordinate Frames

• Rigid body velocity: 

rigid motion: 𝑔𝑏
𝑎 =

𝑅𝑏
𝑎 𝑝𝑏

𝑎

0 1

The twist observed at the body frame:

መ𝜉𝑎𝑏
𝑏 = 𝑔𝑏

𝑎−1 ሶ𝑔𝑏
𝑎 = 𝑅𝑏

𝑎−1 ሶ𝑅𝑏
𝑎 𝑅𝑏

𝑎−1 ሶ𝑝𝑏
𝑎

0 0

𝑣𝑎𝑏
𝑏 : the instantaneous velocity at the body 

frame
ෝ𝜔𝑎𝑏
𝑏
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Association of Velocities of a Rigid Body at 
Different Coordinate Frames

• The twist observed at the body frame: መ𝜉𝑎𝑏
𝑏

• The twist observed at the spatial frame: መ𝜉𝑎𝑏
𝑠

• The association of twist between these two frames: መ𝜉𝑎𝑏
𝑠 = 𝑔𝑏

𝑎 መ𝜉𝑎𝑏
𝑏 𝑔𝑏

𝑎−1
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Association of Velocities of a Rigid Body at 
Different Coordinate Frames

• The twist observed at the body frame: መ𝜉𝑎𝑏
𝑏

• The twist observed at the spatial frame: መ𝜉𝑎𝑏
𝑠

• The association of twist between these two frames: መ𝜉𝑎𝑏
𝑠 = 𝑔𝑏

𝑎 መ𝜉𝑎𝑏
𝑏 𝑔𝑏

𝑎−1

⇒
ෝ𝜔𝑎𝑏
𝑠 𝑣𝑎𝑏

𝑠

0 0
=

𝑅𝑏
𝑎 𝑝𝑏

𝑎

0 1
ෝ𝜔𝑎𝑏
𝑏 𝑣𝑎𝑏

𝑏

0 0
𝑅𝑏
𝑎−1 −𝑅𝑏

𝑎−1𝑝𝑏
𝑎

0 1

⇒
ෝ𝜔𝑎𝑏
𝑠 𝑣𝑎𝑏

𝑠

0 0
= 𝑅𝑏

𝑎 ෝ𝜔𝑎𝑏
𝑏 𝑅𝑏

𝑎−1 −𝑅𝑏
𝑎 ෝ𝜔𝑎𝑏

𝑏 𝑅𝑏
𝑎−1𝑝𝑏

𝑎 + 𝑅𝑏
𝑎𝑣𝑎𝑏

𝑏

0 1
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Association of Velocities of a Rigid Body at 
Different Coordinate Frames

• We have:

ෝ𝜔𝑎𝑏
𝑠 = 𝑅𝑏

𝑎 ෝ𝜔𝑎𝑏
𝑏 𝑅𝑏

𝑎−1

𝑣𝑎𝑏
𝑠 = −𝑅𝑏

𝑎 ෝ𝜔𝑎𝑏
𝑏 𝑅𝑏

𝑎−1𝑝𝑏
𝑎 + 𝑅𝑏

𝑎𝑣𝑎𝑏
𝑏
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Association of Velocities of a Rigid Body at 
Different Coordinate Frames

• First, we know given any 𝑢 ∈ ℝ3 and R ∈ 𝑆𝑂 3 , the following always holds:

𝑅ො𝑢𝑅−1 = ෢𝑅𝑢

Proof. Letting 𝑟𝑖
⊺ denotes the 𝑖-th row of 𝑅

𝑅ො𝑢𝑅−1 =

𝑟1
⊺ 𝑢 × 𝑟1 𝑟1

⊺ 𝑢 × 𝑟2 𝑟1
⊺ 𝑢 × 𝑟3

𝑟2
⊺ 𝑢 × 𝑟2 𝑟2

⊺ 𝑢 × 𝑟2 𝑟2
⊺ 𝑢 × 𝑟3

𝑟3
⊺ 𝑢 × 𝑟3 𝑟3

⊺ 𝑢 × 𝑟2 𝑟3
⊺ 𝑢 × 𝑟3

=

0 −𝑟3
⊺𝑢 𝑟2

⊺𝑢

𝑟3
⊺𝑢 0 −𝑟1

⊺𝑢

−𝑟2
⊺𝑢 𝑟1

⊺𝑢 0

= ෢𝑅𝑢

𝑎⊺ 𝑏 × 𝑐 = 𝑏⊺ 𝑐 × 𝑎
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Association of Velocities of a Rigid Body at 
Different Coordinate Frames

• As a result:

ෝ𝜔𝑎𝑏
𝑠 = 𝑅𝑏

𝑎 ෝ𝜔𝑎𝑏
𝑏 𝑅𝑏

𝑎−1 ⇒ ෝ𝜔𝑎𝑏
𝑠 = ෣𝑅𝑏

𝑎𝜔𝑎𝑏
𝑎 ⇒ 𝜔𝑎𝑏

𝑠 = 𝑅𝑏
𝑎𝜔𝑎𝑏

𝑎
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Association of Velocities of a Rigid Body at 
Different Coordinate Frames

• As a result:

ෝ𝜔𝑎𝑏
𝑠 = 𝑅𝑏

𝑎 ෝ𝜔𝑎𝑏
𝑏 𝑅𝑏

𝑎−1 ⇒ ෝ𝜔𝑎𝑏
𝑠 = ෣𝑅𝑏

𝑎𝜔𝑎𝑏
𝑎 ⇒ 𝜔𝑎𝑏

𝑠 = 𝑅𝑏
𝑎𝜔𝑎𝑏

𝑎

• Also:

𝑣𝑎𝑏
𝑠 = −𝑅𝑏

𝑎 ෝ𝜔𝑎𝑏
𝑏 𝑅𝑏

𝑎−1𝑝𝑏
𝑎 + 𝑅𝑏

𝑎𝑣𝑎𝑏
𝑏 = −ෝ𝜔𝑎𝑏

𝑠 𝑝𝑏
𝑎 + 𝑅𝑏

𝑎𝑣𝑎𝑏
𝑏
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Association of Velocities of a Rigid Body at 
Different Coordinate Frames

• As a result:

ෝ𝜔𝑎𝑏
𝑠 = 𝑅𝑏

𝑎 ෝ𝜔𝑎𝑏
𝑏 𝑅𝑏

𝑎−1 ⇒ ෝ𝜔𝑎𝑏
𝑠 = ෣𝑅𝑏

𝑎𝜔𝑎𝑏
𝑎 ⇒ 𝜔𝑎𝑏

𝑠 = 𝑅𝑏
𝑎𝜔𝑎𝑏

𝑎

• Also:

𝑣𝑎𝑏
𝑠 = −𝑅𝑏

𝑎 ෝ𝜔𝑎𝑏
𝑏 𝑅𝑏

𝑎−1𝑝𝑏
𝑎 + 𝑅𝑏

𝑎𝑣𝑎𝑏
𝑏 = −ෝ𝜔𝑎𝑏

𝑠 𝑝𝑏
𝑎 + 𝑅𝑏

𝑎𝑣𝑎𝑏
𝑏

= Ƹ𝑝𝑎𝑏
𝑠 𝜔𝑏

𝑎 + 𝑅𝑏
𝑎𝑣𝑎𝑏

𝑏 = Ƹ𝑝𝑎𝑏
𝑠 𝑅𝑏

𝑎𝜔𝑎𝑏
𝑎 + 𝑅𝑏

𝑎𝑣𝑎𝑏
𝑏

𝑎 × 𝑏
= −𝑏 × 𝑎

⇒ ො𝑎𝑏 = −෠𝑏𝑎
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Association of Velocities of a Rigid Body at 
Different Coordinate Frames

• We have:

𝜔𝑎𝑏
𝑠 = 𝑅𝑏

𝑎𝜔𝑎𝑏
𝑎

𝑣𝑎𝑏
𝑠 = Ƹ𝑝𝑎𝑏

𝑠 𝑅𝑏
𝑎𝜔𝑎𝑏

𝑎 + 𝑅𝑏
𝑎𝑣𝑎𝑏

𝑏

• Rewrite in a matrix form:

𝜔𝑎𝑏
𝑠

𝑣𝑎𝑏
𝑠 =

𝑅𝑏
𝑎 0

Ƹ𝑝𝑎𝑏
𝑠 𝑅𝑏

𝑎 𝑅𝑏
𝑎

𝜔𝑎𝑏
𝑏

𝑣𝑎𝑏
𝑏

Ad𝑔: adjoint transformation for 𝑔𝑎𝑏
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For any 𝑔 ∈ 𝑆𝐸 3 and መ𝜉 ∈ 𝑠𝑒 3 , 𝑔 መ𝜉𝑔−1 ∈ 𝑠𝑒 3 is 
a twist with twist coordinate Ad𝑔𝜉

• We have መ𝜉 =
ෝ𝜔 𝑣
0 0

∈ 𝑠𝑒 3 with the twist coordinate 𝜉 =
𝜔
𝑣

• We have:

𝑔 መ𝜉𝑔−1 =
𝑅 𝑝
0 1

ෝ𝜔 𝑣
0 0

𝑅−1 −𝑅−1𝑝
0 1
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For any 𝑔 ∈ 𝑆𝐸 3 and መ𝜉 ∈ 𝑠𝑒 3 , 𝑔 መ𝜉𝑔−1 ∈ 𝑠𝑒 3 is 
a twist with twist coordinate Ad𝑔𝜉

• We have:

𝑔 መ𝜉𝑔−1 =
𝑅 𝑝
0 1

ෝ𝜔 𝑣
0 0

𝑅−1 −𝑅−1𝑝
0 1

=
𝑅ෝ𝜔 𝑅𝑣
0 0

𝑅−1 −𝑅−1𝑝
0 1

= 𝑅ෝ𝜔𝑅−1 −𝑅ෝ𝜔𝑅−1𝑝 + 𝑅𝑣
0 0
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For any 𝑔 ∈ 𝑆𝐸 3 and መ𝜉 ∈ 𝑠𝑒 3 , 𝑔 መ𝜉𝑔−1 ∈ 𝑠𝑒 3 is 
a twist with twist coordinate Ad𝑔𝜉

• We have:

𝑔 መ𝜉𝑔−1 =
𝑅 𝑝
0 1

ෝ𝜔 𝑣
0 0

𝑅−1 −𝑅−1𝑝
0 1

=
𝑅ෝ𝜔 𝑅𝑣
0 0

𝑅−1 −𝑅−1𝑝
0 1

= 𝑅ෝ𝜔𝑅−1 −𝑅ෝ𝜔𝑅−1𝑝 + 𝑅𝑣
0 0

=
෢𝑅𝜔 −෢𝑅𝜔𝑝 + 𝑅𝑣
0 0

∈ 𝑠𝑒 3
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For any 𝑔 ∈ 𝑆𝐸 3 and መ𝜉 ∈ 𝑠𝑒 3 , 𝑔 መ𝜉𝑔−1 ∈ 𝑠𝑒 3 is 
a twist with twist coordinate Ad𝑔𝜉

• We have መ𝜉 =
ෝ𝜔 𝑣
0 0

∈ 𝑠𝑒 3 with the twist coordinate 𝜉 =
𝜔
𝑣

• We have: 𝑔 መ𝜉𝑔−1 =
෢𝑅𝜔 −෢𝑅𝜔𝑝 + 𝑅𝑣
0 0

∈ 𝑠𝑒 3

• The twist coordinate:

𝑅𝜔
−෢𝑅𝜔𝑝 + 𝑅𝑣

=
𝑅𝜔

Ƹ𝑝𝑅𝜔 + 𝑅𝑣
=

𝑅 0
Ƹ𝑝𝑅 𝑅

𝜔
𝑣

= Ad𝑔𝜉
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Previously, We Discussed Inverse Kinematic

• Connecting a twist and joint angles in linear forms:

𝜉𝑆

𝜉𝑆



Product of Exponential for an N-Link Open Chain

96Modern Robotics. K. M. Lynch and F. C. Park.

• Spatial transformation of the 
open chain:

𝑇 𝜃1, 𝜃2, … , 𝜃𝑛 = 𝑒
෠𝜉1𝜃1𝑒

෠𝜉2𝜃2 …𝑒
෠𝜉𝑛𝜃𝑛𝑀



Product of Exponential for an N-Link Open Chain

97Modern Robotics. K. M. Lynch and F. C. Park.

• Spatial transformation of the open 
chain:

𝑇 𝜃1, 𝜃2, … , 𝜃𝑛 = 𝑒
෠𝜉1𝜃1𝑒

෠𝜉2𝜃2 …𝑒
෠𝜉𝑛𝜃𝑛𝑀

• The twist of the spatial transformation 
(check page 78):

መ𝜉𝑠 = ሶ𝑇𝑇−1



Product of Exponential for an N-Link Open Chain

98Modern Robotics. K. M. Lynch and F. C. Park.

• The inverse of the spatial transformation:

𝑇−1 = 𝑀−1𝑒−
෠𝜉𝑛𝜃𝑛 …𝑒−

෠𝜉2𝜃2𝑒−
෠𝜉1𝜃1

• The derivative of the transformation:

ሶ𝑇 =
𝑑𝑒

෠𝜉1𝜃1

𝑑𝑡
𝑒
෠𝜉2𝜃2 …𝑒

෠𝜉𝑛𝜃𝑛𝑀 + 𝑒
෠𝜉1𝜃1

𝑑𝑒
෠𝜉2𝜃2

𝑑𝑡
…𝑒

෠𝜉𝑛𝜃𝑛𝑀 +⋯

= መ𝜉1 ሶ𝜃1𝑒
෠𝜉1𝜃1𝑒

෠𝜉2𝜃2 …𝑒
෠𝜉𝑛𝜃𝑛𝑀 + 𝑒

෠𝜉1𝜃1 መ𝜉2 ሶ𝜃2𝑒
෠𝜉2𝜃2 …𝑒

෠𝜉𝑛𝜃𝑛𝑀 +⋯
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• The inverse of the spatial transformation:

𝑇−1 = 𝑀−1𝑒−
෠𝜉𝑛𝜃𝑛 …𝑒−

෠𝜉2𝜃2𝑒−
෠𝜉1𝜃1

• The derivative of the transformation:

ሶ𝑇 =
𝑑𝑒

෠𝜉1𝜃1

𝑑𝑡
𝑒
෠𝜉2𝜃2 …𝑒

෠𝜉𝑛𝜃𝑛𝑀 + 𝑒
෠𝜉1𝜃1

𝑑𝑒
෠𝜉2𝜃2

𝑑𝑡
…𝑒

෠𝜉𝑛𝜃𝑛𝑀 +⋯

= መ𝜉1 ሶ𝜃1𝑒
෠𝜉1𝜃1𝑒

෠𝜉2𝜃2 …𝑒
෠𝜉𝑛𝜃𝑛𝑀 + 𝑒

෠𝜉1𝜃1 መ𝜉2 ሶ𝜃2𝑒
෠𝜉2𝜃2 …𝑒

෠𝜉𝑛𝜃𝑛𝑀 +⋯

• The twist of the spatial transformation (check page 78):

መ𝜉𝑠 = ሶ𝑇𝑇−1 = መ𝜉1 ሶ𝜃1 + 𝑒
෠𝜉1𝜃1 መ𝜉2 ሶ𝜃2𝑒

−෠𝜉1𝜃1 + 𝑒
෠𝜉1𝜃1𝑒

෠𝜉2𝜃2 መ𝜉3 ሶ𝜃3𝑒
−෠𝜉2𝜃2𝑒−

෠𝜉1𝜃1 +⋯
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• The twist of the spatial transformation:

መ𝜉𝑠 = ሶ𝑇𝑇−1 = መ𝜉1 ሶ𝜃1 + 𝑒
෠𝜉1𝜃1 መ𝜉2 ሶ𝜃2𝑒

−෠𝜉1𝜃1 + 𝑒
෠𝜉1𝜃1𝑒

෠𝜉2𝜃2 መ𝜉3 ሶ𝜃3𝑒
−෠𝜉2𝜃2𝑒−

෠𝜉1𝜃1 +⋯

= መ𝜉1 ሶ𝜃1 + 𝑒
෠𝜉1𝜃1 መ𝜉2𝑒

−෠𝜉1𝜃1 ሶ𝜃2 + 𝑒
෠𝜉1𝜃1𝑒

෠𝜉2𝜃2 መ𝜉3𝑒
−෠𝜉2𝜃2𝑒−

෠𝜉1𝜃1 ሶ𝜃3 +⋯

For any 𝑔 ∈ 𝑆𝐸 3 and መ𝜉 ∈ 𝑠𝑒 3 , 𝑔 መ𝜉𝑔−1 ∈ 𝑠𝑒 3 is a twist 
with twist coordinate Ad𝑔𝜉
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• The twist of the spatial transformation:

መ𝜉𝑠 = ሶ𝑇𝑇−1 = መ𝜉1 ሶ𝜃1 + 𝑒
෠𝜉1𝜃1 መ𝜉2 ሶ𝜃2𝑒

−෠𝜉1𝜃1 + 𝑒
෠𝜉1𝜃1𝑒

෠𝜉2𝜃2 መ𝜉3 ሶ𝜃3𝑒
−෠𝜉2𝜃2𝑒−

෠𝜉1𝜃1 +⋯

= መ𝜉1 ሶ𝜃1 + 𝑒
෠𝜉1𝜃1 መ𝜉2𝑒

−෠𝜉1𝜃1 ሶ𝜃2 + 𝑒
෠𝜉1𝜃1𝑒

෠𝜉2𝜃2 መ𝜉3𝑒
−෠𝜉2𝜃2𝑒−

෠𝜉1𝜃1 ሶ𝜃3 +⋯

For any 𝑔 ∈ 𝑆𝐸 3 and መ𝜉 ∈ 𝑠𝑒 3 , 𝑔 መ𝜉𝑔−1 ∈ 𝑠𝑒 3 is a twist 
with twist coordinate Ad𝑔𝜉

• The twist coordinate:

𝜉𝑠 = 𝜉1 ሶ𝜃1 + Ad
𝑒
෡𝜉1𝜃1

𝜉2 ሶ𝜃2 + Ad
𝑒
෡𝜉1𝜃1𝑒

෡𝜉2𝜃2
መ𝜉3 ሶ𝜃3 +⋯

J𝜉1 𝜃 J𝜉2 𝜃 J𝜉3 𝜃
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• The twist coordinate:

𝜉𝑠 = J𝜉1 𝜃 ሶ𝜃1 + J𝜉2 𝜃 ሶ𝜃2 + J𝜉3 𝜃 ሶ𝜃3 +⋯

= J𝜉1 J𝜉2 J𝜉3 …

ሶ𝜃1
ሶ𝜃2
ሶ𝜃3
⋮

= J𝝃 ሶ𝜽



Inverse Kinematic

• Newton-Raphson Method:

Modern Robotics. K. M. Lynch and F. C. Park. 103

∆𝜃 = 𝑱𝝃
−1 𝜉∆ , where 𝜉∆ = log 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡

−1 𝜃 𝑇𝑡𝑎𝑟𝑔𝑒𝑡



How to Build a Robot in the Simulator?

RLBench: The Robot Learning Benchmark & Learning Environment.  James et al. 104



Represent a Robot as a Tree
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The Robot’s URDF File

<?xml version="1.0" ?>

<robot name="panda">

<material name="aluminum">

<color rgba="0.5 0.5 0.5 1"/>

</material>

<link name="panda_link0">

<visual>

<geometry>

<mesh 

filename="franka_description/meshes/visual/link0.glb"/>

</geometry>

</visual>

<collision>

<geometry>

<mesh 

filename="franka_description/meshes/collision/link0.stl"/>

</geometry>

</collision>

<inertial>

<origin rpy="0 0 0" xyz="-0.041018 -0.00014 0.049974"/>

<mass value="0.629769"/>

<inertia ixx="0.00315" ixy="8.2904e-07" ixz="0.00015" 

iyy="0.00388" iyz="8.2299e-06" izz="0.004285"/>

</inertial>

</link>

<link name="panda_link1">

<visual>

<geometry>

<mesh 

filename="franka_description/meshes/visual/link1.glb"/>

</geometry>

</visual>

<collision>

<geometry>

<mesh 

filename="franka_description/meshes/collision/link1.stl"/>

</geometry>

</collision>

<inertial>

<origin rpy="0 0 0" xyz="0.003875 0.002081 -0.04762"/>

<mass value="4.970684"/>

<inertia ixx="0.70337" ixy="-0.000139" ixz="0.006772" 

iyy="0.70661" iyz="0.019169" izz="0.009117"/>

</inertial>

</link>

<joint name="panda_joint1" type="revolute">

<safety_controller k_position="100.0" k_velocity="40.0" 

soft_lower_limit="-2.8973" soft_upper_limit="2.8973"/>

<origin rpy="0 0 0" xyz="0 0 0.333"/>

<parent link="panda_link0"/>

<child link="panda_link1"/>

<axis xyz="0 0 1"/>

<limit effort="87" lower="-2.8973" upper="2.8973" 

velocity="2.1750"/>

<dynamics D="1" K="7000" damping="0.003" friction="0.0" 

mu_coulomb="0" mu_viscous="16"/>

</joint>

The mesh of the link for visualization

The mesh of the link for collision checking

Physical properties of the link
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