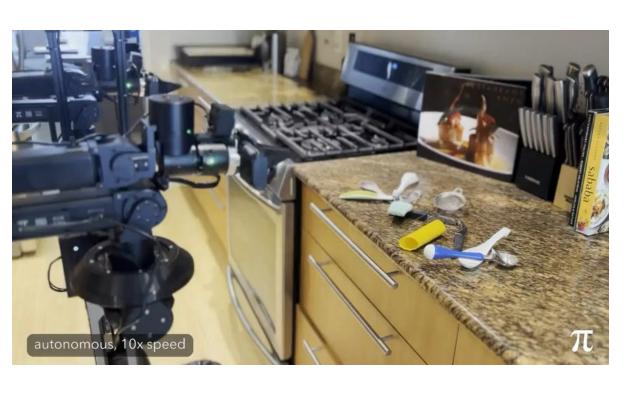
Robot Perception and Learning

Humanoid Robot: Locomotion and Mobile manipulation

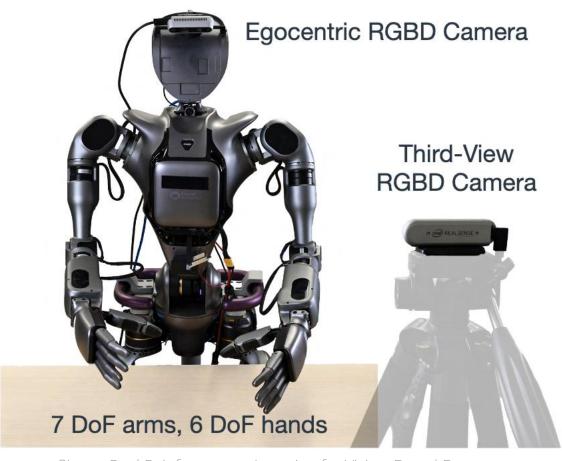
Tsung-Wei Ke

Fall 2025

Learning Robot Control Policies Has Achieved Great Success

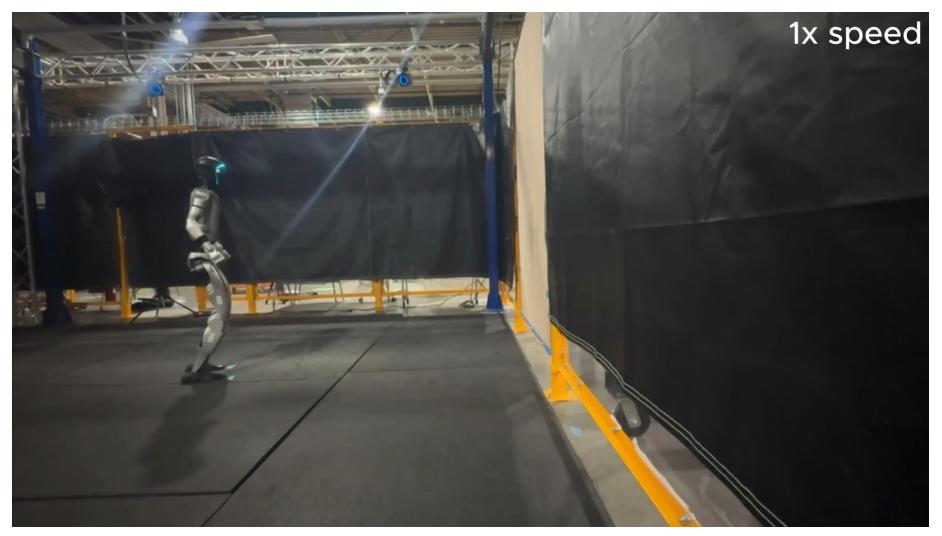


The Single-arm Jaw-based Embodiment is Limited We Need Multi-Arm Multi-Fingered Robots...



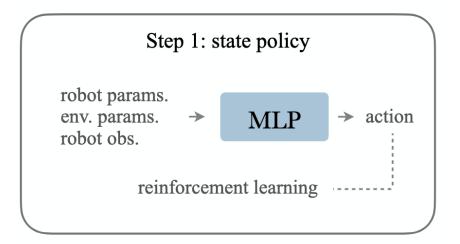
Fixed Robot is Limited. We Need Mobile Robots...

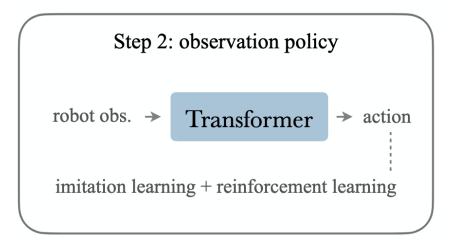
Fixed Robot is Limited. We Need Mobile Robots...

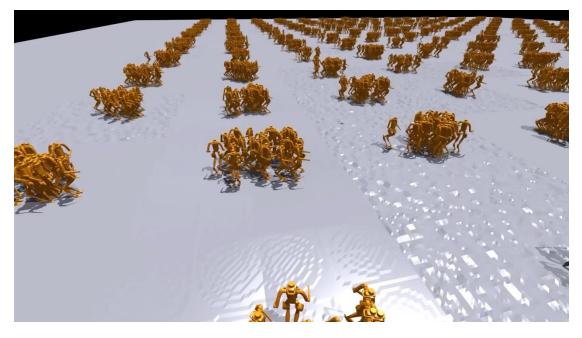


How to Learn Policies for Locomotion?

Learning Locomotion with Reinforcement Learning



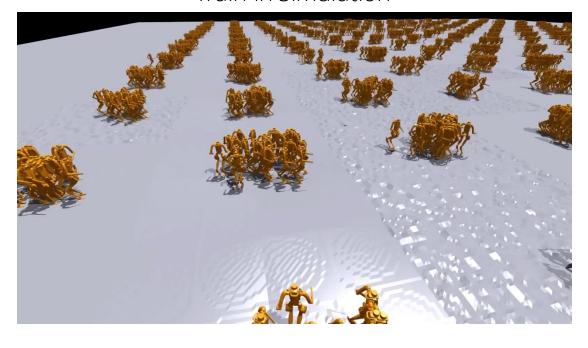




Learning Locomotion with Reinforcement Learning

Trest in the real world

Train in simulation



However, We Need More Diverse, Coordinated Lomotion

Coordinated locomotion

Video source: https://www.reddit.com/r/gifs/comments/8gr87a/hold_my_beer/

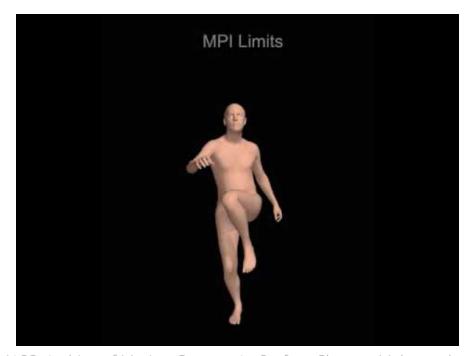
Diverse locomotion skills

Video by Tag Chases

How to design the reward...

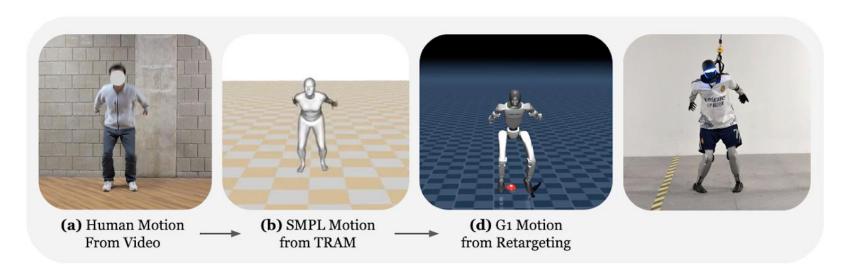
Idea: Learning with Human Motion Priors

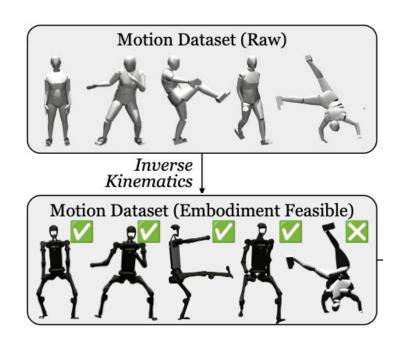
Object Motion Guided Human Motion Synthesis. Li et al.



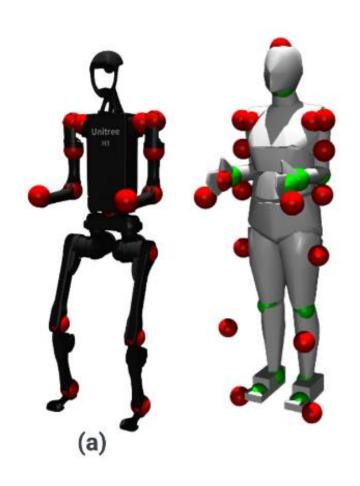
AMASS: Archive of Motion Capture As Surface Shapes. Mahmood et al.

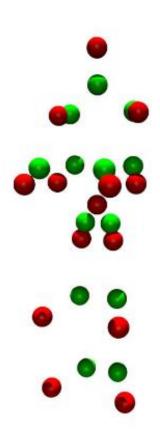
We Need to Retarget Human Motion to Robot Motion





Direct Human-to-Robot Motion Retargetting Fails due to Embodiment Gap





Robots Have Different:

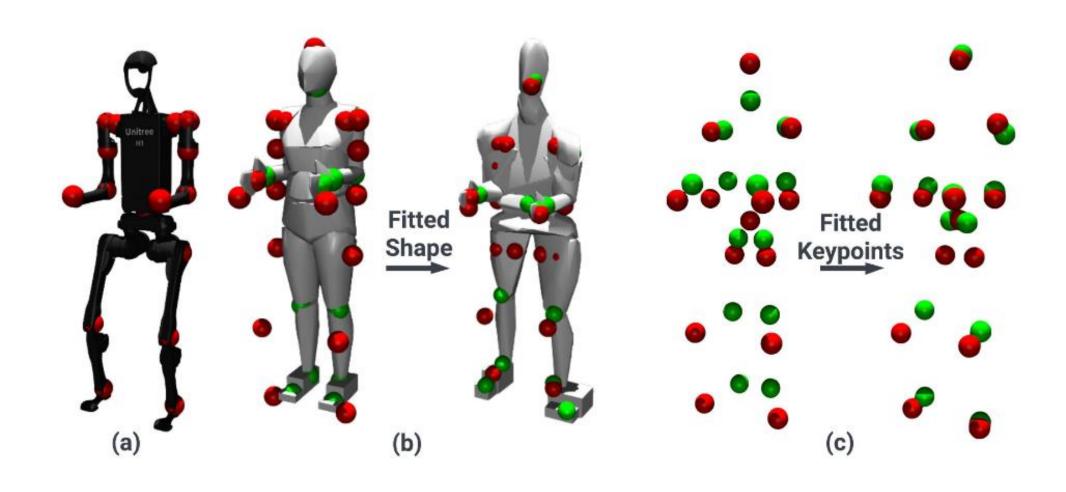
- Shape
- Size
- Geometry

Direct Human-to-Robot Motion Retargetting Fails due to Embodiment Gap

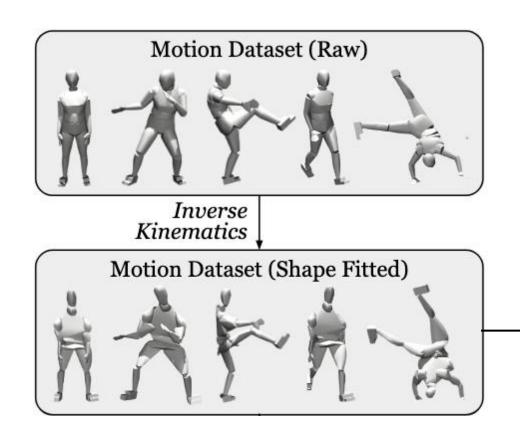
Video source: ENGINEAI/LinkedIn

Video source: Unitree Robotics

Step 1: Reshape Human 3D Model for Remapping



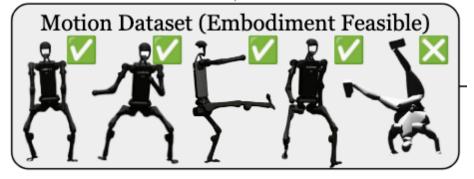
Step 2: Obtain Feasible Actions with RL



Retargeting

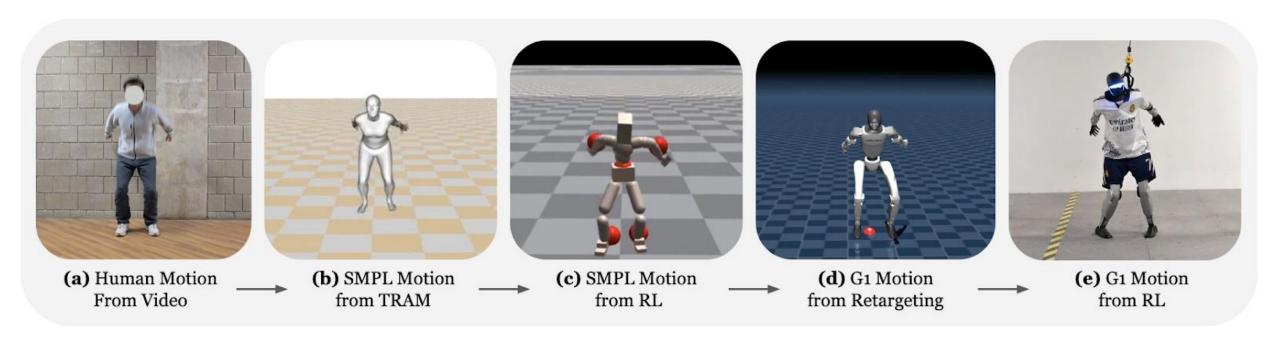
Privileged Imitation Policy

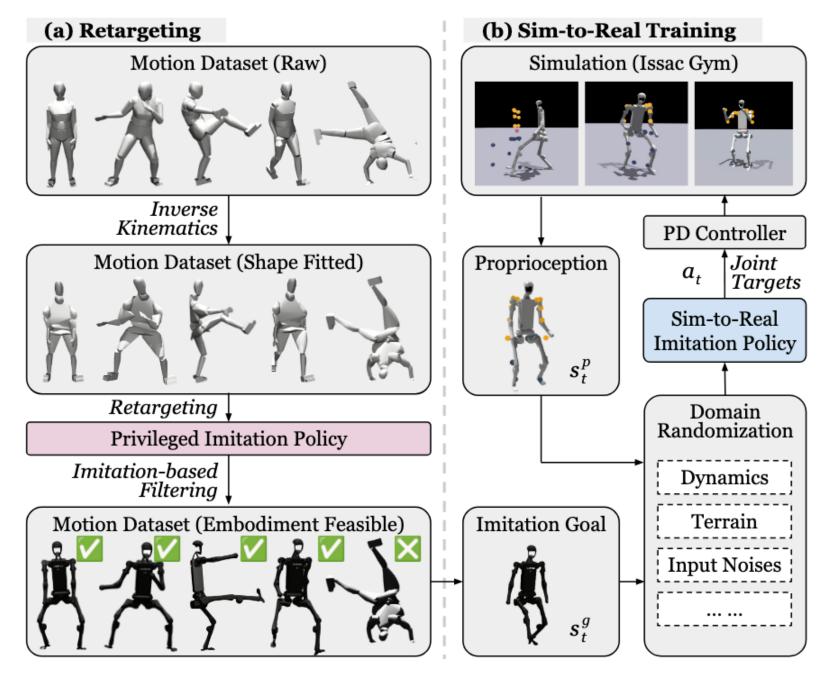
Imitation-based Filtering

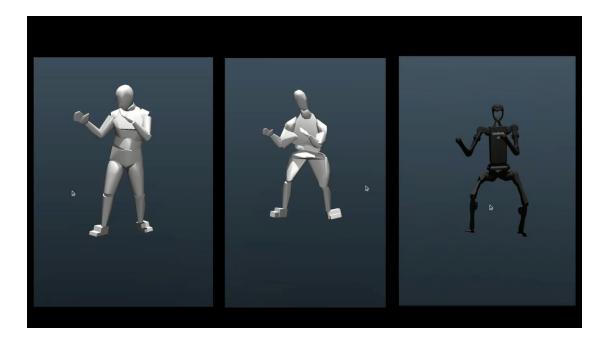


- Key point following reward
- Fall prevention reward
- Energy preservation reward
- •

A General Human-to-Robot Motion Retargetting Pipeline

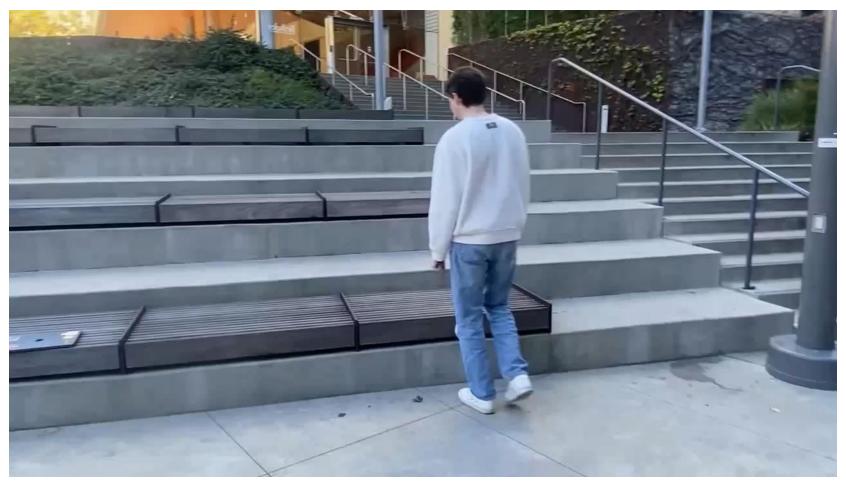






18

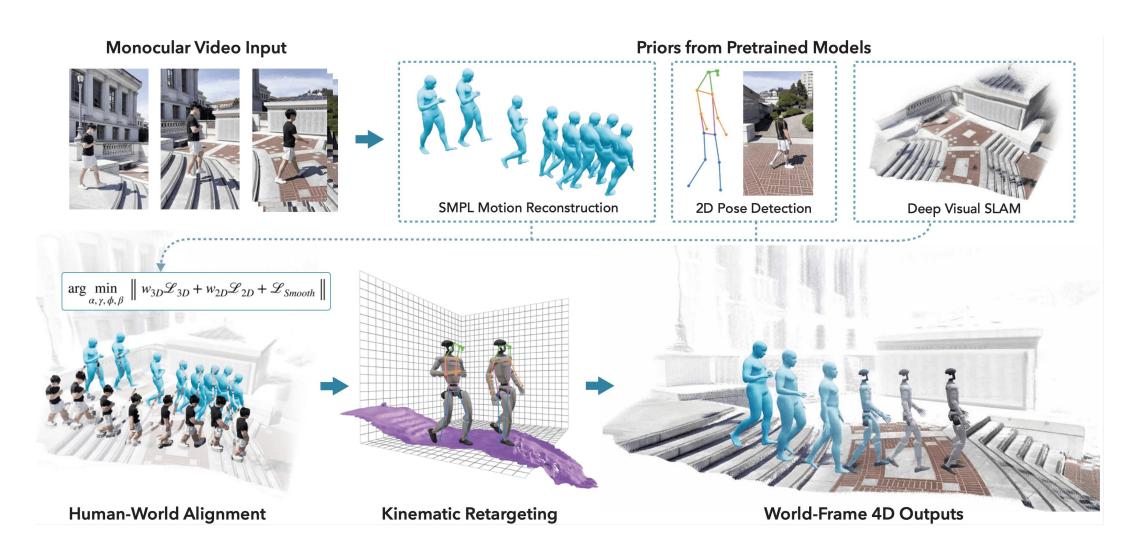
The Same Idea Applies to Video-to-Robot Locomotion



Video Mimic Visual imitation enables contextual humanoid control. Allshire et al.

RL in Digital Twins

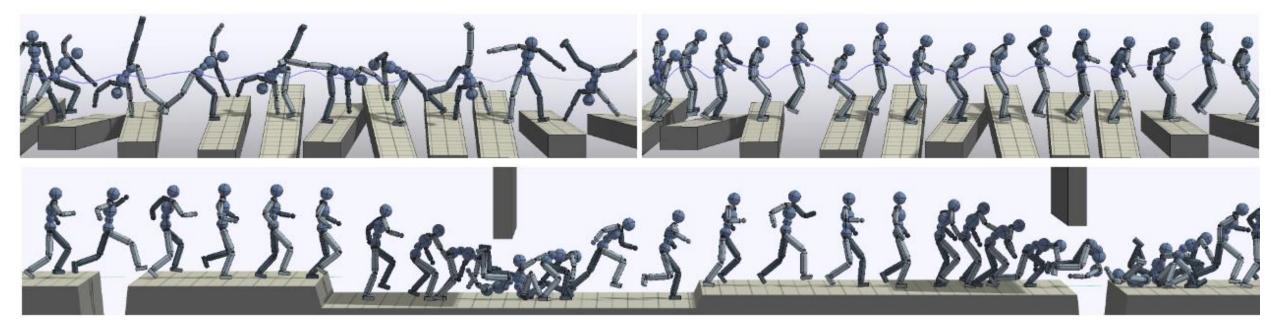
A Video-to-Robot Locomotion Pipeline



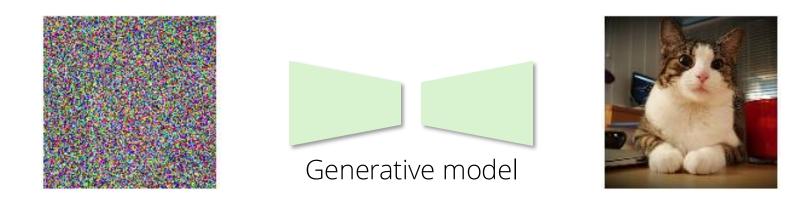
Have We Solved Humanoid Robot Locomotion?

- Previous methods use an action space of joint angles, which has high degree of freedom
- How to adapt learned policies to new terrains / motions?
 - > Sample-inefficient RL becomes challenging (again)

We need a better action space!



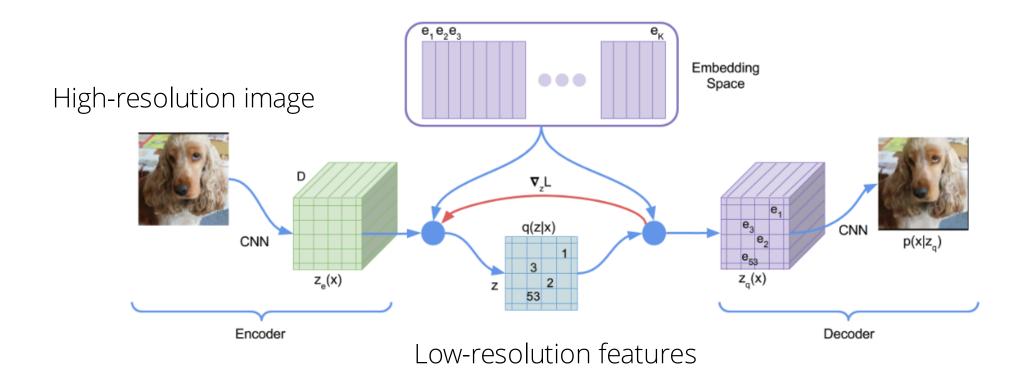
We Have the Same Problem in Visual Generation



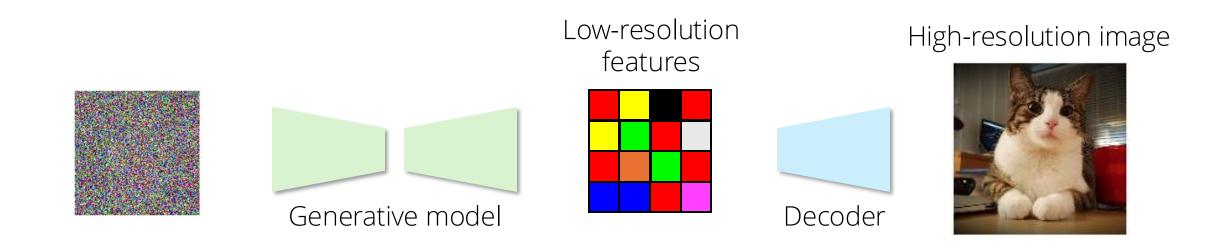
- Generating rgb pixels directly is super expensive!
 - ➤ No structural prior: a 16x16 red patch can be denoted by much simpler representations
 - > High computational cost

Idea: Encode Images in a Compact Feature Space

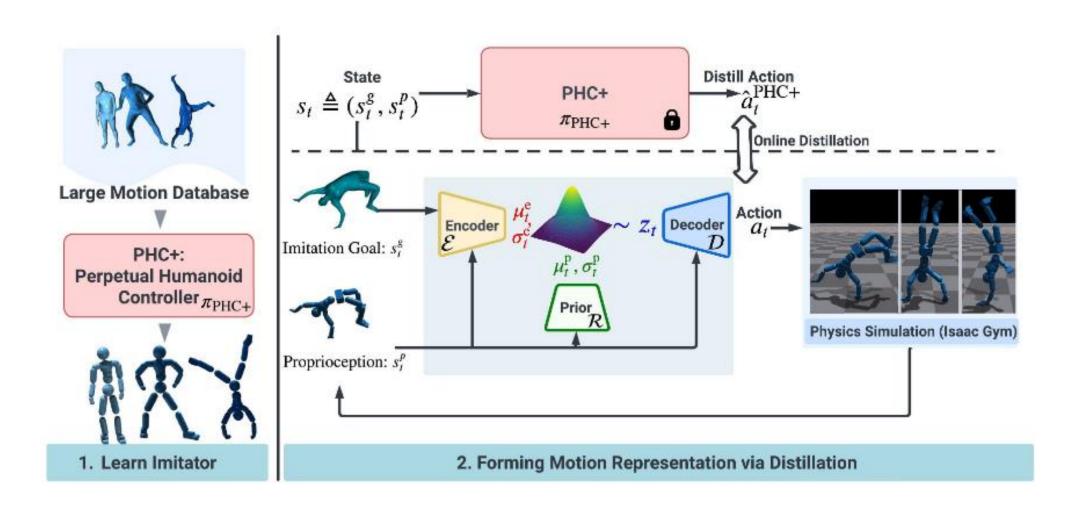
- Learn to encode images by auto-encoding
 - > information bottleneck + reconstruction loss



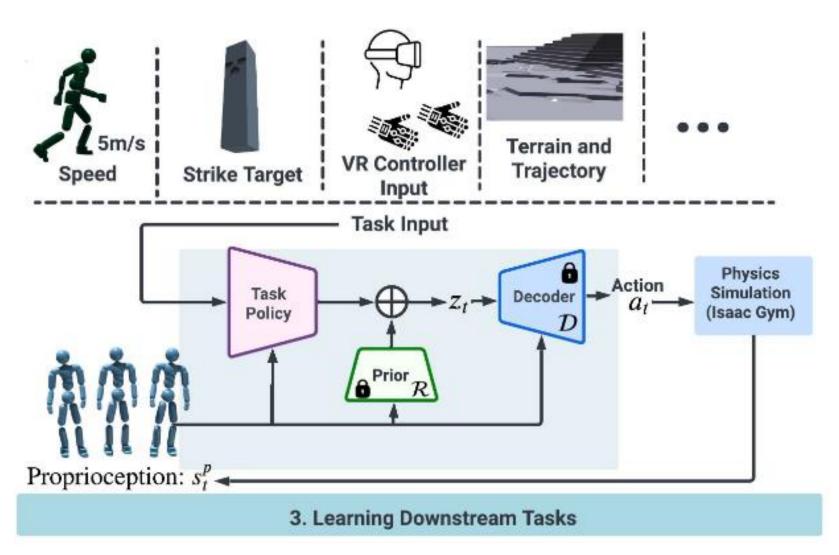
Idea: Generate Images in a Compact Feature Space



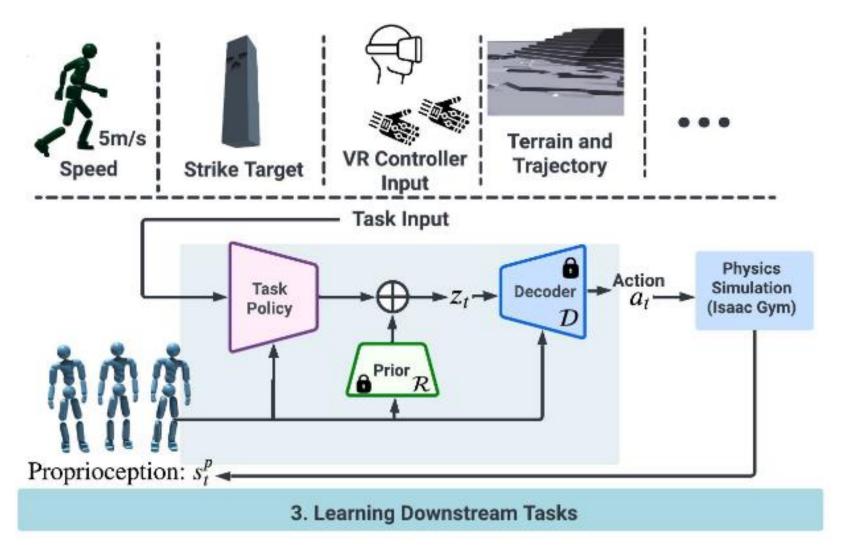
Let's Apply the Same Idea for RL Policies



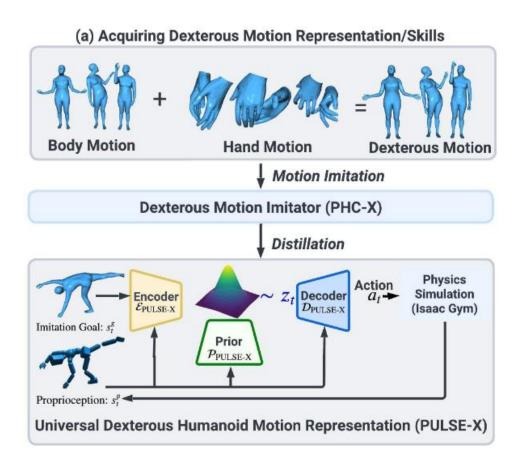
Efficient RL Adaptation to Downstream Tasks



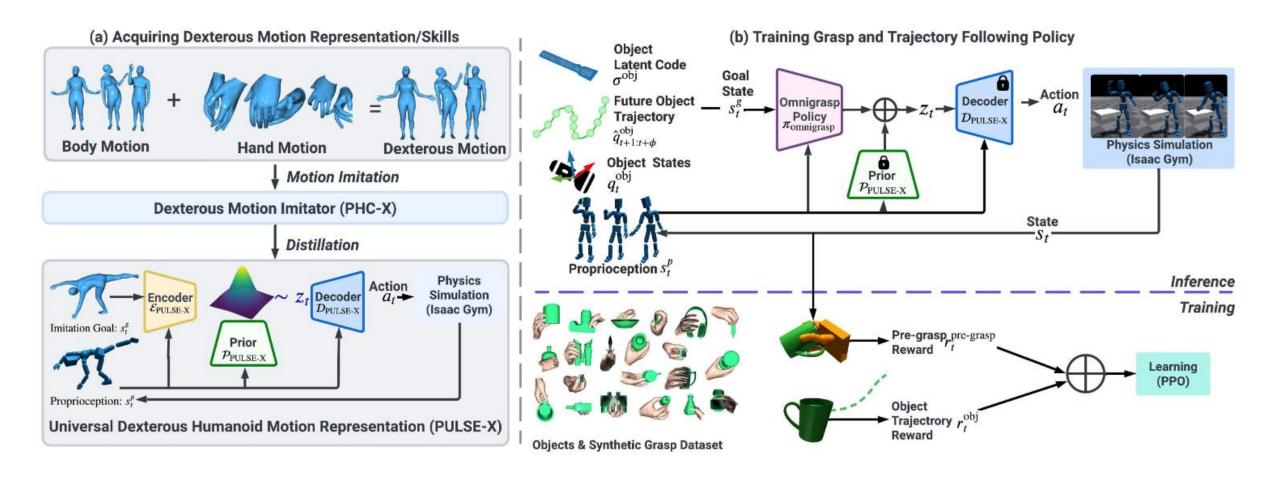
Efficient RL Adaptation to Downstream Tasks



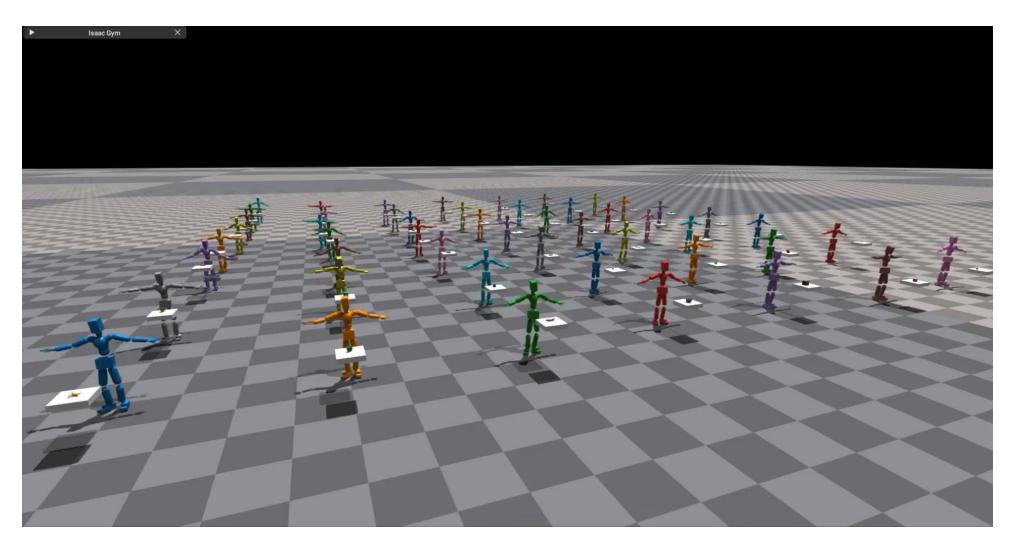
The Same Idea Extends to Mobile Manipulation



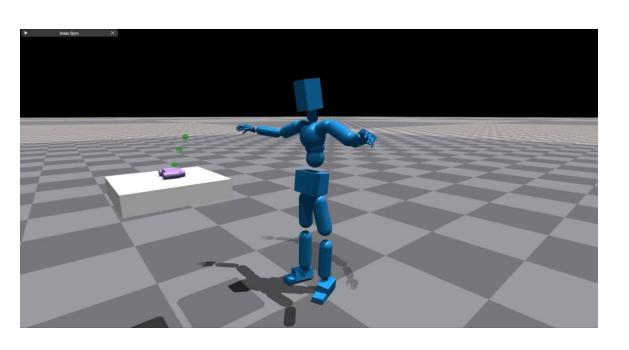
The Same Idea Extends to Mobile Manipulation

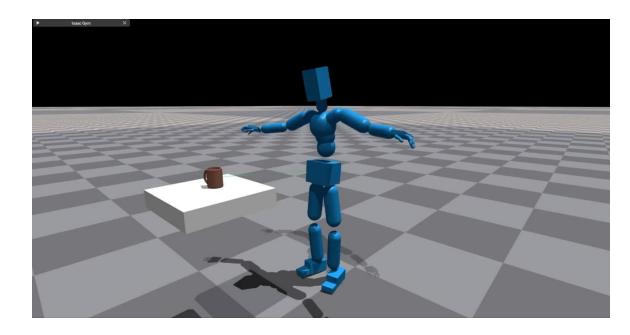


In-Domain Evaluation

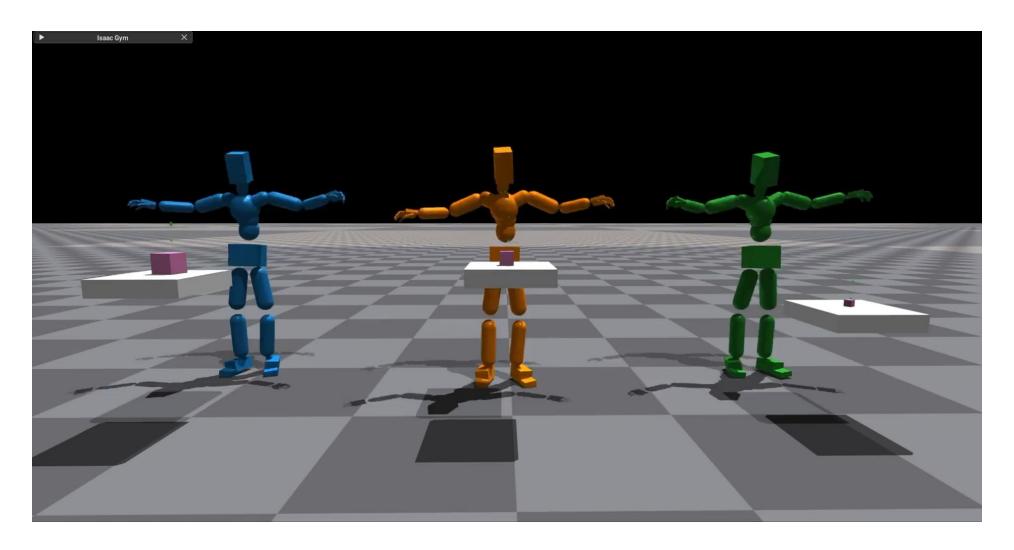


Out-of-Domain Evaluation: Unseen Object Instances

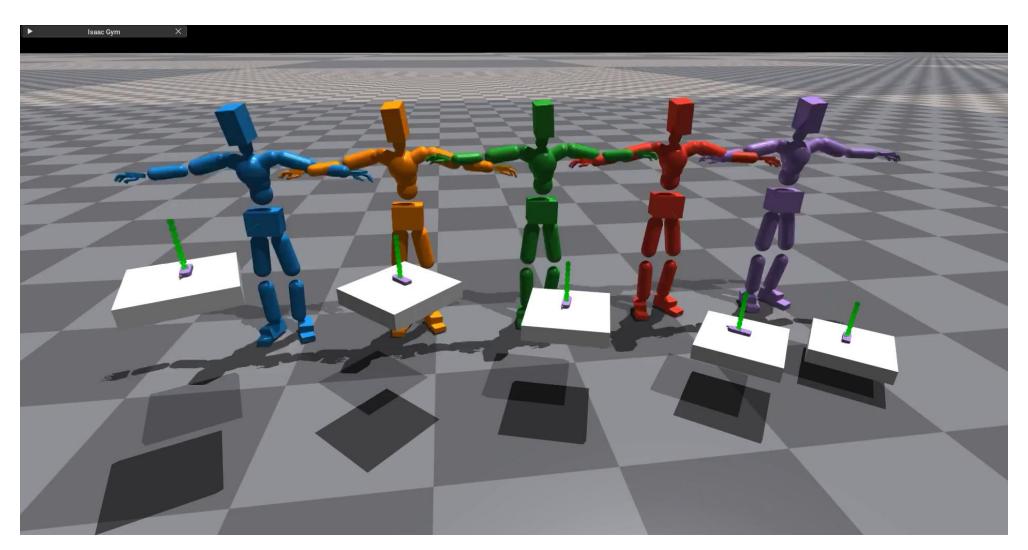




Out-of-Domain Evaluation: Unseen Object Scales

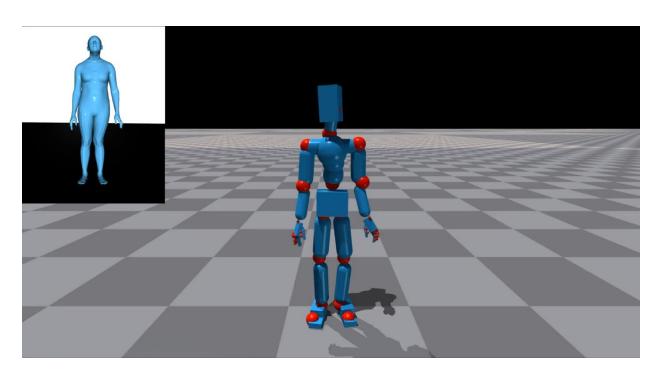


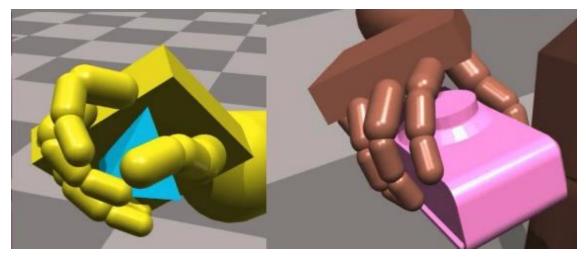
Out-of-Domain Evaluation: Unseen Object Poses



Have We Solved Mobile Manipulation?

No! Oversimplified humanoid robots, overlooking embodiment gap





How to Learn Policies for Dexterous Manipulation?

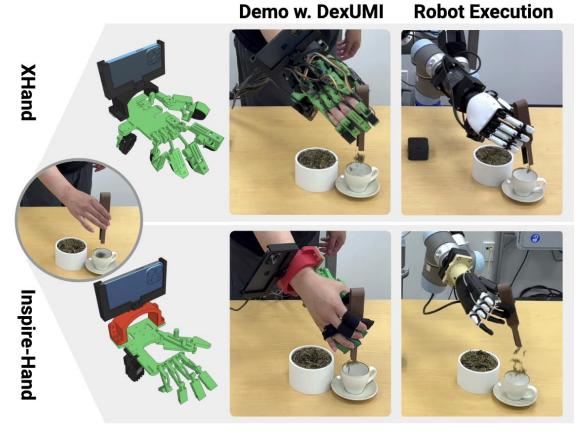
Key to Success: Cloning Human Expert Behaviors

https://blog.ohiohealth.com/simple-ways-teach-family-heritage/

ALOHA 2: An Enhanced Low-Cost Hardware for Bimanual Teleoperation

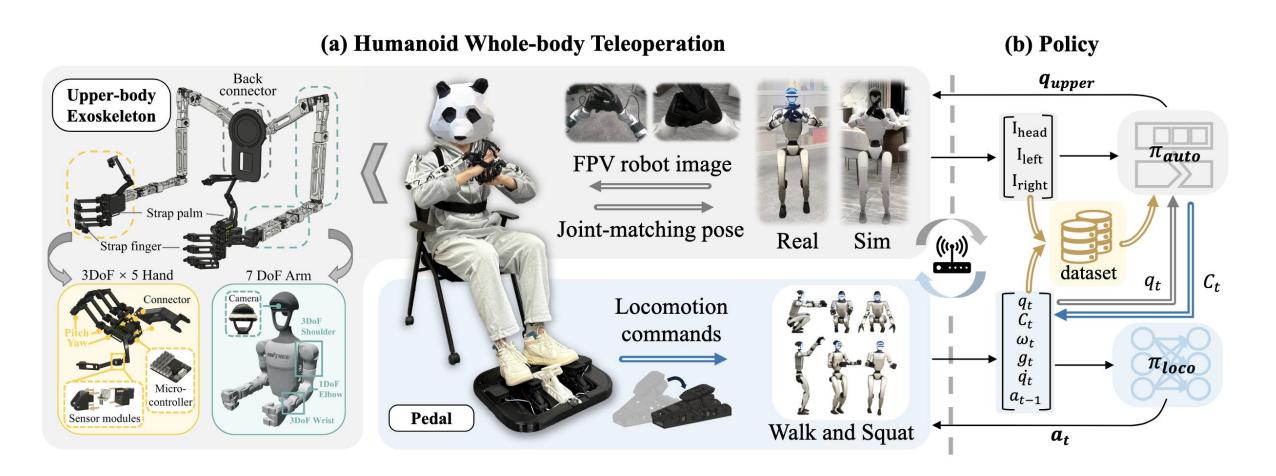
Collecting Expert Demonstrations for Multi-arm Multi-Fingered Robots is Expensive...

https://youtu.be/Bhg3uOx9ZPw?si=et7L0endzGvGP|z-



DexUMI: Using Human Hand as the Universal Manipulation Interface for Dexterous Manipulation

Collecting Expert Demonstrations for Multi-arm Multi-Fingered Mobile Robots is Even More Expensive...



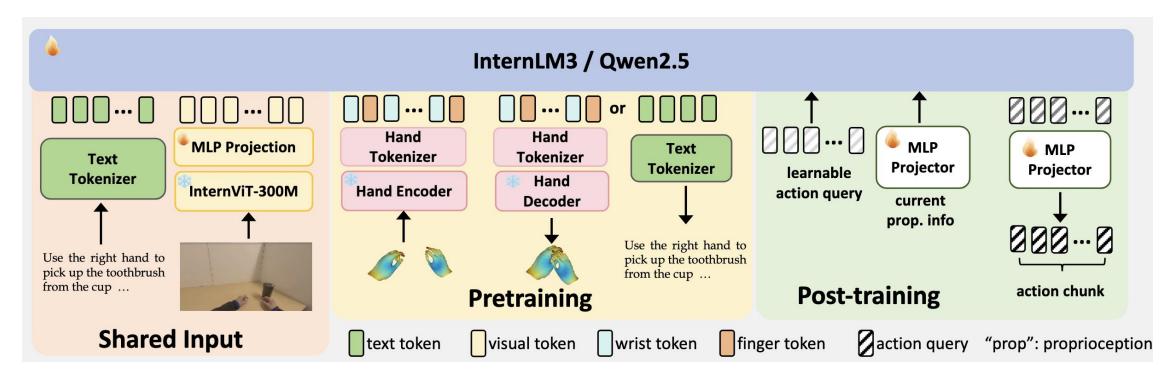
How to Solve the Data Collection Problem?

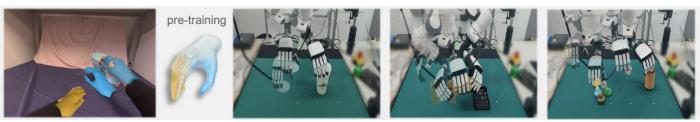
HOT3D by Meta

Veo3 by Google Deepmind

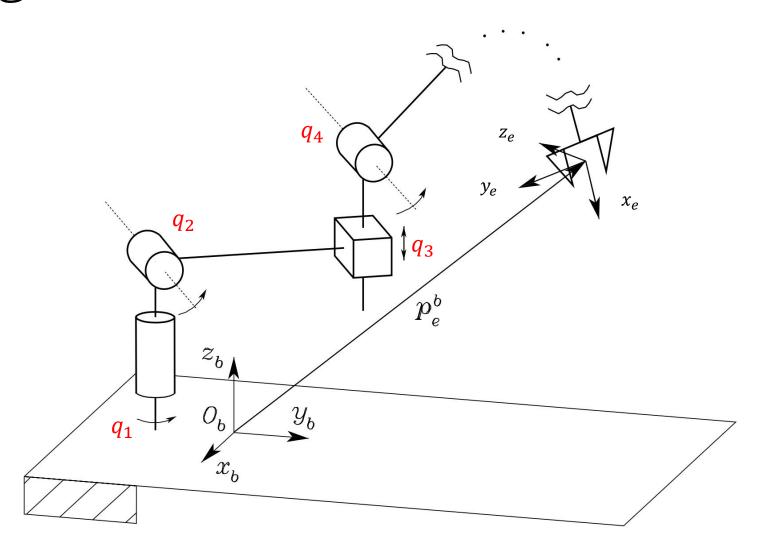
Idea 1: Imitate Human Hand Motions

Idea 1: Imitate Human Hand Motions

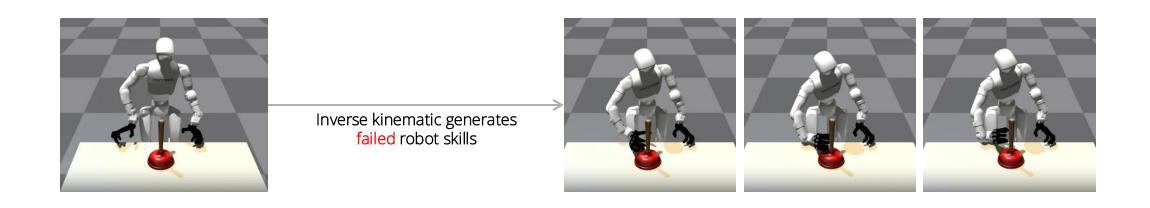




Inverse Kinematic Obtains Robotic Configurations from End-Effector Poses



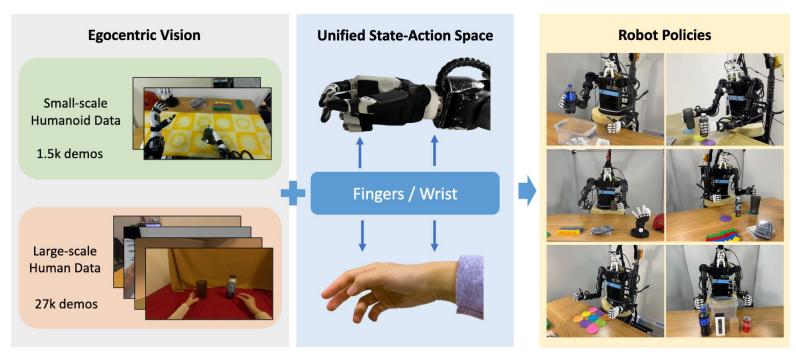
Issue: Inverse Kinematic Fails due to Embodiment Gap



Embodiment Gap: Human Hand vs. Robot Hand

Idea 1.5: Joint training Human Actions and Robot Actions

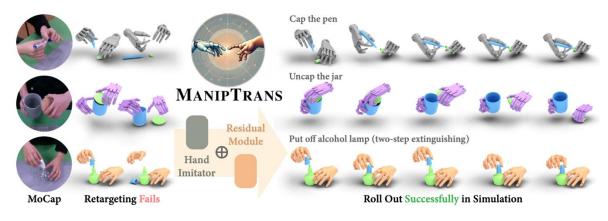
Problem: A small set of Paired humanrobot action annotations is needed



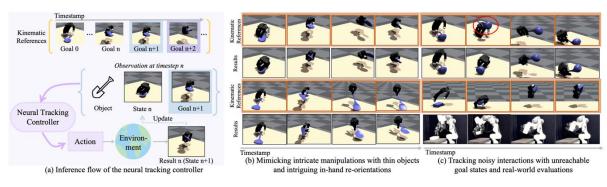
Humanoid Policy ~ Human Policy. Qiu et al.

Idea 2: Reinforcement Learning to Imitate Human Hand Motions and Reproduce Object Motions

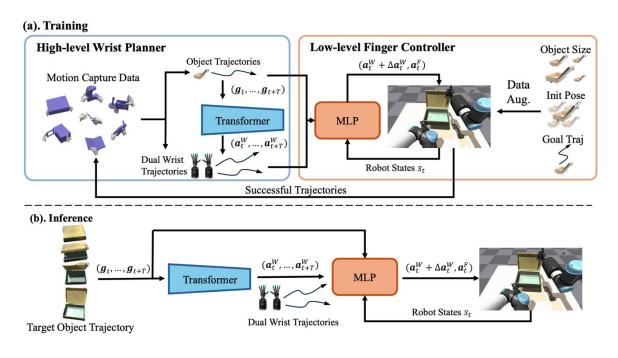
Idea 2: Reinforcement Learning to Imitate Human Hand Motions and Reproduce Object Motions



MANIPTRANS: Efficient Dexterous Bimanual Manipulation Transfer via Residual Learning. Li et al.



DexTrack: Towards Generalizable Neural Tracking Control for Dexterous Manipulation from Human References. Liu et al.



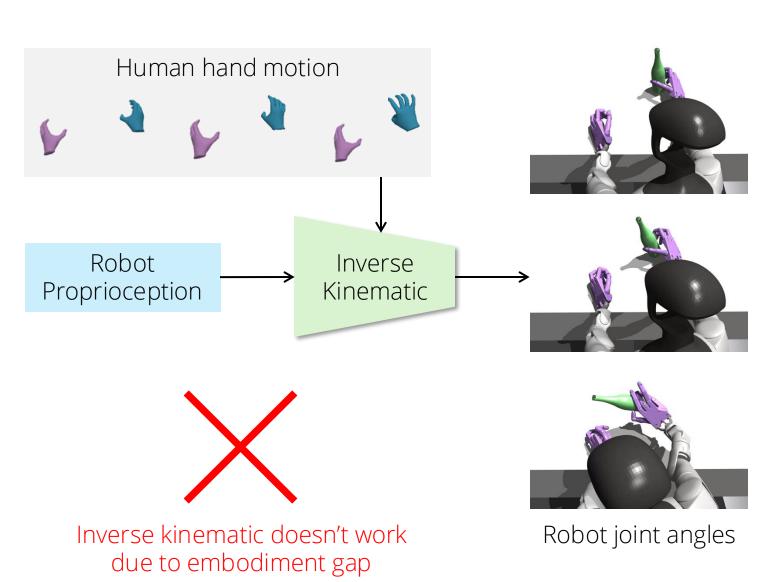
Object-Centric Dexterous Manipulation from Human Motion Data. Chen et al.

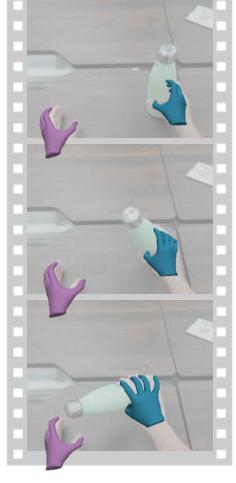
Recipe 1: A Motion-Capture Dataset with Human and Object Motion Annotations

ARCTIC: A Dataset for Dexterous Bimanual Hand-Object Manipulation. Fan et al.

TACO: Benchmarking Generalizable Bimanual Tool-ACtion-Object Understanding. Liu et al.

Recipe 2: Two Objectives of Reinforcement Learning

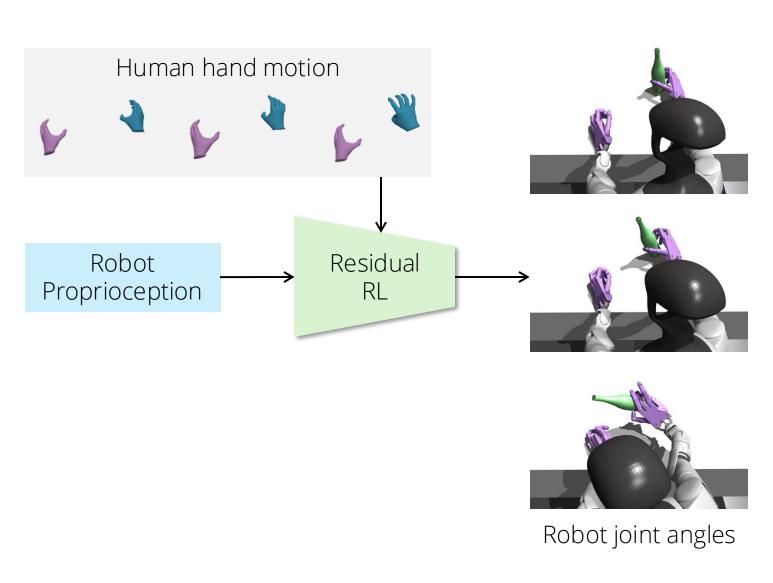


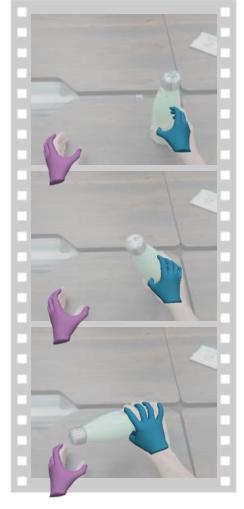




Goal: Reproduce object motions

Recipe 2: Two Objectives of Reinforcement Learning





Goal: Track human hand motions

Goal: Reproduce object motions

Results: Human-to-Robot Motion Retargeting

Shake the flask Scoop something Stir

Issue 1: Previous methods only consider floating hands, overly simplifying the motion retargeting problem

Issue 2: Expensive motion-capture data is required

DexMan: Learning Bimanual Dexterous Manipulation from Human and Generated Videos

Jhen Hsieh

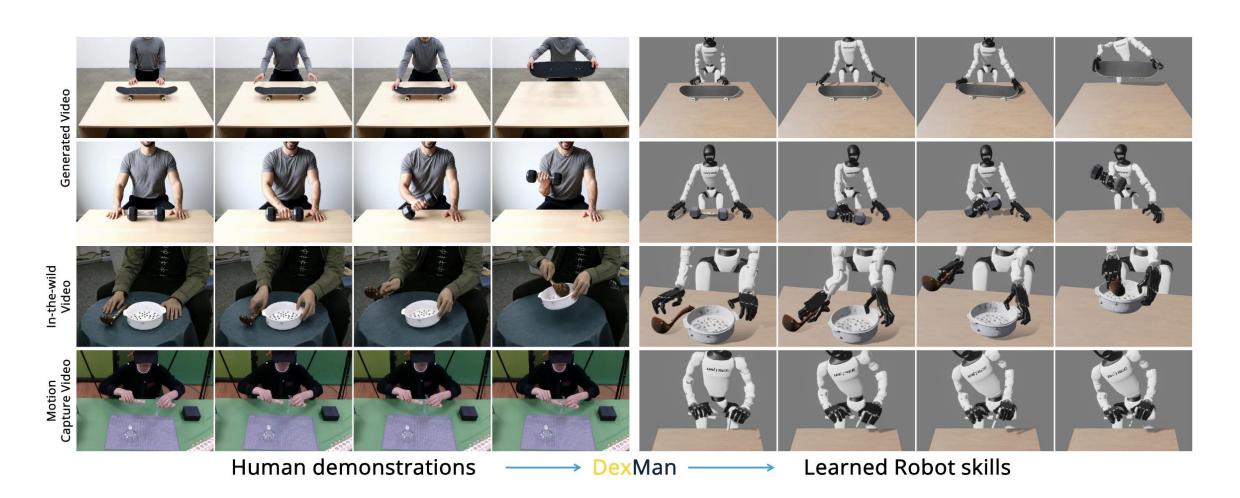
Kuan-Hsun Tu

Kuo-Han Hung

Tsung-Wei Ke

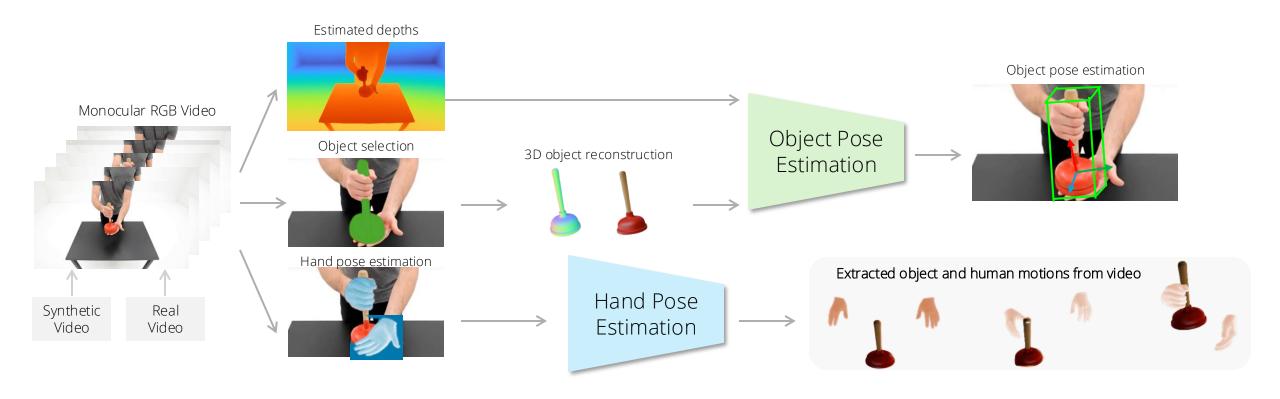
In submission

Our Goal: From RGB Video to Plausible Humanoid Robot Actions for Bimanual Dexterous Manipulation

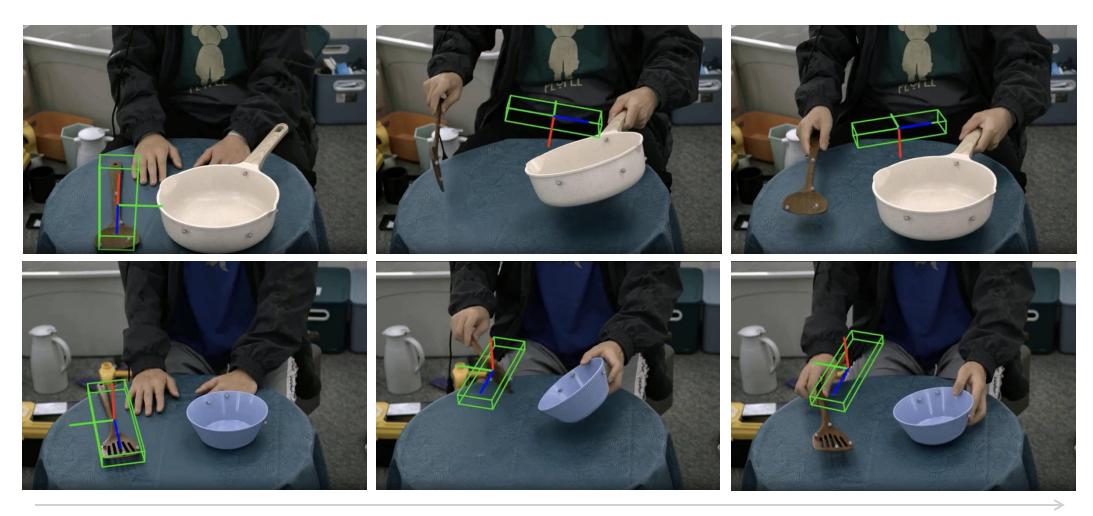


Issue: Expensive motion-capture data is required

- What we need: (1) 3D human hand motion, and (2) 3D object motion
- Solution: existing computer vision methods kind of work

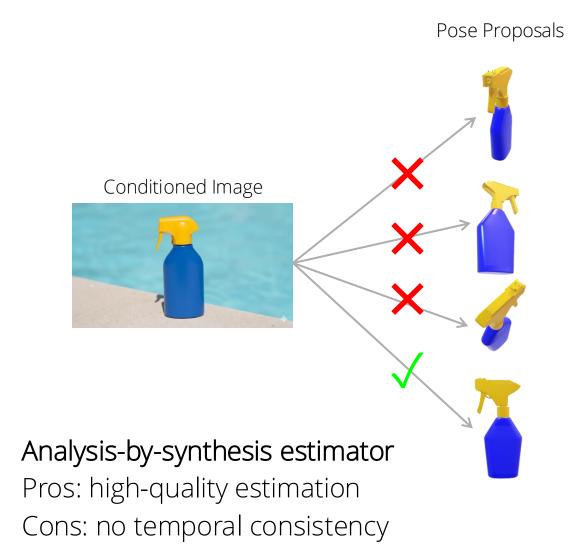


Object Pose Estimation Still Needs Improvement



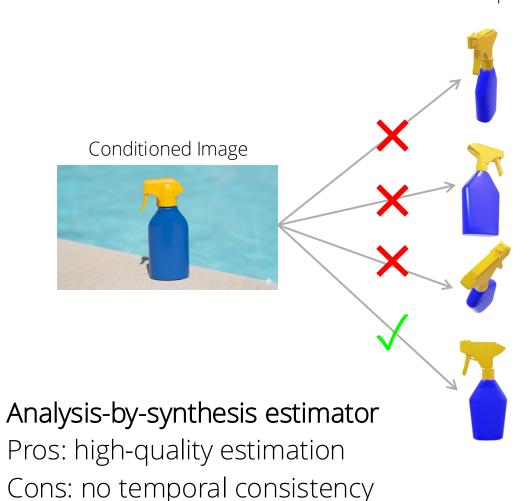
time

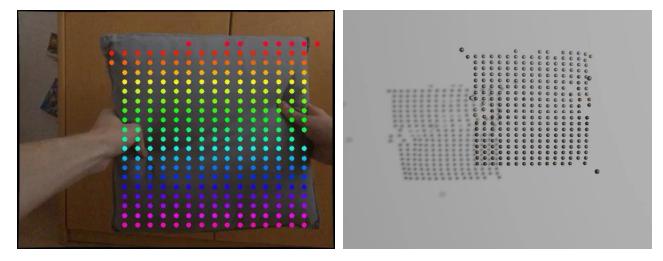
Unstable Analysis-by-Synthesis Object Pose Estimation



Enhance Temporal Consistency with 3D Point Tracking

Pose Proposals





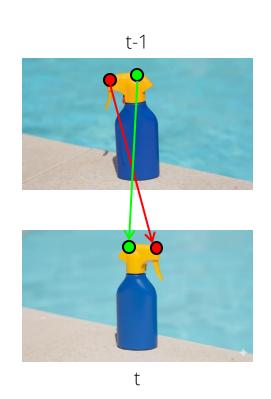
SpatialTracker: Tracking Any 2D Pixels in 3D Space. Hsiao et al.

3D Pixel motion estimator

Pros: Spatio-temporal consistency

Cons: no direct rigid-body pose estimation

Enhance Temporal Consistency with 3D Point Tracking



Relative rigid transformation:

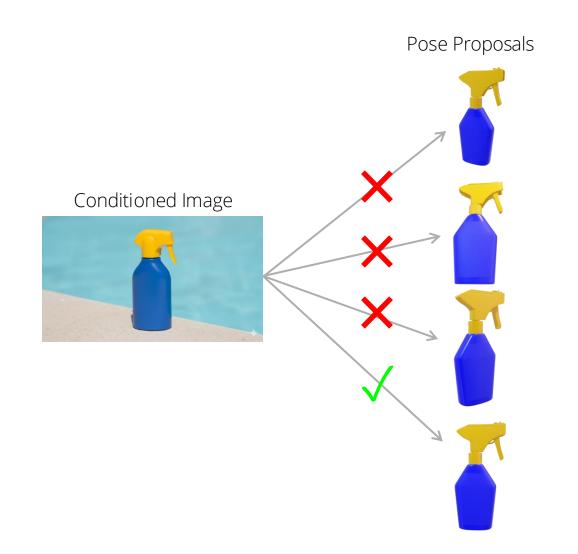
$$\Delta T_{t-1}^t = \text{Kabsh}(X_{t-1}, X_t)$$

Current pose estimation from 3D point tracks:

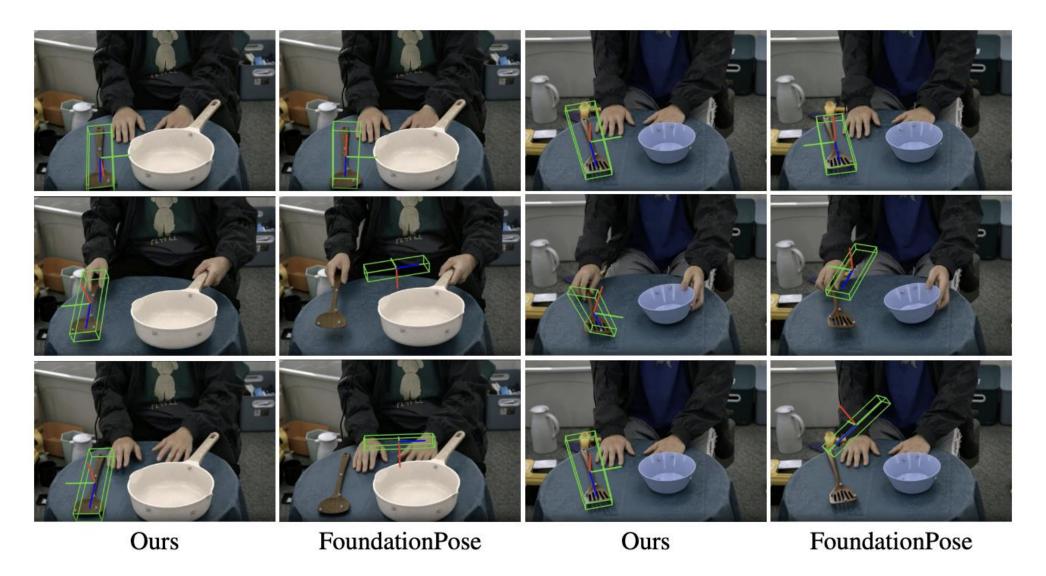
$$P_t = P_{t-1} \Delta T_{t-1}^t$$

New pose proposal:

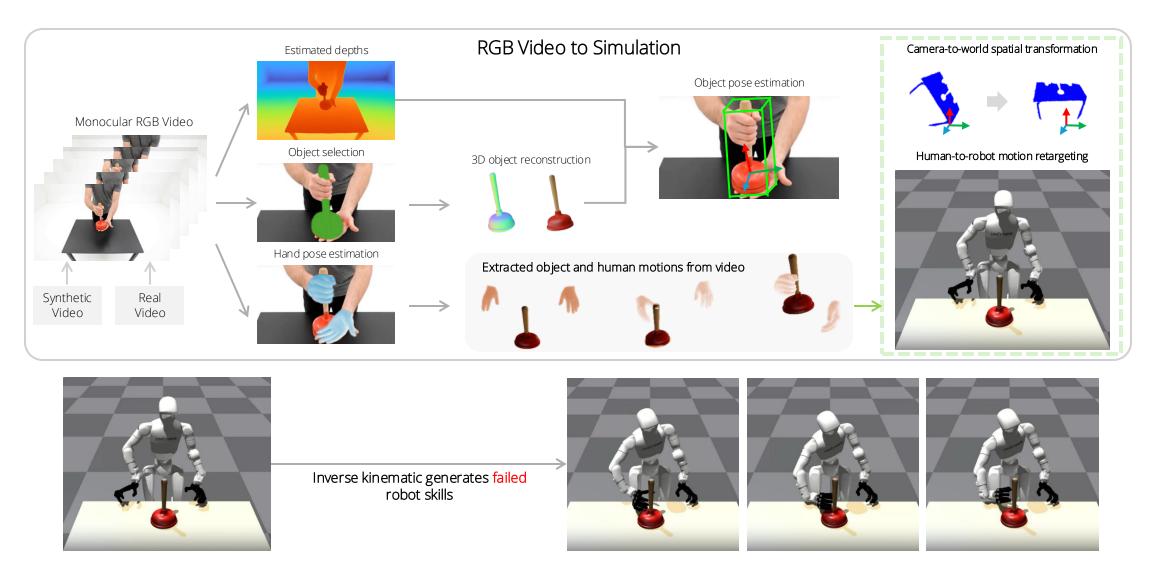
$$P_{t,\text{candidate}} = \{P_t + \epsilon\}$$



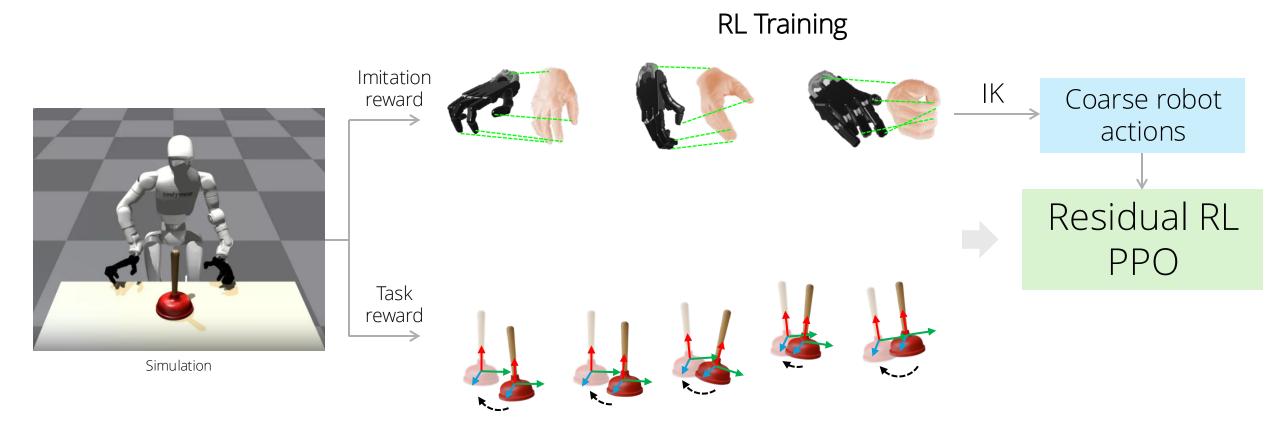
Enhanced Object Pose Estimation



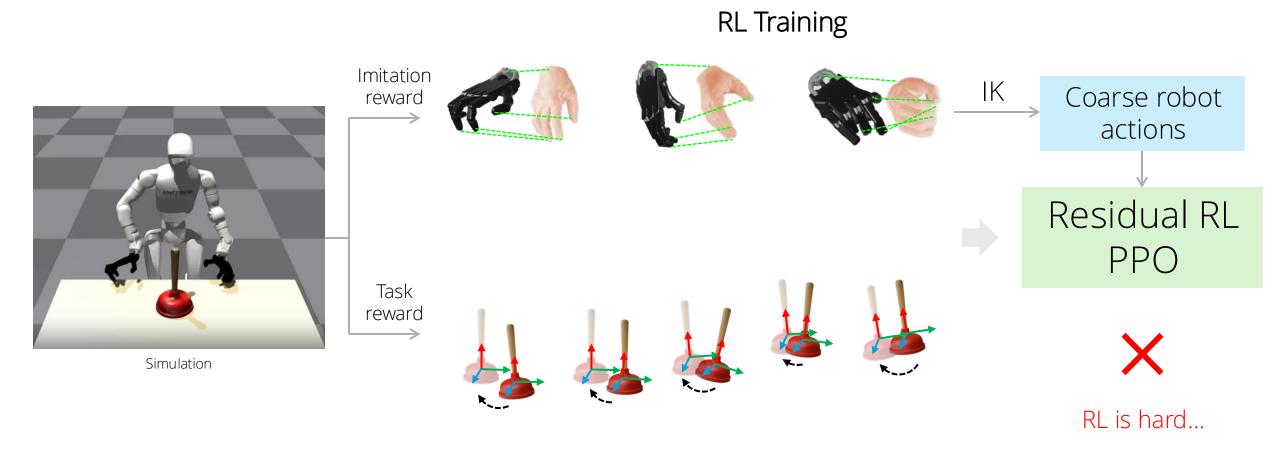
Issue: No Humanoid Robot Action Annotations



Generate Humanoid Robot Actions with Residual RL



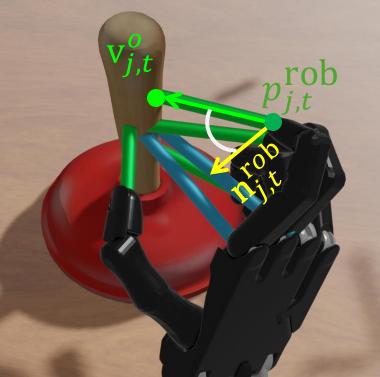
Generate Humanoid Robot Actions with Residual RL



Can We Leverage More Human Motion Priors?

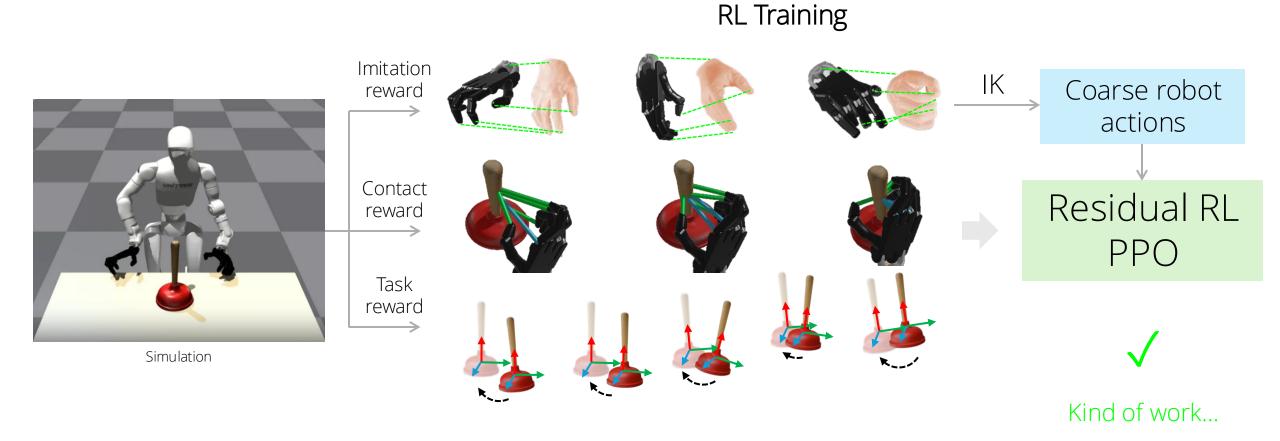
- What other motion priors can we extract from human videos?
- Idea: Contact priors!

Human demonstrations

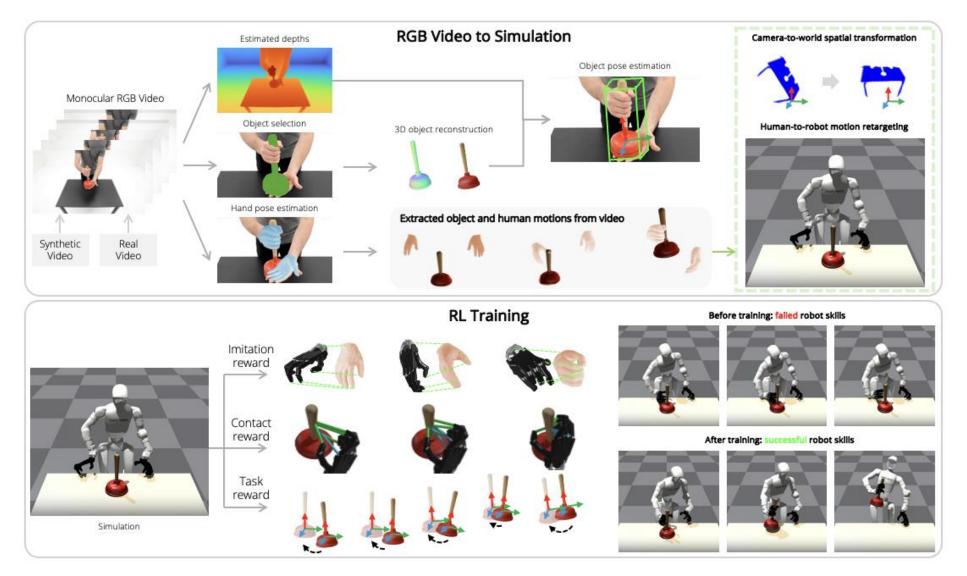


Contact reward

Involve Physical Feedback as RL Objectives



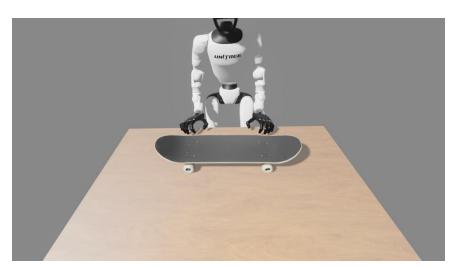
Putting Everything Together

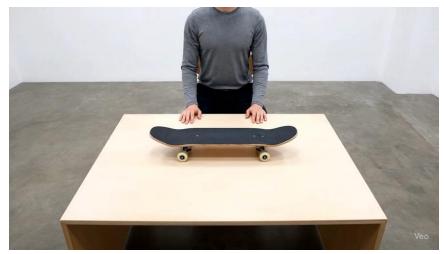


Results: Strong Humanoid Robot Controller for Bimanual Dexterous Manipulation

	Success Rate ↑	$E_r \downarrow$	$E_t \downarrow$
MANIPTRANS	25.3	0.180	0.00646
DexMan (ours)	44.3	0.178	0.00688

Results: Automated Video to Robot Action Acquisition Pipeline





Results: Automated Video to Robot Action Acquisition Pipeline

